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Abstract

Introduction

In autism spectrum disorders (ASD), complex gene-environment interactions contribute to

disease onset and progress. Given that gastro-intestinal dysfunctions are common in ASD,

we postulated involvement of microbial dysbiosis in ASD and investigated, under a case-

control design, the influence of DNA polymorphisms in the CLEC7A gene that encodes a

pivotal fungal sensor, Dectin-1.

Material and methods

DNAs from 478 ASD patients and 351 healthy controls (HC) were analyzed for the CLEC7A
rs16910631G/A and rs2078178 A/G single nucleotide polymorphisms (SNPs). Differences

in the distribution of allele, genotype and haplotype by Chi-square testing and nonparamet-

ric analysis by Kruskal-Wallis/Mann–Whitney tests, where appropriate, were performed.

The free statistical package R.2.13 software was used for the statistical analysis.

Results

We found that the CLEC7A rs2078178 G allele and GG genotype were more prevalent in

HC as compared to ASD but failed to reach statistical significance for the latter (pc = 0.01,

0.06 respectively). However, after phenotype-based stratification, the CLEC7A rs2078178
G allele and GG genotype were found to be significantly more frequent in the Asperger

group as compared to other ASD subsets (pc = 0.02, 0.01), a finding reinforced by haplo-

type analysis (rs2078178/rs16910631 G-G/G-G) (pc = 0.002). Further, intellectual quotient

(IQ)-based stratification of ASD patients revealed that IQ values increase linearly along the
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CLEC7A rs2078178 AA, AG and GG genotypes (p = 0.05) and in a recessive manner (GG

vs. AA+AG p = 0.02), further confirmed by haplotype distribution (CLEC7A rs2078178-
16910631; A-G/A-G, A-G/G-G and G-G/G-G, p = 0.02, G-G/G-G vs. others, p = 0.01).

Conclusion

Our data suggest that the genetic diversity of CLEC7A gene influences the ASD phenotype

by behaving as a disease specifier and imply that the genetic control of innate immune

response could determine the ASD phenotype.

Introduction
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders
characterized by impairments in social interactions and communication with a restricted rep-
ertoire of interests, behavior and activities [1]. Substantial diversity in symptoms and severity
of these manifestations led to the diagnostic classification of ASD into three major subtypes
namely, Asperger, classical form and pervasive developmental disorders not otherwise speci-
fied (PDD-NOS), the important difference between the subtypes being the intellectual quotient
(IQ) values [2]. While the heritability of ASD was estimated to be between 40 to 70% in twin
studies, in molecular studies of unrelated individuals only 0.5% to 20% of ASD subjects have
alterations in genes involved in neuronal and synaptic homeostasis [3, 4]. Such “heritability
gap” between twin studies and studies of unrelated patient populations highlighted the promi-
nent influence of environment on genetic liability in the etiology of ASD [5]. In this regard,
prior studies reporting on altered innate immune response in ASD are of particular interest in
that the innate immune system is the front line defense against environmental infectious stress-
ors. Evidences supporting the immune dysfunction in ASD are several but to cite a few: i) ASD
association with single nucleotide polymorphisms (SNPs) located in the major histocompati-
bility complex (MHC), in particular with IQ variations in patients [6]; ii) Significant correla-
tion between maternal viral/bacterial infections and diagnosis of ASD in the offsprings [7,8,9];
iii) Genetic association of macrophage migration inhibitory factor (MIF) gene polymorphism
with behavioral components of ASD [10]; iv) Genetically determined raised circulating levels
of HLA-G (with consequent inefficient anti infectious response) conferring raised risk for ASD
[11]; v) Association between family history of autoimmune diseases and increased risk of ASD
in children [12, 13, 14, 15]; vi) Link between gut microbiota dysbioses and ASD on the one
hand [16, 17] and the host immune system on the other [18, 19, 20]; vii) Parallels between
peripheral cytokine profiles and changes in behavioral symptoms following immune insults in
a subset of ASD children with persistent gastrointestinal symptoms [21] and viii) relationship
between the history of intense antibiotic administration (potential cause of gut dysbioses) dur-
ing early childhood and raised incidence of ASD [22, 23].

Indeed gastrointestinal (GI)-tract dysfunctions are common in children with ASD (23–
70%). These ASD children with GI disorders (ASDGI) have chronic inflammation with nodular
lymphoid hyperplasia, enterocolitis and mucosal infiltration by GI-tract immune cells [24] and
the severity of the GI symptoms often paralleled that of ASD and in particular the degree of
behavioral impairment [25, 26]. Altogether it is hypothesized that an imbalanced GI mucosal
dysbiosis and immune dysfunction during a critical neurodevelopmental window pave the way
for “leaky gut” and establish a chronic systemic and neuronal inflammatory setting [22, 23].
These data could explain the particular vulnerability of ASD subjects to intercurrent microbial
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infections with GI disturbances [27] and is consistent with the following observations: i) Intes-
tinal microbiota composition in ASD subjects differ, both in number and diversity, from those
in healthy control subjects [17]; ii) Monocytes from ASDGI patients in culture exhibited innate
immune response abnormalities including decreased production of both pro- and anti-inflam-
matory cytokines and increased expression of chemokine transcripts [27].

Even if the proof of concept of direct involvement of GI microbiome in ASD remains to be
firmly established [28], given the above discussed published data, implication of altered genetic
control of innate immune response processes to fungal and other microbial species in the etio-
pathology and/or severity of ASD is plausible. These immune processes intimately control the
host/microbial homeostasis, and are mainly driven by a set of pattern recognition receptors
(PRR) such as Dectin-1, encoded by the CLEC7A gene on chromosome 12 (12p13.2). Present
on the surface of dendritic cells, neutrophils and macrophages, Dectin-1 recognizes and inter-
acts with the β-1,3-glucan molecules present in the cell wall of nearly all fungi [29]. Upon
receptor-ligand interaction, intracellular signaling is triggered which in turn induces the
expression of pro-inflammatory cytokines and chemokines and engages the T helper (Th)
1 and Th17 cells towards cytotoxic T-cell responses [30, 31]. Interestingly, in humans, two
SNPs (CLEC7A rs2087178 A and CLEC7A rs16910631G), either as allele or haplotype, have
been associated with medically-refractory ulcerative colitis (MRUC) [32]. This observation
incited us to postulate that such genetic changes in Dectin-1 could also influence the suscepti-
bility to ASD-associated GI disturbances. To explore this possibility, herein we studied, in
a case-control design, the influence of CLEC7A gene polymorphisms (rs2078178 and
rs16910631) on ASD clinical categories with IQ as proxy for the GI status in ASD.

Material and Methods

Subjects and clinical assessments
This study was conducted in a sample of subjects with ASD enrolled in the PARIS (Paris
Autism Research International Sibpair) cohort in specialized clinical neuropsychiatric centers
established in France and in Sweden [33]. Diagnosis was based on comprehensive clinical eval-
uation by expert clinicians using DSM IV-TR criteria. Subjects were assessed with the Autism
Diagnostic Interview-Revised (ADI-R) and most of them also with the Autism Diagnostic
Observation Scale (ADOS). Cases were included only after a thorough clinical evaluation,
including psychiatric and neuropsychological examination, standard karyotyping, and fragile-
X testing, as well as brain imaging and EEG as required. The IQ evaluation was carried out
with an age-appropriate Weschler scale (WPPSI, Wechsler Preschool and Primary Scale of
Intelligence; WISC, Wechsler Intelligence Scale for Children; or WASI, Wechsler Abbreviated
Scale of Intelligence). For the most severe and/or non-verbal patients, the Raven’s Standard
Progressive Matrices were used to measure nonverbal IQ (NVIQ) and the Peabody Picture
Vocabulary Test (PPVT-4th edition) to measure receptive vocabulary (RV). The healthy con-
trol (HC) group consists of clinically assessed unrelated healthy individuals, both enrolled
under the previously published selective criteria [34, 35]. All controls and most of the individu-
als included were of European descent.

Written informed consent was obtained from all participants including caretakers/guard-
ians on behalf of minors/children included in the study and the documents recorded and
stored in each participant center (Paris and Gothenburg). The study was approved by a local
Institutional Review Board (IRB) i.e. the “Comités de Protection des Personnes (CPP) Île-de-
France, Hôpital Pitié-Salpêtrière 75013 Paris” for France and the “Sahlgrenska Academy Ethics
committee, University of Gothenburg” for Sweden.
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CLEC7A genotyping
Genomic DNA was extracted from EDTA-treated peripheral blood samples or B-lymphoblas-
toid cell lines using the Nucleon BACC3 kit (GE HealthCare, Chalfont St Giles, UK). The geno-
typing of the two SNPs herein studied (intron 1 rs16910631G/A and intron 3 rs2078178 A/G)
was performed using a TaqMan 5’-nuclease assay (Applied Biosystems, Foster City, CA, USA)
with allele-specific fluorogenic oligonucleotide probes. The following pre-developed TaqMan
assay genotyping kits were used: C_33748498_10 and C_1932439_10.

Statistical analysis
Power calculation was used in order to detect a statistically significant difference between two
proportions with specified levels of confidence (0.95) and effect size. Comparison of genotype
and allele frequency between patients and controls were performed using the Chi-square test-
ing. The p values (two tailed) were corrected (pc) using the Bonferroni method and findings
were considered statistically significant for pc less than 0.05. Odds ratio (OR) and confidence
interval 95% (CI95%) were calculated to assess the relative risk conferred by a specific allele,
genotype or haplotype. Deviation, if any, from Hardy-Weinberg expectations was analyzed
using the chi-square test. For haplotype reconstruction, PHASE software (version 2.1) was
used. This Bayesian algorithm provides the most-likely pairs of haplotypes carried by each sub-
ject [36, 37]. The tests Kruskal-Wallis or Mann–Whitney were used for nonparametric analysis
[distribution of CLEC7A genotypes and haplotypes according to intellectual quotient (IQ) val-
ues]. High-IQ patients were defined as those with IQ values greater than 80, while low-IQ as
those with IQ values between 25 and 70. Linear regression analyses were performed to examine
the relationship between IQ, CLEC7A genotype and diagnosis as the predictive variables. The
model was QI transformed ~ Genotypes + diagnosis. IQ was square root transformed to fulfill
the normality assumption required by the parametric procedure. By default, calculations
assume that a two-tailed statistical test was used at a confidence level of 95%. All statistical
analyses were performed using the free statistical package R.2.13 software.

Results
A sample of 478 subjects with ASD (364 males and 102 females), with a mean age of 15.42 ±
9.71 years (mean ± SD) (3 to 60 years) was included and compared to 351controls (171 males
and 160 females) with a mean age of 35.69 ± 15.47 years (range 4 to 64 years) (Table 1).

For the present study, power calculation was made using the data from Illiev et al, and a the-
oretical statistical power of 84.8% was obtained.

Allele, genotype and haplotype distributions of the two CLEC7A polymorphisms are sum-
marized in Tables 2 to 5. For both genetic variations the observed genotype distribution satis-
fied the expected Hardy-Weinberg proportions.

We found that the CLEC7A rs2078178 wild type G allele and GG genotype were more fre-
quent in HC as compared to individuals with ASD, although the statistical significance was
borderline for the GG genotype association after correction (G allele: 77% vs. 71%; p = 0.008,
pc = 0.01, OR = 1.36, [CI95%] = 1.08–1.71; GG genotype 61% vs. 53%; p = 0.03, pc = 0.06;
OR = 0.74, [95%CI] = 0.55–0.98 for controls and patients respectively) (Table 2). The distribu-
tion of alleles and genotypes of the CLEC7A rs16910631 polymorphism did not significantly
differ between patients and HC.

We then analyzed the distribution of these two genetic variations according to clinical speci-
fiers of ASD i.e. classical autism, Asperger and PDD-NOS. We found that the CLEC7A
rs2078178 G allele and GG genotype were more frequent among Asperger patients as com-
pared to other ASD types (classical autism and PDD-NOS) (G allele and GG genotype: 82 vs.
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70%, p = 0.01, pc = 0.02, OR = 1.95, [CI95%] = 1.16–3.41 and 71 vs. 51%, p = 0.006, pc = 0.01
OR = 2.37, [CI95%] = 1.25–4.68 in Asperger and non-Asperger respectively) (Table 3).

A further distinction of non-Asperger groups allowed us to confirm the Asperger-related
CLEC7A rs2078178 G allele and GG genotype signature (G allele and GG genotype: 82 vs. 70%,
p = 0.009, pc = 0.01, OR = 1.95, [CI95%] = 1.15–3.43 and 71 vs. 50%, p = 0.005, pc = 0.01
OR = 2.42, [CI95%] = 1.26–4.83 in Asperger and classical autism respectively; 82 vs. 70%
p = 0.02, pc = 0.04, OR = 1.95, [CI95%] = 1.06–3.67 and 71 vs. 53%, p = 0.03, pc = 0.06
OR = 2.18, [CI95%] = 1.02–4.79 in Asperger and PDD-NOS respectively (Table 4).

Phased polymorphic profiles allowed us to identify three common haplotype-based geno-
types viz the CLEC7A rs2078178/rs16910631 A-G/A-G, A-G/G-G and G-G/G-G genotypes.
Further analysis confirmed the previous findings in that the CLEC7A G-G/G-G genotype is
more prevalent in the Asperger group (CLEC7A G-G/G-G vs. other, 80% vs. 54%, p = 0.001,
pc = 0.002, OR = 3.38, [CI95%] = 1.54–8.19) (Table 5).

As disease specifiers are expected to be associated with functional grade, at least in terms of
degree of the accompanying intellectual disability, we analyzed the distribution of the CLEC7A
genotype frequencies according to the IQ score distribution pattern. We found that mean IQ

Table 1. Demographic and clinical data of ASD patients and healthy controls.

ASD patients Healthy Controls (HC)

Mean Age years ± SD (range) 15.42 ± 9.71 (3–60) 35.69 ± 15.47 (4–64)

Sex Male 364 (78%) 171 (52%)

Female 102 (22%) 160 (48%)

DSM-IV TR Diagnosis Asperger 56 (14%)

CA 331 (83%)

PDD-NOS 13 (3%)

ASD: autism spectrum disorders

SD: standard deviation

CA: Classical autism

PDD-NOS: pervasive developmental disorders not otherwise specified.

doi:10.1371/journal.pone.0137339.t001

Table 2. CLEC7A genotype and allele frequencies among patients and controls.

CLEC7A variant ASD HC

n % n % p pc OR 95% CI

rs2078178 Genotype

GG 253 53 212 61 0.03 0.06 0.74 0.55–0.98

AA+AG 224 47 138 39

rs2078178 Allele
A 275 29 161 23 0.008 0.01 1.36 1.08–1.71

G 679 71 539 77

ASD: autism spectrum disorders

HC: healthy controls

n: number

pc: corrected p-value

OR: odds ratio; 95%

CI: confidence interval 95%.

doi:10.1371/journal.pone.0137339.t002
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values exhibit increasing trend along the CLEC7A genotype groups: rs2078178 AA, AG and
GG genotypes with respective IQ mean scores 55.7/ 59.3/ 67.4 (p = 0.05) with similar trend for
CLEC7A rs2078178 GG vs. AA+AG genotypes (p = 0.02) (Fig 1). These data were further con-
firmed and strengthened by haplotype-based genotypes CLEC7A (genotype distribution fre-
quencies according to IQ score distributions: CLEC7A rs2078178/rs16910631 A-G/A-G, A-G/
G-G and G-G/G-G with p = 0.02; and CLEC7A G-G/G-G vs. others with p = 0.01) (Fig 1).

Table 3. CLEC7A alleles and genotypes distribution in patients with Asperger and other ASD types.

CLEC7A variant Asperger Other ASD

n % n % p pc OR 95% CI

rs2078178 Genotype

GG 39 71 214 51 0.006 0.01 2.37 1.25–4.68

AA+AG 16 29 208 49

rs2078178 Allele
A 20 18 255 30 0.01 0.02 1.95 1.16–3.41

G 90 82 589 70

Other ASD: Classical autism and PDD-NOS

n: number

pc: corrected p-value

OR: odds ratio; 95%

CI: confidence interval 95%.

doi:10.1371/journal.pone.0137339.t003

Table 4. CLEC7A alleles and genotypes distribution in patients with classical autism, Asperger and PDD-NOS.

CLEC7A variant Asperger CA

n % n % p pc OR 95% CI

rs2078178 Genotype

GG 39 71 166 50 0.005 0.01 2.42 1.26–4.83

AA+AG 16 29 165 50

rs2078178 Allele
A 20 18 200 30 0.009 0.01 1.95 1.15–3.43

G 90 82 462 70

CLEC7A variant Asperger PDD-NOS

n % n % p pc OR 95% CI

rs2078178 Genotype

GG 39 71 48 53 0.03 0.06 2.18 1.02–4.79

AA+AG 16 29 43 47

rs2078178 Allele
A 20 18 55 30 0.02 0.04 1.95 1.06–3.67

G 90 82 127 70

CA: Classical autism

PDD-NOS: pervasive developmental disorders not otherwise specified

n: number

pc: corrected p-value

OR: odds ratio; 95%

CI: confidence interval 95%.

doi:10.1371/journal.pone.0137339.t004
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Discussion
Given the now well documented immune/inflammatory substratum in ASD, genetically altered
GI-tract dysbiosis is postulated to contribute to exacerbated inflammatory processes that could
distinguish patient subsets with distinct clinical/behavioral phenotype. To explore this aspect,
we opted to study the genetic polymorphisms of CLEC7A gene encoding Dectin-1 protein, a
key molecule involved in fungal-mediated signaling and GI disorders, a common associated
condition in ASD. We noted that

1. CLEC7A gene per se is not associated with susceptibility to ASD

2. CLEC7A rs2078178 G allele and GG genotype behave as genetic specifiers of Asperger
among ASD

3. A two SNP-based (rs2078178-16910631) CLEC7A haplotype analysis confirmed the above
finding.

4. Genetic association between this polymorphic locus with objectively assessed IQ values cor-
roborates perfectly with the notion that CLEC7A is a genetic specifier in ASD.

These findings are in line with a recent study demonstrating the role of Dectine-1 in mediat-
ing ulcerative colitis severity [32]. Indeed, through functional studies in mice and genetic
association studies in human, the authors demonstrated that: i) The susceptibility to severe
colitis is genetically driven; (ii) Deficiency of Dectine-1 in mice and human cells promotes
fungal infection; (iii) Induced colitis in CLEC7A knockout mice results in anti-Saccharomyces
cerevisiae antibody production, the latter often observed in schizophrenia, another major psy-
chiatric disorder; iv) In humans, CLEC7A rs2087178 A allele and CLEC7A rs2087178A-
rs16910631G haplotype is associated with medically-refractory ulcerative colitis (MRUC). The
demonstration that the susceptible A-G haplotype is associated with MRUC group, not with

Table 5. Haplotypes distribution in patients with classical autism and Asperger and controls.

Chr12 SNP1-SNP2 Genotype Asperger Other ASD

n % n % p pc OR 95%CI

G-G/G-G 36 80 199 54 0.001 0.002 3.38 1.54–8.19

A-G/A-G + A-G/G-G 9 20 168 46

Genotype Asperger CA

n % n % p pc OR 95%CI

rs2078178-rs16910631 G-G/G-G 36 80 154 53 0.001 0.002 3.48 1.57–8.5

A-G/A-G + A-G/G-G 9 20 134 47

Genotype Asperger PDD-NOS

n % n % p pc OR 95%CI

G-G/G-G 36 80 45 57 0.01 0.02 3.02 1.21–8.06

A-G/A-G + A-G/G-G 9 20 34 43

CA: Classical autism

Other ASD: Classical autism and pervasive developmental disorders not otherwise specified (PDD-NOS)

HC: healthy controls

n: number

pc: corrected p-value

OR: odds ratio; 95%

CI: confidence interval 95%.

doi:10.1371/journal.pone.0137339.t005
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the treatment-responsive UC (TRUC) group, favors the notion that CLEC7A behaves as a dis-
ease modifier rather than a disease risk locus, a picture similar to what we captured in this
study with respect to ASD. Dectin-1 also cooperates with various Toll-like receptors (TLRs) to
enlarge the repertoire of antimicrobial defense [38, 39]. Indeed we recently described genetic
associations between TLR2 and TLR 4 “low expressor” genotypes and bipolar disorder. This
further strengthens the so far generated clues that genetically-driven deficient anti-infectious
response during a vulnerable ontogenic/neurodevelopmental window may contribute to
diverse psychiatric clinical categories and their clinical subsets [34, 40].

In ASD, behavioral symptoms and impaired cognitive skills are often accompanied by vari-
ous comorbidities, with GI symptoms being the most common and worsening GI symptoms
aggravate behavioral symptoms [24, 41, 42, 43].

These findings from chronic inflammatory settings in GI corroborate with our findings in
ASD in that the CLEC7A AG haplotype, associated with inefficient response and altered immu-
nity is less represented in high functioning Asperger ASD subgroup. This is understandable
because the ASDGI subgroup relatively runs a more severe course and often low functioning
with significant behavioral disturbances. Then the question is why no genetic influence of
CLEC7A was observed in genome wide association studies (GWAS) both in the context of
inflammatory bowel disorder and ASD. As elegantly stated by Iliev et al [32], GWAS study

Fig 1. CLEC7A genotype and haplotype are associated with intellectual quotient (IQ) scores in ASD. A
and B Kruskall-Wallis nonparametric testing show associations betweenCLEC7A genotypes (p = 0.05) /
haplotypes (p = 0.02) and IQ scores. Patients bearing the CLEC7A rs2078178 GG or the CLEC7A
rs2078178/rs16910631 G-G/G-G genotypes have higher IQ scores as compared to other patients. C and D
Mann-Whitney nonparametric testing also showed significant associations for similar comparisons
(respectively p = 0.02 and p = 0.01). The dark line inside the boxes represents the median value for each
group. Boxes include the 25th and 75th quartiles; bars outside the boxes represent the maximal and minimal
values.

doi:10.1371/journal.pone.0137339.g001
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design is such that it essentially uncovers the susceptibility genes, not those that influences the
severity of the disease.

However, the important limitation of our retrospective study is absence of any information
regarding the GI status in our patients but this study is an invitation to thoroughly explore the
role of genetics of immune defense processes (TLRs, CLEC7A,MHC) in GI symptoms/dys-
function in ASD by studying large trans-geographic ASD cohorts well defined for potential
environmental stressors, GI and IQ phenotypes.
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