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Abstract

Imputation, the process of inferring genotypes for untyped variants, is used to identify and
refine genetic association findings. Inaccuracies in imputed data can distort the observed
association between variants and a disease. Many statistics are used to assess accuracy;
some compare imputed to genotyped data and others are calculated without reference to
true genotypes. Prior work has shown that the Imputation Quality Score (IQS), which is
based on Cohen’s kappa statistic and compares imputed genotype probabilities to true
genotypes, appropriately adjusts for chance agreement; however, it is not commonly used.
To identify differences in accuracy assessment, we compared IQS with concordance rate,
squared correlation, and accuracy measures built into imputation programs. Genotypes
from the 1000 Genomes reference populations (AFR N =246 and EUR N = 379) were
masked to match the typed single nucleotide polymorphism (SNP) coverage of several
SNP arrays and were imputed with BEAGLE 3.3.2 and IMPUTE2 in regions associated with
smoking behaviors. Additional masking and imputation was conducted for sequenced sub-
jects from the Collaborative Genetic Study of Nicotine Dependence and the Genetic Study
of Nicotine Dependence in African Americans (N = 1,481 African Americans and N = 1,480
European Americans). Our results offer further evidence that concordance rate inflates
accuracy estimates, particularly for rare and low frequency variants. For common variants,
squared correlation, BEAGLE R?, IMPUTE2 INFO, and IQS produce similar assessments
of imputation accuracy. However, for rare and low frequency variants, compared to IQS, the
other statistics tend to be more liberal in their assessment of accuracy. IQS is important to
consider when evaluating imputation accuracy, particularly for rare and low frequency
variants.

PLOS ONE | DOI:10.1371/journal.pone.0137601

October 12,2015 1/18


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0137601&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/
http://www.1000genomes.org/data
http://www.1000genomes.org/data
http://csg.sph.umich.edu/abecasis/MACH/download/
http://csg.sph.umich.edu/abecasis/MACH/download/

@’PLOS ‘ ONE

Choice of Accuracy Measure Alters Imputation Accuracy Assessment

R21DA033827 from NIDA. NLS, WD, and RC were
also supported by P01DA035825 from NIDA. DBH
and EOJ were supported by R01DA035825 from
NIDA. EOJ was also supported by R01DA025888
from NIDA. EO was supported by T32GM07200,
UL1TR000448, F30AA023685, and TL1TR000449
from the National Institutes of Health. This work was
also supported by P01CA089392 from NCI and
HHSN2682011000111 from NIH. LC was supported
by KO8DA030398 from NIH. SMH was supported by
K08DA032680 from NIDA. TSA was supported by the
Division of Intramural Research at National Human
Genome Research Institute, National Institutes of
Health. The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors of this manuscript
have the following competing interests: The spouse
of NLS is listed as an inventor on Issued U.S. Patent
8,080,371,“Markers for Addiction” covering the use of
certain SNPs in determining the diagnosis, prognosis,
and treatment of addiction. This does not alter the
authors' adherence to PLOS ONE policies on sharing
data and materials. The other authors declare no
conflicts of interest.

Introduction

In genomic analyses high-quality data are crucial to accurate statistical inferences. Data accu-
racy can typically be assessed by different methods and measures.

Genetic imputation provides an informative scenario for examining how the use of different
accuracy measures can influence the assessment of accuracy. Genotype imputation is a valuable
tool in association studies and meta-analyses. This process infers “in silico” genotypes for untyped
variants in a study sample by matching genotyped variants in the study to corresponding haplo-
types in a comprehensively genotyped reference panel [1-8]. Therefore, imputation accuracy is
influenced by haplotype frequencies in the reference panel [9-10] and the typed single nucleotide
polymorphism (SNP) coverage of the study sample [11-12]. Once untyped variants are inferred,
statistics that measure imputation accuracy are calculated to identify poorly imputed SNPs.

Imputation accuracy statistics can be classified into two types: (1) statistics that compare
imputed to genotyped data and (2) statistics produced without reference to true genotypes. Con-
cordance rate, squared correlation, and Imputation Quality Score (IQS) [13] are examples of the
first type. Because imputed SNPs usually do not have genotyped data for comparison, statistics
of the second type are usually provided by imputation programs and are commonly relied upon
in practice. However, a direct comparison of imputed and genotyped data can be made possible
by masking a percentage of variants that were genotyped in the study sample [9, 14-15].

Lin et al (2010) introduced IQS, which is based on Cohen’s kappa statistic for agreement
[13]. Because of chance agreement, concordance rate, i.e. the proportion of agreement, can
lead to incorrect assessments of accuracy for rare and low frequency variants. IQS adjusts for
chance agreement [13]. Furthermore, Lin et al. (2010) used simulated data to show that requir-
ing an IQS threshold > 0.9 removed all false positive association signals, while concordance
rate > 0.99 still resulted in many false positives. Despite this evidence, IQS is not widely used
in accuracy assessment.

This work builds upon previous studies by comparing IQS with commonly used accuracy
measures—concordance rate, squared correlation, and built-in accuracy statistics—with the
goal of identifying situations in which the choice of accuracy measure leads to differing assess-
ments of accuracy. We compared imputed and genotyped data via masking, and used African-
ancestry and European-ancestry populations to evaluate imputation accuracy in genomic
regions associated with nicotine dependence and smoking behavior, some of which have also
been implicated in lung cancer and chronic obstructive pulmonary disease (COPD).

Methods

We examined differences and similarities in accuracy assessment as measured by IQS, squared
correlation, concordance rate and built-in accuracy statistics using: (1) 1000 Genomes as the
sample and the reference, and (2) data from nicotine dependence studies as the sample and
1000 Genomes as the reference. Below we describe both approaches, beginning with analyses
involving 1000 Genomes as the sample and the reference.

Masking and Imputation using 1000 Genomes Data

Because IQS adjusts for chance agreement [13], we used IQS as a benchmark for accuracy esti-
mation. Calculating IQS, concordance rate, and squared correlation requires genotyped data
for comparison with imputed data. We created a study sample for imputation by masking
genotypes in the reference panel to mimic the typed SNP coverage of commercially available
SNP arrays (Affymetrix—Afty 500 and Affy 6 as well as Illumina—Duo, Omni, and Quad
matched by genomic position using Build 37.3/hg19). We used 1000 Genomes African (AFR)
and European (EUR) continental reference panels with 246 and 379 individuals respectively
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Fig 1. General process for creating the study sample for imputation. The reference panel was masked to mimic a commercial SNP array, resulting in a
study sample which contains the same individuals as the reference panel.

doi:10.1371/journal.pone.0137601.g001

(S1 Table) [16]. All data analyzed here are de-identified, publicly available data from the 1000
Genomes (1000G) project, which provides these data as a resource for the scientific commu-
nity. Participants provided informed consent to the 1000G Project for broad use and broad
data release in databases [16-17]. We also have Washington University Human Research Pro-
tection Office approval for analyses of de-identified data.

The process of creating the study sample is described in Fig 1 and the numbers of typed var-
iants are presented in S2 Table. Fig 1 illustrates several key characteristics of our masking
approach. The reference panel individuals were the same as the study sample individuals. Our
approach is expected to give an upper bound on accuracy because of the ideal match between
the reference panel and study sample; the “correct” haplotype for each individual being
imputed is present in the reference. Using population-specific reference panels (AFR and
EUR) rather than a cosmopolitan reference panel maximizes the matching between the refer-
ence panel and study sample. Also, this design allowed us to compare accuracy estimates for
variants not found on a SNP array. This sample data set was then imputed and the results were
used to calculate accuracy statistics.

Imputation Programs

BEAGLE (version 3.3.2) [2, 8] and IMPUTE2 [1, 4-5] were used to obtain imputed genotype
probabilities. We obtained the BEAGLE R* and IMPUTE2 INFO accuracy measures for each
SNP; neither of these makes use of true genotypes. The BEAGLE R” and IMPUTE2 INFO accu-
racy measures are well established [3, 15]. BEAGLE R” approximates the squared correlation
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between the most likely genotype and the true unobserved allele dosage [2, 8]. IMPUTE2
INFO considers allele frequency as well as the observed and expected allele dosage [15]. We
include their formulas for completeness, in Eqs 1 and 2, Here g, represents the observed dos-

age, e, represents the expected allele dosage, and 0 represents the sample allele frequency for
sample n at a particular SNP, where n ranges from 1 to N, the total number of individuals and

0<0<1. Additionally, z, represents the genotype with the highest posterior probability from
imputation, i.e. 0, 1, or 2 corresponding to the number of copies of the coded allele. Finally, f,,

= pu1 + 4pn2 where p, represents the imputed probability of the genotypic class k (0, 1, and 2)
corresponding to the nth sample.

{ZNg L~ (N) (ZNgZeﬂ .
S sm( S [T om( )]

N
(fy = e)
n=1
INO(1 — 0)

BEAGLE R* =

IMPUTE2 INFO = 1— (2)

Imputed probabilities produced by BEAGLE and the corresponding accuracy statistics
showed variability, so we focus on these results. Analyses using IMPUTE2 were less informa-
tive in this matched sample-reference setting; this program appears to identify the matching
individual in the reference and assign imputed data accordingly. The result was highly accurate
imputation in this special context. Since we aim to compare concordance rate, squared correla-
tion, and IQS in efforts to identify scenarios where these statistics produce similar or divergent
conclusions regarding accuracy estimation, the variation produced by using BEAGLE for
imputation allows us to address our question of interest.

Statistics that Compare Genotyped and Imputed Data

The imputed genotype probabilities produced by BEAGLE and IMPUTE2 were used to calcu-
late concordance rate, squared correlation and IQS. These imputed genotype probabilities, one
for each genotype class (e.g. AA, AB, or BB), are transformed to dosage values by multiplying
by 0, 1 or 2 for each genotypic class. IQS is calculated from genotype probabilities while
squared correlation uses dosage values. Note that a specific dosage value can correspond to
multiple genotypic probabilities, but only one dosage value can result from a specific set of
genotypic probabilities. Although the most likely (best guess) genotype for each variant can be
used to calculate these statistics, it is not recommended because the discrete classification of
each individual’s genotype does not consider the probabilistic nature of imputation [18].

The incorporation of the genotypic classes into the IQS calculation is represented in Table 1,
where each cell is the sum of the genotype probabilities for each genotyped and imputed geno-
typic class combination. The IQS calculation is demonstrated in Eq 3. IQS considers both the
observed proportion of agreement (concordance rate or P, shown in Eq 4) as well as chance
agreement (P in Eq 5). Concordance rate (P,) is the sum of probabilities for each matching
genotypic class divided by the total sum of all genotype probabilities. Chance agreement is eval-
uated as the sum of the products of the marginal frequencies. An IQS score of one indicates that
the data matched perfectly, while a negative IQS score indicates that the SNP was imputed
worse than expected by chance [13]. Mathematically, the value of IQS will always be less than or
equal to the value of concordance rate: P,P. < P, so P,—P. < P,-P,P,, hence (P,-P.)/(1-P.) <
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Table 1. Calculating concordance (P,) and IQS from imputed genotype probabilities and actual genotypes. The table was created by summing over
probabilities for all N individuals (n = 1 to N) in each cell with p;;_, representing the probability that the nth individual has the imputed genotype i and actual
genotype j, where 1 corresponds to AA, 2 corresponds to AB, and 3 corresponds to BB. N = number of individuals with AA actual genotype, N> = number of
individuals with AB actual genotype, N3 = number of individuals with BB actual genotype, and N = number of total individuals.

AA

AB

Imputed BB

Total

doi:10.1371/journal.pone.0137601.t001

Actual
AA AB BB Total

N N N 3 N
Z pan Z plln Z pl.ln Z Z pan
n=1 n=1 n=1 j=1 n=1

N N N 3 N
Z p21_n Z pZLn Z pz.i_n Z pz;_n
n=1 n=1 n=1 j=1 n=1

(Po-P,P.)/(1-P.), which says that IQS < P,,. Some statistics can be confounded with Hardy-
Weinberg equilibrium (HWE) if they assume HWE to calculate "expected” genotype counts
[19]. IQS avoids this concern since it uses imputed and experimentally determined genotypes.

Po — Pc
— - 3
1—Pc (3)

N N N
PO — n:]plln + Zn:l p22n + Zn:lp331\
N

1QS

(4)

NI+ 2;:1 Z:\Izlplj—n + N2« Zj:lZ:J:lp?J—“ T N3« Zj:le:lpﬁ—n

Pe= N2 (5)

Squared correlation is the square of the Pearson correlation coefficient between the imputed
and genotyped dosage for each SNP. This is calculated using Eqs 6-11 where x; and y; are the
imputed and genotyped dosage values for the nth sample respectively. It represents the proportion
of the variability in the imputed data that can be explained by the least squared regression model.

R® =1- — (6)
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Evaluating Accuracy across MAF and LD

Imputation accuracy is influenced by a variant’s minor allele frequency (MAF) and linkage dis-
equilibrium (LD) with genotyped variants (measured by pairwise squared correlation %). We
examined imputation accuracy in relation to these properties. The MAFs used here were based
on the allele frequencies found in the genotyped data. We will use the terminology “rare” to
denote variants with MAF < 1%; and “low frequency” to refer to variants with 1% <

MAF < 5%. For each imputed SNP, the genotyped SNP in the region with the highest LD was
used to define the maximum r?; , with a genotyped SNP (denoted by max r’p). PLINK was
used to generate the LD values [20]. Bins for maximum r’1p and MAF were defined in 0.01
increments [13]. For each bin, the mean and one standard deviation of the values produced by
each accuracy statistic were calculated.

Examining Regions Associated with Nicotine Dependence

We examined the imputation accuracy of two genomic regions known to be associated with
nicotine dependence and smoking behavior. These regions were the nicotinic receptor subunit
gene clusters on chromosome 15 (CHRNA5-CHRNA3-CHRNB4) and chromosome 8
(CHRNB3-CHRNAG6) [21-26]. These signals were identified through genome-wide association
studies (GWAS) and meta-analyses for smoking behavior, with the chromosome 15 region
being the most significantly associated. We imputed 3Mb on each chromosome: 2Mb regions
used for analysis plus two 500Kb flanking buffer regions according to Build 37.3/hg19. We
focused our analyses on polymorphic variants with dbSNP identifiers in each 2MB region.

Masking and Imputation in a Real Data Application using a Nicotine
Dependence Sample

A comparison of accuracy statistics was also conducted using nicotine dependence data as the
study samples (N = 1,481 African Americans and N = 1,480 European Americans who were
sequenced) and 1000 Genomes as the reference. The study sample was masked and imputed
separately by race. This analysis provided a more conventional imputation scenario for com-
parison with the patterns found in the 1000 Genomes analyses.

The sequenced subjects in this applied analysis were from the Collaborative Genetic Study
of Nicotine Dependence (COGEND) and the Genetic Study of Nicotine Dependence in African
Americans (AAND). These studies are cross-sectional and contain extensive smoking behavior
phenotypes in African Americans and European Americans [21]. These individuals were
between the ages of 25-44 years old and were assessed for dependence as measured by the
Fagerstrom Test for Nicotine Dependence (FTND) and cigarettes-per-day (CPD) [27]. The
study protocol was approved by the appropriate Institutional Review Boards and written
informed consent was obtained from all subjects.

Center for Inherited Disease Research (CIDR) performed next-generation targeted sequenc-
ing on genomic regions previously associated with smoking behaviors, using COGEND and
AAND DNA samples derived from blood. Genotypic data that passed initial quality control at
CIDR were released to the Quality Assurance/Quality Control analysis team at the University
of Washington Genetics Coordinating Center. These data had mean on-target coverage of
180X with more than 96% of on-target bases containing a depth greater than 20X. A total of
1,481 African Americans and 1,480 European Americans were used in the analysis.

These sequencing data were masked to match the typed SNP coverage of the Omni 2.5 SNP
array in a 500kb region on chromosome 15. The cosmopolitan reference panel, composed of
individuals from a variety of ancestries, was used for imputation since it has been shown to
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produce the best accuracy estimates [9]. The imputation was performed using BEAGLE and
IMPUTE2 to evaluate whether observed trends in accuracy were consistent across imputation
programs. The imputed probabilities were compared to the masked sequencing data and accu-
racy statistics were calculated. We focused our analyses on polymorphic variants.

Results

We compared IQS with squared correlation, concordance rate, and BEAGLE R* to examine
changes in accuracy assessment using 1000 Genomes as the study sample in Figs 2-5. IQS is our
benchmark because it adjusts for chance agreement, in contrast to concordance rate which
inflates assessments of accuracy [13]. We focus here on the results for the AFR reference popula-
tion using Omni 2.5M typed coverage on chromosome 15 (13,442 imputed SNPs). We empha-
size Omni 2.5 because it has the greatest genotype SNP coverage in the region (52 Table).

Results for 1000 Genomes Imputation with Matching Reference

Results produced using BEAGLE and the AFR reference population are shown. Results for dif-
ferent chromosomal regions and populations were similar and are shown in S6-S8 Figs.

To help interpret results that are displayed by MAF and max r*;, bin, S1 Fig. shows the
number of imputed variants in each MAF bin in panel A and max r*;, bin in panel B. This fig-
ure indicates that most of the imputed variants were rare and low frequency variants. There
were 6,480 (48.21%) rare and low frequency rsID SNPs in the AFR population. The bins ranged
in size from 7 variants (0.49 > MAF < 0.50) to 2,371 variants (0.01 > MAF < 0.02).

Concordance Rate and BEAGLE R? Inflate Assessments of Accuracy
for Rare Variants

Results show that the choice of statistic is important when examining the imputation accuracy
of rare and low frequency variants. Fig 2 displays the mean accuracy and one standard devia-
tion in each MAF bin, after imputing from Omni 2.5M coverage. IQS (Panel A) and squared
correlation (Panel B) produced similar means and standard deviations in each bin, though this
does not necessarily represent similarity of values for particular SNPs. For rare and low fre-
quency variants, both concordance rate (Panel C) and BEAGLE R” (Panel D) produce inflated
assessments of accuracy. The higher concordance rate and BEAGLE R” values could mislead a
researcher into assuming that these variants were imputed well, and that accuracy is best mea-
sured using concordance rate and BEAGLE R”. IQS and squared correlation also show low
accuracy for rare variants using other SNP array coverages (52 Fig).

A MAF bin can have a wide range in accuracy values. Fig 2 shows variability within MAF
bins across all MAF values. Standard deviations for IQS, squared correlation and BEAGLE R?
can be sizeable for both rare and common variants (panels A, B and D); concordance rate does
not reflect this as it classifies most variants as well imputed (panel C).

Rare and Low Frequency Variants can be Well Tagged but Poorly
Imputed

We examined max r’; p, the maximum LD r” between imputed and genotyped SNPs, to under-
stand the relationship between typed SNP coverage and imputation accuracy as measured by
these accuracy statistics. Fig 3 displays the mean accuracy and one standard deviation in each
max 1’| p bin, after imputing from Omni 2.5M coverage, additional arrays are in S3 Fig. Mean
accuracy tends to increase with increasing max r* p, as expected. For low to moderate max
1’1, we observed substantial variability in IQS as well as squared correlation and BEAGLE R?
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Fig 2. 1QS, squared correlation, concordance rate, and BEAGLE R? are shown in MAF bins. Mean
accuracy of SNPs in each MAF bin (defined by 0.01 increments with N = 13,442 variants total) is denoted by
the red dots and the bars indicate one standard deviation (above and below the mean). These results are
produced by using the 1000 Genomes AFR reference population as the study sample with Omni 2.5M typed
coverage on chromosome 15.

doi:10.1371/journal.pone.0137601.g002

values; however, at high max r?| 5, the variability decreases. IQS and squared correlation show
a surprisingly wide standard deviation for variants in the highest max r*;, bin (0.99 < max
r’1p < 1) as well as the max r* p bin 0.5 < max r’;, < 0.51. Upon investigation, we found that
the variability was due to rare variants: after limiting to SNPs with MAF > 5%, these standard
deviations were comparable to those of the other bins, S4 Fig. This pattern suggests that even
rare variants that are well tagged (as measured by max r*;,) can be poorly imputed.
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doi:10.1371/journal.pone.0137601.g004

Concordance Classifies Most Variants as Well Imputed

Concordance differs from IQS, squared correlation, and BEAGLE R? in that it indiscriminately
classifies most variants as well imputed, across MAF (Fig 2) and r°, bins (Fig 3). The results
in Figs 2 and 3 support prior concerns regarding concordance rate [13] and led us to focus the
rest of our evaluation on IQS, squared correlation, and BEAGLE R”.

For Rare Variants, IQS and Squared Correlation Produce Different
Assessments of Accuracy

Although squared correlation and IQS appeared similar overall in their assessment of imputa-
tion accuracy when examined using means and standard deviations by bin (Figs 2 and 3), fur-
ther investigation showed that on an individual SNP level, these statistics produce divergent
assessments of accuracy for rare and low frequency variants. We compared accuracy estimates
produced by IQS and squared correlation in Fig 4 for each SNP. Panel A shows results for all
variants, and panel B displays results for variants with MAF > 5%. A comparison of these pan-
els is useful to identify divergent trends for common variants versus rare and low-frequency
variants. For most SNPs, IQS and squared correlation produced similar assessments of accu-
racy as seen by the many observations on and near the y = x line in panels A and B. This is con-
sistent with the accuracy patterns observed for IQS and squared correlation in Figs 2 and 3.
However, discrepancies in accuracy assessment do occur, with squared correlation generally
being more liberal in assigning high accuracy compared to IQS. This is indicated by the sparse-
ness of observations above the y = x line in panels A and B. The points below the y = x line indi-
cate SNPs for which squared correlation values were higher than IQS. Panel B shows that
widely discrepant values for IQS and squared correlation are attributable to rare and low fre-
quency SNPs: filtering out SNPs with MAF < 5% removes the widely discrepant observations.
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Fig 5. Scatterplots of IQS, squared correlation, and BEAGLE R2. Panels A and B display all 13,442 variants, and panels C and D display variants with
MAF>5% (N = 6,480). The line y = x is denoted in red.

doi:10.1371/journal.pone.0137601.g005

To further examine trends in the discrepancies between these statistics, we subtracted
squared correlation from IQS for each variant and displayed this result across all MAF values
in S5 Fig. Thus negative differences denote that squared correlation was greater than IQS (i.e.
squared correlation more liberal) while positive differences indicate that IQS was greater than
squared correlation. Large discrepancies occur over all MAF values with squared correlation
tending to be higher than IQS, especially for SNPs with higher MAFs.

For Common Variants, IQS and BEAGLE R? Provide Similar
Assessments of Accuracy
For common variants, BEAGLE R produces a similar assessment of imputation accuracy as

IQS, but BEAGLE R can differ dramatically from squared correlation. In Fig 5, we compared
BEAGLE R? to IQS (panels A and C) and squared correlation to BEAGLE R? (panels B and D).
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For many variants, squared correlation and BEAGLE R* differ in accuracy assessment as seen
by the variants above the y = x line in panel B. Although most of these variants are rare, there
are still many common variants for which this trend is true (panel D). Large differences
between IQS and BEAGLE R” occur mostly when rare variants are examined.

Results are Similar in Different Genomic Regions and Populations

Figs 2-5 displayed results for the AFR reference population and Omni 2.5M typed coverage in
the chromosome 15 region. Results similar to those described above were also observed using
the AFR reference on chromosome 8 (S6 Fig) as well as using the EUR reference panel for chro-
mosomes 15 and 8 (S7 and S8 Figs respectively). In particular, low IQS values do occur for rare
variants that have high squared correlation or high BEAGLE R*. The number of variants for
each imputation subset can be found in S3 Table.

Results are Consistent in Application to Nicotine Dependence Study
Sample

Fig 6 shows results produced using African American individuals from the nicotine depen-
dence data as the study sample and a 1000 Genomes cosmopolitan reference panel imputed
using BEAGLE. These data show discrepancies in accuracy assessment between statistics. If
IQS and squared correlation are compared, squared correlation tends to be similar or higher
(i.e. more liberal) than IQS. In the applied scenario, we observed some variants with high IQS
and low squared correlation (Fig 6, panel A, upper left quadrant), which was not observed for
the upper bound values from the 1000 Genomes analysis (Fig 4, panel A); however, these dis-
crepancies are few, and mostly among rare and low frequency variants (see Fig 6, panel D).
When comparing IQS to Beagle R?, the applied scenario showed IQS to be similar to or less
than Beagle R* (Fig 6, panel B), which recapitulates patterns seen in 1000 Genomes (Fig 5,
panel A).

In European Americans, from the nicotine dependence data, we also observed these same
patterns as in African Americans, with squared correlation’s more liberal assignment of accu-
racy as compared to IQS, S9 Fig. These results were also consistent using IMPUTE2 with Afri-
can American and European American study samples, S10 and S11 Figs respectively. This
confirms that these patterns are not limited to specific populations, chromosomes, or imputa-
tion programs.

Discussion

Genotype imputation is used to improve the density of genomic coverage and increase power
by combining datasets [28], in efforts to identify and refine genetic variants associated with dis-
ease. We investigated how assessment of imputation accuracy changes when concordance rate,
squared correlation and BEAGLE R” are compared to IQS, focusing on two genomic regions
associated with smoking behavior.

Results showed that the choice of accuracy statistic matters for rare variants more than for
common variants. This is important given that researchers are increasingly interested in imput-
ing rare and low frequency variants [29-31]. While it has been recognized that rare variants are
more difficult to impute accurately, our work here goes further by highlighting that choice of
accuracy measure has an important role.

For common variants, squared correlation, IMPUTE2, and BEAGLE R* produce similar
assessments of imputation accuracy as compared to IQS. For rare and low frequency variants,
we observed varying assessments of accuracy compared to IQS. Our results also showed that
discrepancies between IQS and squared correlation are most likely to occur at rare and low
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Fig 6. Scatterplots of IQS, squared correlation, and BEAGLE R? using the cosmopolitan reference panel and the African American nicotine
dependence study sample for chromosome 15. Data for all 1,545 variants are displayed in panel A, B, and C while the results for variants with MAF>5%
(N =631) are found in panel D, E, and F. These results were generated using Omni SNP coverage. The line y = x is denoted in red.

doi:10.1371/journal.pone.0137601.9g006

frequency variants, where squared correlation is more liberal in assigning higher accuracy as
compared to IQS. An evaluation of nicotine dependence samples also showed discrepancies
between IQS and squared correlation. We recommend calculating IQS to confirm imputation
accuracy, especially for rare or low frequency variants.

The variability observed within a MAF or max r’; , bin is a reminder that not all variants
that share the same MAF or max r° , value can be imputed with the same level of accuracy.
This is consistent with the expectation that the inference of untyped variants depends on hap-
lotype block structure and not simply the pairwise relationships between the genotyped and
untyped variants. For rare variants, high LD with a genotyped SNP may not guarantee high
imputation accuracy. Still, overall, a high max r?; , usually implies high accuracy, as we
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observed increasing mean accuracy along with decreasing variability within max r’; ;, bins as
max r LD increases.

We applied this approach to genomic regions associated with our phenotype of interest,
smoking behavior using an upper bound scenario and a nicotine dependence sample. Thus,
one limitation is that rather than comprehensively examining the genome, we focused only on
selected genomic regions. Furthermore we focused on certain populations (European and Afri-
can ancestry). Nevertheless, different regions (on chromosome 8 and 15), different imputation
programs, and different populations showed similar overall patterns, suggesting that our obser-
vations are relevant throughout the genome and across multiple populations.

In our masking process using only the 1000 Genomes reference data, the reference panel
individuals were the same as the study sample individuals, and our masked SNPs are not lim-
ited to a SNP array, making our approach different from the two most common masking pro-
cesses. One common masking method removes the genotypes for a portion of markers (e.g.
10%) found amongst the typed variants on a study sample SNP array. This method can provide
accuracy comparisons only for SNPs on the array. Our approach is able to provide accuracy
assessments for SNPs not on the array.

Another commonly used masking method is the “leave-one-out” masking of a comprehen-
sively genotyped reference panel, in which one individual is imputed using the remaining refer-
ence panel members. Our study design differed from the leave-one-out method since all
individuals in the reference panel and study sample were the same. Our approach was expected
to give an upper bound on accuracy because of the ideal match between the reference and
study sample; the “correct” genotype for each individual at each variant was present in the ref-
erence panel.

Our results provide further evidence that concordance rate inflates accuracy estimates par-
ticularly for rare and low frequency variants [13, 32]. These observations highlight a need to
account for chance agreement not only when assessing imputation accuracy, but also more
broadly in other situations for which concordance is traditionally used to assess accuracy, such
as checking genotype agreement across duplicate samples [33-34]. Concordance rate will
always produce a value greater than or equal to IQS due to their mathematical relationship (see
Methods for proof).

IQS is important to consider, as it is designed to identify variants for which imputation
accuracy is better than can be expected by chance; accordingly, other measures were generally
more liberal in assigning high accuracy. Our analyses indicate that especially for rare and low
frequency variants, IQS may be important to avoid overly liberal assessments of imputation
quality. In practice, IQS can be computed by the leave-one-out method. Databases that provide
per-SNP "imputability," such as that created by Duan et al. [35], would have increased useful-
ness if they included IQS values. As imputation methodology continues to develop and refer-
ence panels become more comprehensive, we expect that imputation will become increasingly
accurate. However, it will be important to take chance agreement into account when assessing
this accuracy, and IQS provides a means to do so.

Supporting Information

S1 Fig. Mean numbers of polymorphic variants in each MAF (panel A) and max ip
(panel B) bin. These results are for the AFR population on chromosome 15 (13,442 imputed
SNPs).

(TIF)

S2 Fig. Average accuracy of all SNPs according to 0.01 incremental MAF bins for each accu-
racy measure using several typed SNP array coverages. These results were produced by using
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the 1000 Genomes AFR reference populations as the study samples for chromosome 15.
(TIF)

$3 Fig. Average accuracy of all SNPs in 0.01 incremental max r’;, bins for each accuracy
measure using several typed SNP array coverages. These results were produced by using the
1000 Genomes AFR reference population as the study sample for chromosome 15.

(TIF)

S4 Fig. Accuracy scores produced by IQS, squared correlation, concordance rate and Beagle
R’ for SNPs with MAF > 5% (N = 6,480 SNPs) in max r’p, bins. Bins are defined by 0.01
increments. Mean accuracy is denoted by the red dots and the bars indicate one standard devia-
tion (above and below the mean). These results were produced by using 1000 Genomes AFR
reference population as the study sample with Omni 2.5M typed coverage on chromosome 15.
(TTF)

S5 Fig. Relationship between squared correlation and IQS by MAF. Squared correlation was
subtracted from IQS for variants on chromosome 15 in the 1000 Genomes AFR reference pop-
ulation (N = 13,442 variants) as the study sample. Negative values indicate that the squared
correlation score was higher while the positive values indicate that the IQS value was higher.
The red line indicates the line y = 0.

(TIF)

S6 Fig. Scatterplots of IQS, squared correlation, and BEAGLE R? using the 1000 Genomes
AFR reference panel as the study sample for chromosome 8. Data for all 10,937 variants are
displayed in panel A, B, and C while the results for variants with MAF>5% (N = 4,533) are
found in panel D, E, and F. These results were generated using Omni SNP coverage. The line
y =x is denoted in red.

(TIF)

S7 Fig. Scatterplots of IQS, squared correlation, and BEAGLE R? using the 1000 Genomes
EUR reference panel as the study sample for chromosome 15. Data for all 9,401 variants are
displayed in panel A, B, and C while the results for variants with MAF>5% (N = 4,627) are
found in panel D, E, and F. These results were produced by using Omni SNP coverage. The
line y = x is denoted in red.

(TIF)

S8 Fig. Scatterplots of IQS, squared correlation, and BEAGLE R? using the 1000 Genomes
EUR reference panel as the study sample for chromosome 8. Data for all 7,401 variants are
displayed in panel A, B, and C while the results for variants with MAF>5% (N = 1,903) are
found in panel D, E, and F. These results were produced by using Omni SNP coverage. The
line y = x is denoted in red.

(TIF)

$9 Fig. Scatterplots of IQS, squared correlation, and BEAGLE R? using the cosmopolitan
reference panel and the European American nicotine dependence study sample for chro-
mosome 15. Data for all 1,170 variants are displayed in panel A, B, and C while the results for
variants with MAF>5% (N = 387) are found in panel D, E, and F. These results were produced
by using Omni SNP coverage. The line y = x is denoted in red.

(TIF)

$10 Fig. Scatterplots of IQS, squared correlation, and IMPUTE2 INFO using the cosmopol-
itan reference panel and the African American nicotine dependence study sample for chro-
mosome 15. Data for all 1,878 variants are displayed in panel A, B, and C while the results for
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variants with MAF>5% (N = 475) are found in panel D, E, and F. These results were generated

using Omni SNP coverage. The line y = x is denoted in red.
(TIF)

S11 Fig. Scatterplots of IQS, squared correlation, and IMPUTE2 INFO using the cosmopol-
itan reference panel and the European American nicotine dependence study sample for
chromosome 15. Data for all 1,253 variants are displayed in panel A, B, and C while the results
for variants with MAF>5% (N = 259) are found in panel D, E, and F. These results were gener-
ated using Omni SNP coverage. The line y = x is denoted in red.

(TTF)

S1 Table. Sub-populations in the BEAGLE and IMPUTE2 AFR and EUR reference panels.
(PDF)

$2 Table. Numbers of SNPs in the 1000 Genomes study samples. Study sample variants were
those found on each commercially available SNP array for the 2 MB chromosomal regions of
interest. Only variants with dbSNP identifiers are listed in the number of variants in the refer-
ence panel column.

(PDF)

$3 Table. Polymorphic, imputed SNPs used in the comparison of accuracy measures. These
variants were found in the 2 MB chromosomal regions of interest using 1000 Genomes as the
study sample and were imputed using Omni 2.5 coverage.

(PDF)
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