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Abstract

In social networks, it is conventionally thought that two individuals with more overlapped
friends tend to establish a new friendship, which could be stated as homophily breeding
new connections. While the recent hypothesis of maximum information entropy is presented
as the possible origin of effective navigation in small-world networks. We find there exists a
competition between information entropy maximization and homophily in local structure
through both theoretical and experimental analysis. This competition suggests that a newly
built relationship between two individuals with more common friends would lead to less
information entropy gain for them. We demonstrate that in the evolution of the social net-
work, both of the two assumptions coexist. The rule of maximum information entropy pro-
duces weak ties in the network, while the law of homophily makes the network highly
clustered locally and the individuals would obtain strong and trust ties. A toy model is also
presented to demonstrate the competition and evaluate the roles of different rules in the
evolution of real networks. Our findings could shed light on the social network modeling
from a new perspective.

Introduction

The last decade has witnessed tremendous research interests in complex networks [1-3],
including the evolution of social networks [4-8]. It has been found that in many social net-
works from different circumstances, the probability of having a friend at a distance r is p(r)
7!, which is stated as the spacial scaling law [9]. Recent work [10] presents a possible origin
that explains the emergence of this scaling law with the hypothesis of maximum information
entropy with energy constrains. The authors assume that human strategic behavior is based on
gathering maximum information through various activities and being an essential component
of the human social behavior, making friends is intuitively one of its significant pathways.
However, it is also found conventionally that homophily leads to connections in social
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networks [5, 6, 11-17]. Homophily is the principle that a contact between similar individuals
occurs at a higher rate than among dissimilar ones [6]. For instance, in social networks, two
individuals with more common friends are easier to get connected, where the number of over-
lapped friends could represent the strength of homophily [17, 18]. Both of the above rules
might drive the growth of the network in local structure simultaneously, however, to our best
knowledge, little has been done to unveil the relationship between them. We argue that under-
standing the interplay between these two rules could help reveal the generation of different
social ties and shed light on modeling social networks from a new perspective. Therefore, in
this paper, we try to fill this gap from the perspective of network evolution in local structure.

Results
Theoretical Analysis

A social network can be modeled as a simple undirected graph G(V, E), where V is the set of
individuals (nodes) and E is the set of friendships (ties) among them. As shown in Fig 1a, node
1 may obtain information from nodes 2, 3, 4 and their friends 5, 7. Therefore, as defined in
[10], the information sequence for node 1 is {2, 3, 4, 5, 7} and the frequency of each node
appears in the sequence is g, = g3 = g4 = gs = g, = 1/5 for nodes 2, 3, 4, 5 and 7 respectively,
while g¢ = 0 for node 6. Then the information entropy for node 1 can be obtained as

7
e(1) = —Zqi logg, = 1.61.

i=1

Next, we assume the social network evolves to the one as shown in Fig 1b under the rule of
homophily. For example, node 1 and node 5 may establish a new friendship because they share
the common friend node 2. Therefore, the updated information sequence for node 1 is {2, 3, 4,
5,5, 7, 2} currently. Then the new frequency of each node appears in the sequence is

g, =qs =2/7,q;, = q, = g, = 1/7,and q;; = 0. We recompute the information entropy of
node 1 as depicted above and obtain

7
€(l) = —Zqi/logqi/ = 1.55.
1

It can be easily observed that Ae(1) = € (1) - €(1) < 0 after node 1 built a new tie with node 5,
which means in the evolution dominated by homophily, the information entropy for node 1
decreases. It is an intuitive observation that the rule of homophily is incompatible with the law
of maximum information entropy, and a general explanation is introduced as follows. Note
that here we mainly discuss the network evolution in local structure, in which ties are newly
built only with nodes two hops away. Because of this, with the aim of simplification, conditions
of limited energy and nodes’ distances are not considered in the following analytical frame-
work. Besides, the magnificent development of the online social network has facilitated our
daily social activity greatly [19, 20], so here the cost of establishing a new tie is assumed to be a
constant and it is independent to the distance in social networks.

We define n(i) as the set of individual {’s initial friends and k; is i’s degree, i.e., the number
of its friends. Then the set of overlapped friends between i and j is c(i, j) = n(i) N n(j) and ¢;; =
|c(i, j)| is the number of their common friends. We define U= U, ¢ ;) n(q) U n(i). We also
define ¥ = {j} U c(j, j), where j is a random individual appearing in 7’s information sequence s
(i) and j ¢ n(i). Based on the definition of information entropy in [10], we can obtain the
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(a) (b)

Fig 1. A simple example of the network evolution driven by homophily in local structure.

doi:10.1371/journal.pone.0136896.g001

information entropy for node i is

qeU/¥Y Si i lec(ij) 71 i (1)

where n, is the count that g appears in s(i) and s; is the length of (). Since we mainly investi-
gate the evolution in local structure, here only friends of i and friends of its friends are consid-
ered during the computation of the entropy. Then we assume that a new friendship is
established between i and j and the current entropy for i is

N n, n, n; + n, +
€)= - Zzlog?—z 5 log 5

qeu/Y i lec(i) i i

¢, +1 c;+1 1 1
. log -~ —(k;—c;)— log —
S/- Og S/ ( ] Cl]) S/- Og S; ’

i i i

wheres; =s; + k; — ¢; + 1+ ¢; =s; + k; + 1, which is the length of the updated information
sequence, where k; is the initial degree of j. Therefore, the change of entropy for i caused by the
new tie with j, i.e., Ae(i); = € (i); — €(i); could be rewritten as

n non n
Ae(i), = 4 44 4
e(z)] E (5 log S log s/>

qeUY \ i i i i
n, n n+1 n+1
Tlog 21" " jgg 2L =
+Z <s. °8 S; s log st
lec(if) i i i i (3)
C. c. ¢.+1 c. +1
Tilog BT " 1og 8
N (51 % Si Si % §; )
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Assume f(x) = x log x,
o+ Ax) = f(x) +f(x)Ax + o((Ax)),
therefore,

n, + n+1 n n, n, 1 1
1 =—log — log—+1 |- —
s BTy 5 By s s - s o s}

i i i i

and

c;+1 ¢;+1 ¢ c; C. 1 1
I logt—="log 2+ (log2+1)- — .
s 8 s s 8 s + ( o8 s + ) s + 0(5’2>

i i i i i

Then for Eq (3) we have (for details, see S1 Equation),

+ J ; ! logs, — (cij +1)o (Tz)
Suppose that k; is fixed, it can be easily obtained that as c;; grows, Ae(i); decreases. Given the
network is undirected, so this conclusion is also proper for j. Then we can conclude that if we
build a new tie between i and j, the information entropy gain Ae(i, j) = Ae(i); + Ae(j); produced
by this new friendship for the two nodes decreases as c;; increases. It tells us that for the nodes
with more common friends, establishing a new tie between them produces less information
entropy gain for them. Be brief, there is a competition between homophily and information
entropy in breeding a new connection. Note that Ae(i, j) declining with c;; might be very slow,
because generally s; is much greater than c;;.

In fact, the information entropy for i represents the diversity of its information sources. If
we create ties between i and other nodes who have overlapped friends with it, these nodes will
appear more frequently in its information sequence and even become the dominating sources
of the information. Then the diversity of the information source is weaken and the gain of the
information entropy decays accordingly.

Empirical Analysis

In order to validate the above analysis, we employ several data sets, including both synthetic
and real-world networks, for further empirical study. The synthetic data sets are generated by
BA [21], Small World [22] and CNNR [14] models. BA is a classic model to generate scale-free
networks with the mechanism of preferential attachment. We denote the data set it generates
as BA(N, m), where N is the size of the network and m is the number of initial ties that would
be connected when a new node is added. Small World model is a random model with probabil-
ity p to rewire and produce long range ties, it can be denoted as SW(N, K, p). CNNR model is
modified from CNN [13] for generating social networks, especially online social networks. We
denote it as CNNR(N, u, 7), where u(1 — r) is the probability to covert the potential edges into
real ties. The averaged degree of the network it generates is approximately 2/(1 — u). The real-
world data sets come from different fields. For example, CA-HepPh is a collaboration network
from the e-print arXiv(http://www.arxiv.org) and covers scientific collaborations between
authors of papers submitted to High Energy Physics [23]. NewOrleans is the Facebook network
in New Orleans [24]. Email-Enron is an email communication network that covers all the
email communication within a data set of around half million emails [25]. The basic properties
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Table 1. Data Sets.

Data set N |E]

BA(20000, 10) 20000 199352
SW(20000, 10, 0.1) 20000 200000
CNNR(20000, 0.9, 0.04) 20000 187215
CA-HepPh 12006 118489
NewOrleans 63392 816886
Email-Enron 36692 183831

doi:10.1371/journal.pone.0136896.t001

of theses data sets we utilize in following experiments are listed in Table 1 and the real net-
works’ download sources can be found in S1 Datasets.

As discussed before, establishing a new friendship may affect the entropy of the both ends.
In the above networks, we characterize the relation between c;; and Ae(i, j) in the following
steps: For each tie between i and j, we first obtain € (1); + €'(j); in the origin network; Secondly,
we delete this tie and get €(i); + €(j);; Thirdly, the tie is restored. For different Ae(i, ) for the
same c;;, we get the maximum, mean and minimum values, respectively. The change of entropy
for other nodes in the network is not considered here for the reason that we assume the estab-
lishment of a tie between i and j is a personal activity with local information solely. As shown
in Fig 2, in all networks, Ac(i, j) decreases as c; grows, which is consistent with our above analy-
sis, especially for the small world network in Fig 2b. At the start stage, the diverge between the
maximum and mean of Ae(i, j) is large, then it decays quickly as c;; increases. It is also observed
that for the nodes with tremendous common friends, building a new friendship between them
may even lead to entropy loss. Note that except the small world network (Fig 2b), the deviation
between the maximum and mean of Ae(i, j) can be very large as c;; is pretty small. It is because
different from Poisson’s distribution, the degree distribution of the real networks and BA
model are power-law. And the existing of hub nodes with extremely large degrees in those net-
works might possess very high information entropy gain but low common neighbors (like a
star), and therefore the variance of Ae(i, j) can be very large as c;; is tiny.

To sum up, the empirical results testify our statement further that increment of homophily
would reduce the information entropy gain, which indicates a competition between the two
evolving rules.

Positiveness

The growing of a social network could be simply regarded as establishing new ties among indi-
viduals. From the perspective of information entropy maximization, a tie should be established
to gain more entropy for both ends. Therefore, we could distinguish the tie that makes the
entropy of its ends gain as the positive tie, while the one that leads to entropy loss as the nega-
tive tie. Then we define the positiveness of the social network as the fraction of positive ties,
which is denoted as 7. Larger T means more ties in the network are established to increase their
ends’ entropy gain. As shown in Table 2, we list 7 of the real-world network, where c is the clus-
tering of the network. It is interesting that for the network with higher c, its 7 is lower generally.
We also investigate this finding on the network with various clusterings generated by BA and
Small World models. For the BA model, we employ the method of tuning clustering while
keeping its degree distribution stable [26, 27]. We only perform experiments of tuning the clus-
tering on BA(1000,4), because it is too much time consuming for BA(20000,10). For the model
of Small World, we just vary p. As shown in Fig 3, for both of models, the positiveness of
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Fig 2. Empirical results from data sets. The results are consistent with the theory that increment of common friends would decrease the information
entropy gain, especially for the maximum. Particularly, it should be also noted that as predicted by the analytical results, the averaged decay of Ac(i, j) is very
small in some cases, as shown in Fig 2d. Note that there are several outliers for the maximum Ae(i, j), like in Fig 2c, which are produced by the noise in
statistics. While the global trend of decrement with c;; in all networks is still significant.

doi:10.1371/journal.pone.0136896.g002

Table 2. 7 of the real-world networks.

Data set T c

NewOrleans 0.70 0.22
Email-Enron 0.56 0.50
CA-HepPh 0.50 0.61

doi:10.1371/journal.pone.0136896.t002

network decreases as ¢ grows. In fact, the clustering of the network could be rewritten [28] as

1 G
m;(k)
2

For this reason, with respect to the rule of homophily, a new tie added preferentially between

Cc =

nodes with overlapped friends would also lead to new triangles constructed in local structure.
That is to say, the clustering of the network, i.e., ¢, would be increased when its evolution is
driven by the homophily. Because of this, homophily dominated evolution leads to the decre-
ment of 7. However, with respect to the information entropy maximization, the new tie is
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0.7

established to increase the diversity of the information source and gain more entropy, which
would improve 7 by importing more positive ties.

The strength of a social tie can be defined as the number of overlapped friends between its
ends. For example, the strength of a tie between i and j could be defined as w;; = ¢;i/(k; — 1 + k;
-1 -¢;j) [29-31], where lower w;; stands for a weak tie. It is obvious that if i and j share a lot of
common friends, the strength of the tie between them is strong. Conventionally, it is thought
that the weak tie is helpful in getting the new information [32], while the strong tie means the
relationship is trustful [19]. Therefore, based on the above discussion, it seems that the evolu-
tion supervised by homophily could lead to generations of strong ties in the network, because it
renders the network highly clustered. In order to validate this, we observe the cumulative distri-
bution function(CDF) of w; for each tie in the network. As shown in Fig 4, as ¢ of the network
decreases, the CDF curve moves to the left, which indicates the increment of the fraction of
weak ties [33]. It validates our conjecture that in both synthetic and real-world data sets, highly
clustered networks caused by homophily contain more strong ties, while the ones with lower
clusterings contain more weak ties, which are produced by the law of maximum information
entropy.
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Competition Model

A simple toy model is built to further demonstrate and understand the competition between
information maximization and homophily in social networks’ evolution. In this model, we sim-
ply assume the network starts to evolve from a sized-fixed but extremely sparse BA network
and new links are added based on their scores, which can be calculated as

AAe(i,j) + (1 = A)c;
at the initial stage, where i and j are a pair of non-connected nodes in the starting graph and 0
<A < 1isa parameter to tune the role of information maximization in the generation of new
ties. Intuitively, as A getting close to 1, new links that can bring high information entropy gain
(represented by Ae(i, j)) will be preferentially selected, while contrarily, as A getting close to 0,
links with high homophily (represented by c;;) will be first established. Note that in order to
make Ae(i, j) and c;; comparable, we normalize them by dividing their maximum values
respectively.

As can be seen in Fig 5, the competition between information maximization and homophily
can be well reproduced through our toy model. Specifically, we can find that when A grows, the
average clustering (denoted as c) of the network begins to increase until arriving at the maxi-
mum value, because small 4 indicates that new links are mainly generated between nodes with
high c;; and many triangles might emerge locally. While regarding to 7, the fraction of positive
ties, it first decreases until to its minimum and then begins to increase steadily, because as A
grows, the rule of information maximization will select more and more positive links from the
candidate and the local clustering will be broken by weak ties of high entropy gain. It is also
consistent with our previous finding that 7 is negatively correlated with c.

Meanwhile, from Fig 5, we also notice that there exists a critical A, for Tand c, respectively.
For instance, the average clustering of the network will arrive at the maximum as 4, = 0.35,
while the positiveness of the network arrives at the minimum when A, = 0.6. The first critical
value suggests that as 4 < 0.35, the rule of homophily dominates the evolution of the social net-
work, while the second critical value indicates that as A > 0.6, the rule of information maximi-
zation begins the dominate the formation of new ties in the evolution. However, as 0.35 <4 <
0.6, both of the rules coexist and function simultaneously in the evolution.

PLOS ONE | DOI:10.1371/journal.pone.0136896 September 3,2015
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Fig 5. Evolutions of different A. The size of the network is 1000 and the initial average degree is 4. 10000 new links have been added to guarantee the
stability of the results for each A.

doi:10.1371/journal.pone.0136896.9005

Moreover, as reported in Table 2, the average clustering and positiveness of real networks
employed here are around 0.5, which means A for real networks we used is smaller than 0.35
(as seen in Fig 5) and the homophily mainly drives the evolution and the rule of information
entropy functions limitedly.

To sum up, the toy model developed here can well demonstrate the competition between
the rules of information maximization and homophily and it also provides us a way to deter-
mine which rule plays the dominant role in the evolution by evaluating the value of A from the
views of clustering and positiveness. However, this model ignores the coming of new nodes
and the ties’ score is only determined by the initial status, which indeed needs further enhance-
ment in the future work.

Conclusion and Future Work

In summary, both theoretical analysis and experimental results show that the rule of homo-
phily is competing with the law of information entropy maximization in social networks.

PLOS ONE | DOI:10.1371/journal.pone.0136896 September 3, 2015 9/12
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Moreover, the rule of homophily driven evolution makes the network highly clustered and
increases the certainty of the information source for a node. Contrarily, the rule of maximum
entropy leads to the diversity of information sources. Based on the definition of weak ties, we
can conclude that the rule of maximum information entropy leads to the generation of weak
ties in the network, while the homophily produces strong ties between nodes with overlapped
friends. Corresponding to the fact that both the weak and strong ties coexist in the network, we
conjecture that both of the evolving rules might coexist in growth of the social networks.
Therefore, in the view of maximum information entropy, the social network is not efficient,
however, it owns many strong ties which may deliver trust information. We also develop a toy
model to demonstrate the competition of different evolving rules and it can help to distinguish
the different roles of different laws in real networks. Our findings could provide insights for
modeling social network evolution as a competition of different rules.

This study has inevitable limitations. First, too many factors are neglected in the competi-
tion analysis and a more sophisticated and predicable framework is necessary. For example,
given the tremendous development of the online social network, the cost of social activity in
the epoch of the Internet continues to decrease [19, 20], and because of this, we neglect the cost
of establishing ties of different strengths for simplifying the analytical framework. While in the
real world, the strategic activity can be constrained by the personal cognition limit and social
cost [34, 35] and the Dunbar’s number [36] still exists in the online social network [20, 37, 38].
Hence in the future work, we would take the cost of establish different ties into consideration
and build an evolution model of social networks based on the competition of strong and weak
ties. Second, the empirical evidence from evolution of real networks is missing. So collecting
fine-grained evolving trajectories of real social networks can be another interesting direction in
our future work.
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