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Abstract
Anti-mitotic therapies have been considered a hallmark in strategies against abnormally prolif-

erating cells. Focusing on the extensively studied family of thiosemicarbazone (TSC) com-

pounds, we have previously identified 4,4’-dimethoxybenzophenone thiosemicarbazone

(T44Bf) as a promising pharmacological compound in a panel of human leukemia cell lines

(HL60, U937, KG1a and Jurkat). Present findings indicate that T44Bf-mediated antiprolifera-

tive effects are associated with a reversible chronic mitotic arrest caused by defects in chromo-

some alignment, followed by induced programmed cell death. Furthermore, T44Bf selectively

induces apoptosis in leukemia cell lines when compared to normal peripheral bloodmononu-

clear cells. The underlying mechanism of action involves the activation of themitochondria sig-

naling pathway, with loss of mitochondrial membrane potential and sustained phosphorylation

of anti-apoptotic protein Bcl-xL as well as increased Bcl-2 (enhanced phosphorylated fraction)

and pro-apoptotic protein Bad levels. In addition, ERK signaling pathway activation was found

to be a requisite for T44Bf apoptotic activity. Our findings further describe a novel activity for a

benzophenone thiosemicarbazone and propose T44Bf as a promising anti-mitotic prototype to

develop chemotherapeutic agents to treat acute leukemia malignancies.

Introduction
Acute Myelogenous Leukemia (AML) comprises a group of hematological malignancies char-
acterized by increased myeloid progenitor cells in bone marrow and/or peripheral blood. These
cell subpopulations not only present diverse stages of hematopoietic differentiation, but also
exhibit defects on the tightly controlled self-renewal process and failure in normal pro-
grammed cell death [1–3].
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Currently, the treatment of AML is mainly based on the administration of therapeutic
agents targeting DNA. Standard chemotherapy involves the combination of cytosine arabino-
side (cytarabine) with an anthracycline, such as daunorubicin or idarubicin, or the anthracene-
dione mitoxantrone [4–6], whose underlying mechanism of action relies on neoplastic cell
apoptosis [7, 8]. Alternative combinatorial approaches include agents like etoposide or doxoru-
bicin, which induce DNA damage by topoisomerase II inhibition [9]. Such chemotherapeutic
agents cause disruption of mitotic progression and prolonged activation of the mitotic check-
point, mainly in p53-deficient tumor cells, which in turn leads to programmed cell death.

These strategies allow to reach complete remission rates of 50 to 75% in adult patients
between 20 and 60 years old, although nearly 70% of these patients relapse or develop resis-
tance to treatment [5]. In addition, many patients also suffer therapy-related complications
such as elevated systemic toxicity and multidrug resistance. With the aim of diminishing che-
motherapic resistance and the serious side effects caused by conventional treatments, a great
effort is done in searching for new agents for AML treatment.

Thiosemicarbazones (TSCs) are a structurally diverse family of compounds that have been
extensively studied because of their broad spectrum of pharmacological applications. Several
reports have described their antibacterial [10, 11], antiprotozoal [12, 13] and antiviral activity
[14], including, for instance, methisazone (Marboran), which is commercialized for smallpox
treatment [15, 16]. Also, numerous compounds belonging to the thiosemicarbazone family
have been examined both in vitro and in vivo for cytotoxic activity against several cancer types
[17, 18]. The best characterized example is 3-aminopyridine-2-carboxaldehyde thiosemicarba-
zone (3-AP, also called Triapine), which has recently been included in clinical trials for cervical,
colon and metastatic renal cancer treatment [19–22]. More recently, the heteroaromatic com-
pound TSC S115 showed a broad antineoplastic activity and exerted synergistic apoptotic
effects when used in combination with standard cytotoxic agents both in vitro and in vivo [23].
Although TSCs with antiproliferative activity exhibit a wide structural diversity, most of them
share a mechanism of action associated to ribonucleotide reductase and topoisomerase II
Alpha inhibition [24], reactive oxygen species generation and DNA damage [25–27]. Further
supporting these mechanisms of action, other studies have demonstrated that TSCs can act as
transition metal chelators and induce redox intracellular imbalance [28, 29].

In the search of new potential anti-leukemic drugs, a series of aromatic TSCs were previ-
ously synthesized in our laboratory and tested for antiproliferative activity in the U937 human
acute leukemia cell line (unpublished data). From this biological screening, 4,4’-dimethoxyben-
zophenone thiosemicarbazone (T44Bf) was identified as the lead compound showing the most
potent antiproliferative activity.

In the present work, we extended the evaluation of T44Bf to a panel of human acute leuke-
mia cell lines (HL60, U937, KG1a and Jurkat) and described the mechanism underlying its
antiproliferative effects. Our results show that T44Bf induced selective apoptosis by chronic
mitotic arrest in these leukemia cell lines. Moreover, T44Bf-induced apoptosis involved mito-
chondrial membrane potential loss, sustained phosphorylation of anti-apoptotic protein Bcl-
xL, and increased Bcl-2 with the observation of phosphorylated fraction. Also, we found that
ERK signaling pathway upregulation was a requisite for T44Bf-induced cell death. Our findings
further suggest that T44Bf acts as an anti-mitotic compound delaying anaphase onset by
defects in chromosome alignment at prometaphase. In summary, T44Bf is a promising phar-
macological prototype for the development of chemotherapeutic agents in the treatment of
acute leukemia malignancies.
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Material and Methods

2.1 Reagents and antibodies
T44Bf was solubilized as a stock solution at 50 mM in dimethyl sulfoxide (DMSO) and stored
at -20°C until use; for each experiment the final concentration of DMSO did not exceed 0.1%.
Cell culture medium RPMI-1640 and antibiotics were obtained from Sigma Chemical Com-
pany (St. Louis, MO) and FBS from Natocor (Argentina). Anti-poly (ADP-ribose) polymerase
(PARP), anti-Bcl-2, anti-Bax, anti-Bad, anti-Bcl-xL, monoclonal anti-pERK 1/2, anti-Cdc2 p34
(C-19), anti-Cyclin A, anti-Cyclin B1 and anti-αTubulin antibodies were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA) whereas anti-ERK (clone MK12) antibody
fromMillipore (Merck KGaA, Darmstadt, Germany) and anti-caspase 3 antibody from Neuro-
mics (Edina, MN, United States). A horseradish peroxidase-conjugated goat anti-mouse and
anti-rabbit were used as the secondary antibody (Vector and Santa Cruz Biotechnology, respec-
tively). Alexa-Fluor555 goat anti-rabbit IgG was from Invitrogen, Carlsbad, CA USA.

DiOC6 (3,30-Dihexyloxacarbocyanine iodide), Hoechst, Paclitaxel, Oxaliplatin and anti-β
actin antibody were purchased from Sigma Chemical Company (St. Louis, MO) and annexin
V-FITC/PI apoptosis detection kit was obtained from BD Biosciences Pharmingen (San Diego,
CA, USA). Other chemicals used were of analytical grade and were obtained from standard
sources.

4,4’-dimethoxybenzophenone thiosemicarbazone (T44Bf) was prepared and characterized
as previously described [30] by condensation of 4,4’-dimethoxybenzophenone with thiosemi-
carbazide. Both reagents were purchased from Sigma Chemical Company (St. Louis, MO).

2.2 Cell culture and synchronization
Human leukemia cell lines U937, HL60, KG1a and Jurkat were obtained from American Type
Culture Collection (ATCC) and grown in RPMI-1640 medium (Sigma Aldrich Co.) supple-
mented with 10% fetal bovine serum (FBS) and 50 μg/ml Gentamicin in a humidified 5% CO2

atmosphere at 37°C.
Peripheral blood mononuclear cells (PBMC) were obtained from heparinized samples of

healthy donors isolated by centrifugation on Ficoll-Hypaque. Cells were cultured at 37°C in a
humidified atmosphere with 5% CO2 in RPMI-1640 medium, supplemented with 10% FBS
and 50 μg/ml Gentamicin. For activation of the peripheral T cells, 2x106 cells/ml were incu-
bated with phytohemagglutinin A at a concentration of 1.0 μg/ml for 48h before treatment
with T44Bf. Blood samples from normal volunteers were obtained after written informed con-
sent in accordance with the Declaration of Helsinki. These studies were approved by the insti-
tutional review board of the National Academy of Medicine of Buenos Aires.

For cell synchronization at G0/G1, cells were serum-starved for 7h at 37°C and thereafter
relieved into cell cycle by addition of 10% FBS. Before seeding, viability of cell lines and PBMC
were tested by Trypan Blue assay. Cells were used only if viability was higher than 90%.

2.3 MTS assay
Cell proliferation was determined by a colorimetric assay using CellTiter 96 AQueous Non-
Radioactive Cell Proliferation Assay (Promega, USA) according to the manufacturer’s instruc-
tions. For MTS assay, cells growing in exponential phase were seeded at 2.0x104 cells/well in a
96-well plate and incubated in an atmosphere of 5% CO2 at 37°C. Cells were exposed to serial
dilutions of T44Bf (0.78 μM to 50 μM) or 0.1% (v/v) DMSO (vehicle control group). After
incubation for 48h, 20 μl of MTS was added to each well and further incubated for 2h at 37°C.
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The absorbance was measured at 490 nm using the FlexStation 3 microplate reader (Molecular
Devices Inc., USA).

Half maximal inhibitory concentration 50 (IC50) values were calculated with GraphPad
Prism software (GraphPad Software Inc., USA) using the sigmoidal dose-response function.
Assays were carried out in triplicate and at least three independent experiments were
conducted.

2.4 Analysis of cell cycle phases distribution by flow cytometry
Synchronized cell populations were treated with different concentrations of T44Bf or 0.05%
(v/v) DMSO (vehicle) for 15h. After treatment, cells were harvested, washed with ice-cold PBS,
fixed overnight by addition of 70% (v/v) ethanol and stored at -20°C for a minimum of 24h.
On the day of flow cytometry analysis, cell suspensions were washed with ice-cold PBS and re-
suspended in 50 μl RNaseA (100 μg/ml) at room temperature for 15 min.

Propidium Iodide was added to a final concentration of 20 μg/ml and incubated in dark at
room temperature for 20 min. Cell cycle phase distributions were analyzed by FACS Scan Flow
Cytometer (Beckton-Dickinson CA, USA). Data from at least three independent experiments
were analyzed using ModFit software (VeritySoftware House Inc., Topsham, ME, USA) to
determine the fractions of cells in the subG0/G1, G0/G1, S and G2/M phases from cell cycle
distribution.

2.5 G2/M arrest reversion assay
Cells synchronized at G0/G1 and treated with 10 and 20 μM of T44Bf for 15h were washed
with PBS and incubated in T44Bf-free culture medium for 2 and 5h. Flow cytometry analysis
of cell cycle distribution was performed as previously described. Cells treated with Paclitaxel
250 nM served as positive G2/M arrest control.

2.6 Determination of apoptosis markers
2.6.1 Annexin V binding assay. Cells growing in exponential phase were plated in 12-well

plates at a density of 5.0x105 cells/ml and cultured with different concentrations of T44Bf or
vehicle (0.05% DMSO) in complete medium for 24h. After washing with ice-cold PBS, 2.0x105

cells were incubated with FITC-labeled annexin V and PI according to the manufacturer’s
instructions (BD Biosciences Pharmingen, San Diego, CA, USA) and analyzed by a FACS Scan
Flow Cytometer (Becton-Dickinson CA, USA).

2.6.2 Caspase 3 activity assay. Cells growing in exponential phase were seeded in 6-well
plates and treated with different concentrations of T44Bf during 12 and 24h. Cells were then har-
vested and processed according to CASP3C caspase 3 colorimetric assay kit (Sigma Chemical Co.
St. Louis, MO, USA). Absorbance at 405 nm, due to hydrolysis of the peptide substrate acetyl-
Asp-Glu-Val-Asp p-nitroanilide (Ac-DEVD-pNA), was measured using the FlexStation 3 micro-
plate reader (Molecular Devices Inc., USA) and caspase 3 activity was expressed as OD405 value.

2.7 Mitochondrial membrane potential evaluation (ΔΨm)
In order to assess T44Bf-mediated mitochondrial membrane potential in HL60 cells, 6x105

cells/ml were seeded in 48-well plates and treated with 10 μM of T44Bf for 3, 5, 6 and 7h.
After treatment, cells were harvested, centrifuged and incubated in the dark with 10 nM of
the probe DiOC6 in RPMI-1640 for 20 min. Fluorescence was analyzed by flow cytometry
(ʎex/ʎem = 488/530nm) using FACS Scan Flow Cytometer (Becton-Dickinson CA, USA) and
results were analyzed with ModFit software (Verity).
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2.8 Preparation of cell lysates andWestern blot analysis
Cells were washed in PBS and lysed in 50 mM Tris–HCl pH 6.8, 2% SDS, 100 mM 2-mercap-
toethanol, 10% glycerol and 0.05% bromophenol blue and sonicated to shear DNA. Cellular
proteins from total cell lysates (20 μg) were electrophoresed on 8–15% SDS polyacrylamide gel
and transferred to nitrocellulose membranes. Blots were blocked with 5% non-fat powdered
milk in TBS containing 0.05% Tween-20 and probed with the indicated primary antibodies fol-
lowed by horseradish-peroxidase-conjugated secondary antibodies. Reactivity was developed
by enhanced chemiluminescence (ECL) according the manufacturer’s instructions (Amersham
Life Science, England).

2.9 Immunofluorescence microscopy
Briefly, cell suspensions from each well were transferred to a microcentrifuge tube and fixed
with 4% paraformaldehyde in PBS for 10 min. Cells were rinsed four times with cold PBS and
permeabilized with 0.3% Triton X-100 in PBS before blocking non-specific binding sites with
10% v/v goat serum for 30 min. After 3 washes with PBS, cells were incubated with monoclonal
anti-α-tubulin (1:50) overnight at 4°C followed by incubation with Alexa Fluor555 conjugated
goat anti-rabbit (1:500) for 1h at room temperature. Specificity of the immunodetection was
assessed by omitting the primary antibody. Nuclei were labeled by Hoechst staining and images
were examined under the Eclipse E200, Nikon fluorescence microscope.

2.10 Statistical analysis
Results in Table 1 are expressed as the mean with a 95% confidence interval (IC95) and IC50

values calculated by the equation for sigmoidal dose-response using software Prism 5.00 for
Windows. Other results are expressed as mean ± SD of at least three independent experiments.
Statistical analysis was performed by Student´s t test or one-way ANOVA followed by Dun-
netts´s or Student–Newman–Keuls (SNK) multiple comparisons post-test performed with
GraphPad Prism 5.00 for Windows. A p-value of 0.05 or less was considered as statistically
significant.

Results

3.1 T44Bf inhibits proliferation by cell cycle arrest in human acute
leukemia cell lines
In a previous screening of a series of aromatic thiosemicarbazones synthesized in our labora-
tory, we identified T44Bf (Fig 1) as a lead compound with potent antiproliferative activity in
the U937 cell line (unpublished data). To further investigate the mechanism of action of T44Bf,
we evaluated its activity on cell viability and proliferation in a wide panel of human acute leu-
kemia cell lines with different stages of cell differentiation. Table 1 shows that treatment with

Table 1. Antiproliferative activity of T44Bf on different leukemia cell lines. Results are expressed as the
concentration that induces 50% of cell proliferation inhibition (IC50) and the maximal inhibition achieved fol-
lowing 48h exposure to T44Bf. Data are presented as means and corresponding 95% confidence intervals
(CI95) (n>3).

Cell line IC50 μM (CI95) Maximal Inhibition % (CI95)

Jurkat 4.2(3.8–5.1) 68.3(61.7–75.0)

U937 9.6(6.7–13.7) 96.2(81.1–104.2)

HL60 4.1(3.7–4.4) 88.9(84.7–91.6)

KG1a 6.4 (5.9–7.0) 61.1(55.8–66.3)

doi:10.1371/journal.pone.0136878.t001
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T44Bf for 48h inhibited cell proliferation by approximately 90% in U937 and HL60 cells, and
60% and 70% in KG1a and Jurkat cells, respectively. In all cases, the half maximal inhibitory
concentration (IC50) was in the low micromolar range supporting the high potency of T44Bf as
a cell proliferation inhibitor in human acute leukemia cell lines.

In an attempt to evaluate whether T44Bf-mediated inhibition on cell proliferation correlated
with effects on cell cycle progression, cell cycle distribution of T44Bf-treated cells in a concen-
tration-response manner was assessed by flow cytometry. Synchronized cells exposed to 10 or
20 μMT44Bf for 15h showed a pronounced increase in the G2/M population with a concomi-
tant reduction of cells in G0/G1 phase in all cell lines (Fig 2). In HL60 cells, T44Bf induced a
significant G2/M arrest at both concentrations, however at 20 μM the subG0/G1 population
was increased (data not shown). On the contrary, in U937, KG1a and Jurkat cells, T44Bf at
20 μM lead to a maximal arrest at G2/M when compared to 10 μM after 15h without changes
in subG0/G1. These results indicate that the anti-proliferative effect of T44Bf is associated with
an arrest in G2/M phase of the cell cycle.

3.2 T44Bf induces apoptosis selectively in human acute leukemia cell
lines
We evaluated whether T44Bf exerted antiproliferative activity via the induction of apoptosis in
addition to cell cycle arrest. Several key apoptosis-related events in response to T44Bf treat-
ment, including phosphatidylserine exposure, cleavage of caspase 3 and poly (ADP-ribose)
polymerase (PARP) and caspase 3 enzymatic activity were assessed. Given the differences
observed in the maximal values of cell proliferation inhibition obtained from the MTS assay
and knowing that multiple pathways may trigger the apoptotic response, apoptotic markers
were assessed using 10 and 20 μMT44Bf, in an attempt to detect the maximal apoptotic
activity.

Annexin V/PI staining was performed in cells exposed to 10 and 20 μM for 24h. A signifi-
cant increase in the early- and late-apoptotic populations was observed in HL60 and U937 cell

Fig 1. Chemical structure of 4,4’-dimethoxybenzophenone thiosemicarbazone (T44Bf).

doi:10.1371/journal.pone.0136878.g001
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lines at both T44Bf concentrations, whereas KG1a cells showed only a late-apoptotic popula-
tion. In addition, while HL60 and U937 cells displayed the highest sensitivity to the treatment,
Jurkat cells only showed a significant increase in the early-apoptotic population at 20 μM of
T44Bf. It is worth noting that T44Bf did not promote necrosis at the times tested in any of the
cell lines (Fig 3A).

Next, we assessed the cleavage of caspase 3, the terminal effector in the apoptotic cascade,
and its substrate PARP by western blot. Cells incubated with T44Bf exhibited a time- and con-
centration-dependent increase in both active fractions of caspase 3 (Fig 3B upper panel) and in
the 89-kDa fraction corresponding to cleaved PARP (Fig 3B lower panel). These findings
strongly suggest that T44Bf induced caspase 3 activation, which was confirmed by enzymatic
caspase 3 activity assessment using a colorimetric assay. Incubation with T44Bf augmented the
enzymatic activity of caspase 3 in all cell lines, in agreement with the results obtained by west-
ern blot (Fig 3C). With the aim to compare all cell lines we unified the time of treatment and
selected for further assays the concentration of 10 μM for HL60 cells and 20 μM for U937,
KG1a and Jurkat cells.

These results clearly indicate that although the sensitivity of leukemia cell lines differ, all of
them display a significant induction of apoptosis through the activation of the caspase pathway
in response to low concentrations of T44Bf.

In order to evaluate the selectivity of T44Bf for neoplastic cells, normal peripheral blood
mononuclear cells (PBMC) were incubated with different T44Bf concentrations and viability
was assessed by annexin V/PI staining. Interestingly, the T44Bf concentrations that induced
apoptosis in leukemic cells failed to induce cell death in normal PBMC, as observed specifically
in monocytes, unstimulated lymphocytes and Phytohemagglutinin A activated (i.e. proliferat-
ing) lymphocytes (Fig 4), thus supporting the therapeutic potential of T44Bf based on its selec-
tive pro-apoptotic effect and reduced toxicity.

Fig 2. Cell cycle distribution after T44Bf treatment in human acute leukemia cell lines. Synchronized
G0/G1 cells were exposed to T44Bf at the indicated concentrations or to 0.05% (v/v) DMSO, vehicle control
group for 15h. Cell cycle distribution was calculated as described in Material and Methods. Data represent the
mean ± SD (n > 3). *P < 0.05

doi:10.1371/journal.pone.0136878.g002
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Fig 3. Pro-apoptotic activity of T44Bf in human acute leukemia cell lines. Cells in exponential growth were exposed to T44Bf at the indicated
concentrations or to 0.05% (v/v) DMSO, vehicle control group. (A) After 24h of treatment cells were analyzed to detect exposed phosphatidylserine by
annexin V binding assay. The graphic shows the different cell subpopulations according to the annexin V/PI staining pattern: cells labeled with only annexin V
(early apoptosis), cells labeled with annexin V and PI (late apoptosis), and cells labeled only with PI (necrotic cells). (B) Determination of cleaved caspase 3
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3.3 T44Bf induces apoptosis in HL60 cells through the activation of the
mitochondrial pathway
In order to gain further insight into the mechanism of apoptosis exerted by T44Bf on leukemic
cells we performed a series of experiments in HL60 cells. We chose HL60 cells because they
exhibit a low stage of differentiation and high sensitivity to T44Bf. Since mitochondrial damage
represents an event extensively associated to apoptosis, we first evaluated the loss of mitochon-
drial membrane potential by measuring changes in DiOC6 fluorescence levels. DiOC6 accumu-
lates inside intact mitochondria and therefore, a loss of DiOC6 fluorescence intensity implies
damaged or leaky mitochondria membranes. Incubation of HL60 cells with 10 μMT44Bf
decreased DiOC6 fluorescence indicating impairment of mitochondrial membrane integrity
(Fig 5A). The change in the mitochondrial membrane potential was significant after 5h of
T44Bf treatment, reaching the maximum at 7h with 75% of fluorescence loss. In accordance,
changes in Bcl-2 and Bcl-xL, two proteins related to the maintenance of mitochondrial integ-
rity were observed (Fig 5B).When the anti-apoptotic protein Bcl-xL was evaluated, results
showed a sustained increase in the phosphorylated fraction following 6h exposure to T44Bf.
Furthermore, a sustained increase in Bcl-2 expression after 2h was also observed. In addition,
the immunoblotting showed a Bcl-2 mobility shifted band after 2h treatment which corre-
sponds to the Bcl-2 phosphorylated fraction as reported by other groups [31, 32]. We also eval-
uated the pro-apoptotic proteins Bad and Bax, and found that only Bad increased at 6h
whereas Bax remained unchanged at all times evaluated (Fig 5B). These results show that
T44Bf induces cell death through the activation of the mitochondrial signaling pathway.

3.4 ERK1/2 activation is required for T44Bf-induced apoptosis
Several reports support that ERK phosphorylation is a relevant step in the chain of events lead-
ing to programmed cell death [33–35]. In this sense, prolonged activation associated with apo-
ptosis has been shown for diverse cytotoxic compounds [36, 37]. Therefore to further elucidate
T44Bf mechanism of action, we measured ERK phosphorylation in HL60 cells. Treatment with

and PARP byWestern blot. Equal amounts of protein were subjected to SDS–PAGEwith anti-caspase 3 and PARP antibodies. Data are representative of at
least three independent experiments. (C) Caspase 3 enzimatic activity induced by T44Bf in human acute leukemia cell lines. Cells were treated with T44Bf in
the indicated concentrations and time, and caspase 3 protease activity measured as described in Materials and Methods and expressed as OD405nm values.
Data are presented as mean ± SD from four independent experiments. *P<0.05.

doi:10.1371/journal.pone.0136878.g003

Fig 4. Compound selectivity assessed in normal peripheral bloodmononuclear cells (PBMC).
Phosphatidylserine exposure was measured by annexin V binding assay in monocytes, unstimulated
lymphocytes or Phytohemagglutinin A activated (i.e. proliferating) lymphocytes after 24h treatment with
T44Bf at the indicated concentrations or to 0.05% (v/v) DMSO vehicle control group. Data represent the
mean ± SD (n > 3). *P<0.05.

doi:10.1371/journal.pone.0136878.g004
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10 μMT44Bf led to a rapid and significant increase in pERK levels at 5min, followed by a late
phosphorylation at 6h and 24h (Fig 6A). Then, in order to determine whether MEK/ERK sig-
naling was involved in T44Bf pro-apoptotic effect, we measured apoptotic markers in the pres-
ence of the MEK/ERK inhibitor U0126 (10 μM). Interestingly, under these conditions, the
cleaved fractions of both PARP and caspase 3 proteins were not observed (Fig 6B), thus show-
ing that the MEK/ERK pathway inhibition dampens the pro-apoptotic action of T44Bf.

3.5 T44Bf induces mitotic aberrations
Previous reports indicate that when disorders in the mitotic division occur, the apoptotic path-
way is activated by a mechanism involving MEK/ERK signaling [36, 38]. Knowing that T44Bf
causes cell cycle arrest in G2/M and induces apoptosis by the MEK/ERK dependent pathway,
we aimed to identify the stage of mitosis targeted by T44Bf treatment. By visualization of the
microtubule network through an immunofluorescence assay it was observed that HL60 and
U937 cells treated with T44Bf showed morphological features associated with cells blocked at
mitotic prometaphase [39]. Furthermore, treatment with T44Bf led to disorders in the mitotic
process as evidenced by the appearance of extra spindle poles (Fig 7). In addition, DAPI

Fig 5. T44Bf effects onmitochondrial membrane potential and Bcl-2 family protein levels. (A) Cells treated for 3, 5, 6 and 7h with T44Bf or 0.05% (v/v)
DMSO vehicle control group, were evaluated for changes in fluorescence intensity of DiOC6 probe by flow cytometry. The bar graph shows differences
among treatment times. (B) The representative graphic shows Bcl-2, Bad, Bax and Bcl-xL protein assessment by Western blot. Equal amounts of protein
were subjected to SDS–PAGE with anti-Bcl-2 family protein antibodies. Blots were subjected to densitometry analysis using ImageJ software. Data are
presented as mean ± SD respect to control of at least four independent experiments. *P < 0.05

doi:10.1371/journal.pone.0136878.g005
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Fig 6. ERK time-course phosphorylation after T44Bf treatment. (A) Representative blot of ERK 1/2
phosphorylation following exposure of HL60 cells to 10 μMT44Bf at different times. Equal amounts of protein
were subjected to SDS–PAGEwith anti-pERK 1/2 antibody. Blots were stripped and incubated with ERK total
antibody and α-tubulin as loading control. Bar plot showing arbitrary units obtained from densitometry
measurement. Data are expressed as mean ± SD of three independent experiments. *P < 0.05. (B) Effect of
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staining revealed the presence of chromosomes which failed to localize completely at the equa-
tor of the mitotic spindle. A similar profile in chromosome distribution was obtained in HL60
cells treated with Vincristine (200 nM) [40], which was used as a positive control of prometa-
phase arrest. Overall, these results validate the cell cycle arrest observed by flow cytometry and
support the idea that T44Bf treatment blocks cell cycle in prometaphase. These findings further
suggest that T44Bf may affect the proper organization of the mitotic spindle and/or the proper
alignment of chromosomes.

3.6 T44Bf-induced prometaphase arrest is a reversible event
With the aim to determine a time window for T44Bf activity we evaluated whether the
observed alterations in cell cycle progression could be reverted. After 15h treatment, T44Bf was
replaced by fresh medium and cell cycle distribution of leukemic cells assessed. Interestingly,
2h after T44Bf removal, the levels of G0/G1 subpopulation were restored to values similar to
control cells in HL60, U937 and KG1a cell lines (Fig 8). However, lymphoid Jurkat cells did not
exhibit significant differences in the cell cycle distribution following T44Bf removal. When the
subG0/G1 subpopulation was evaluated under the same conditions, HL60 and KG1a cells
showed significant differences as compared to cells exposed to T44Bf. These findings clearly
indicate that T44Bf-induced cell mitotic blockage is reverted when the compound is washed-
out, allowing cells to transit to G0/G1 phase and therefore emphasize the relationship between
cell cycle arrest and apoptosis.

3.7 T44Bf-induced prometaphase arrest is associated to increased
levels of Cyclin B1 and downregulation of Cyclin A
To gain further insight into T44Bf-induced prometaphase arrest, we next examined the effect
on mitotic regulatory proteins such as Cyclin A, Cyclin B1 and Cdc 2. Cyclin A is a protein
associated to cell cycle progression. It rises at late G1and increases steadily until the late G2
phase of the cell cycle. Afterwards, it disappears slightly ahead of Cyclin B1 during mitosis
which is compatible with its activity as upstream activator of mitosis entry [41, 42]. When
Cyclin A was assessed, we observed a significant decrease after 15 and 17h T44Bf treatment for
all the cell lines showing that arrest observed at G2/M by flow cytometry corresponds to cells at
mitosis rather than at the G2 phase of the cell cycle (Fig 9A).

The regulatory events responsible for G2 to M phase transition involve the activation of the
Cyclin B1-Cdc2 kinase complex, also called M phase-promoting factor (MPF) [43, 44]. When
Cyclin B1 levels were analyzed by western blot assay, we observed that T44Bf increased Cyclin
B1 after 15, 17 and 20h of treatment in all cell lines consistent with the mitotic arrest at prome-
taphase observed by both flow cytometry and IF assays (Fig 9B). It is worth noting that similar
results were observed when Paclitaxel, a prototypical microtubule inhibitor, was tested as a
positive control that also induces G2/M arrest, as confirmed by flow cytometry (data not
shown). When total Cdc2 levels were assessed, no significant differences were observed
between treated and untreated cells, in accordance with the fact that Cdc2 levels are relatively
constant throughout the cell cycle and its activity regulation is mainly at the post-translational
level (Fig 9B).

MEK inhibitor U0126 on T44Bf-induced apoptosis after 12h in the HL60 cell line. Blot of cleaved caspase 3
and PARP after T44Bf treatment in the presence of 10 μMU0126. Graphic is representative of three
independent experiments.

doi:10.1371/journal.pone.0136878.g006
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In agreement with the increase in the G0/G1 subpopulation observed in the reversion assay,
Cyclin B1 levels significantly decreased after 2h and 5h following T44Bf replacement by fresh

Fig 7. Indirect immunofluorescencemicroscopy in HL60 and U937 cells treated with T44Bf. Synchronized cells were treated with T44Bf (10 μM and
20 μM) or Vincristine (200 nM) for 15h. Cells were fixed and stained to detect α-tubulin (red) and counterstained by Hoechst for DNA (blue). Mounted slides
were visualized under 1000Xmagnification on a Nikon Eclipse E200 fluorescence microscope. Yellow arrows indicate extra spindle poles and green arrows
indicate unaligned chromosomes. Images are representative of three independent experiments.

doi:10.1371/journal.pone.0136878.g007
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medium suggesting that T44Bf impairs anaphase progression (Fig 9B). This is consistent with
the fact that defects in the proper alignment of chromosomes induce permanent activation of
mitotic checkpoint by inhibiting Cyclin B1 degradation [45, 46]. Once SAC requirements are
satisfied, anaphase onset depends on the loss of MPF activity which is associated to Cyclin B1
subunit degradation. Therefore, these results indicate that T44Bf treatment promotes prometa-
phase arrest in a reversible manner probably by activating the mitotic checkpoint, which is con-
sistent with the downregulation of Cyclin A and the modulation of Cyclin B1 levels observed
both, in the presence of T44Bf and following its removal.

Discussion
In this work, we describe a novel activity for a benzophenone thiosemicarbazone, T44Bf, a
compound that exhibits anti-leukemic properties. T44Bf significantly reduces cell proliferation
in a concentration- and time- dependent manner not only in AML models, as the KG1a (M0),
HL60 (M2-3) and U937 (M5) cell lines, but also in a model of ALL like the Jurkat cell line. In
addition, our study indicates that programmed cell death is a consequence of growth inhibition
induced by T44Bf. It is worth noting that although the AML models used in the present work
belong to different stages of hematopoietic cell differentiation and linage, all of them responded
to T44Bf treatment. However, differences among maximal proliferation inhibition, cell cycle
arrest and apoptotic activity were evidenced in the more undifferentiated cell line KG1a and
the lymphoid Jurkat cells. Depending on the cell type and stimuli, many previous studies have
associated ERK activity to antiproliferative events such as apoptosis [33–35]. Our results show

Fig 8. Cell cycle progression after T44Bf removal.Cells were exposed to 10 (HL60) and 20 μM (U937, KG1a and Jurkat) of T44Bf for 15h. Then, the drug-
containing medium was removed and replaced by fresh culture medium for 2h. Cells were stained with PI and analyzed by flow cytometry. Data are
expressed as mean ± SD of three independent experiments. *P<0.05.

doi:10.1371/journal.pone.0136878.g008
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that T44Bf treatment induces an early- and late-sustained phosphorylation of the MAPK
ERK1/2. This event proved to be a necessary step to achieve the pro-apoptotic effect of T44Bf,
as shown by the absence of caspase 3 and PARP-cleaved fractions in presence of the MEK
inhibitor U0126. Interestingly, the pro-apoptotic activity of T44Bf showed high selectivity for
leukemia cellular models respect to normal PBMC, since both resting and proliferating PBMC
were resistant to T44Bf-induced apoptosis. This finding represents an important feature in
drug development of a pharmacological prototype. Some of the adverse effects associated to
agents such as cytarabine and anthracyclines involve acute myelosupression and cardiotoxicity
[6, 47]. In this sense, T44Bf would show an advantageous feature respect to currently used
agents for the treatment of AML.

In normal cell cycle progression, the signaling pathway responsible for mitotic entry
depends on MPF activation. An upstream regulator is the protein Cyclin A, that increases
steadily until late G2 phase, but it is no longer required after MPF activation [41]. Indeed,
Cyclin A begins to disappear shortly after nuclear envelope breakdown, ahead of Cyclin B1 and
its degradation is independent of mitotic checkpoint or SAC [48–50]. Afterwards, mitotic exit
from metaphase involves the briefly activated SAC. However, upon the presence of defects in

Fig 9. Cyclin A, Cyclin B1and Cdc2 evaluation by western blot. (A)Total lysates of cells exposed to 10 (HL60) and 20 μM (U937, KG1a and Jurkat) T44Bf
for 15 and 17h were analyzed for Cyclin A byWestern blot. Densitometry for Cyclin A blot was performed using Image J software. Arbitrary units represent
protein level analysis respect to load control β-actin. (B) Cells were exposed to 10 (HL60) and 20 μM (U937, KG1a and Jurkat) T44Bf for 15h. Then, the drug-
containing medium was replaced by fresh culture medium for 2 and 5h. Total cell lysates were analyzed byWestern blot for Cyclin B1 and Cdc2.
Densitometry for Cyclin B1 and Cdc2 blots were performed using Image J software. Arbitrary units represent protein level analysis respect to load control α-
tubulin. *P < 0.05.

doi:10.1371/journal.pone.0136878.g009
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the proper alignment of chromosomes, the mitotic checkpoint cannot be satisfied, leading cells
to a chronic mitotic arrest and eventually apoptosis with the aim of preventing proliferation of
damaged cells [51]. SAC acts mainly through the regulation of Cyclin B1 degradation, but not
Cyclin A, [49], maintaining high levels of Cyclin B1 during the arrest by E3 ubiquitin ligase
inhibition.

Once chromosomes are properly attached and oriented, SAC is turned off and Cyclin B1
degraded allowing the onset of anaphase [51, 52]. In this context, anti-mitotic compounds
cause a mitotic arrest either by interfering with microtubules dynamics or inducing DNA dam-
age in p53-deficient tumor cells [9, 53]. Flow cytometry, immunofluorescence and Cyclin A
western blot analysis, showed that T44Bf induces arrest of cells at prometaphase rather than
G2 phase, with a concomitant increase in Cyclin B1 protein levels, thus suggesting that SAC
requirements are not satisfied.

Moreover, T44Bf withdrawal allowed cell progression to G0/G1 along with decreased levels
of Cyclin B1, supporting that T44Bf-induced arrest is a reversible event. This observation (sup-
ported by the cell cycle assay and further confirmed by Cyclin A and Cyclin B expression), may
be an advantageous feature as regards the toxicity exerted by diverse chemotherapeutic agents.
In this sense, it has been described in the literature that although the efficacy of treatments
with drugs with reversible activity like Vincristine, improves with time exposure, symptoms
due to toxicity are reduced a few weeks after drug withdrawal [54–56]. We think that this is a
very important aspect as regards the quality of life of patients. In addition the reversibility of
T44Bf action suggests that this compound may act by binding in a non-covalent manner to a
specific target, which probably results in an impairment to satisfy SAC requirements for ana-
phase progression. However, in these cases it is important to consider the bioavailability of
these compounds to achieve an adequate treatment regimen. Combinatorial drug therapy has
shown to increase the efficacy of anti-mitotic compounds. Considering the high sensitivity
exhibited by cells arrested at mitotic checkpoint, simultaneous treatment with agents-targeting
different stages of the cell cycle could help to circumvent therapy resistance development and
to maximize the apoptotic response [57, 58].

The chronic arrest of cells at the mitotic phase is usually followed by an apoptotic response
associated to the mitochondria signaling pathway [59]. Some common events associated to this

Fig 10. Schematic diagram of T44Bf mechanism of action in human acute leukemia cells. T44Bf
induces chronic prometaphase arrest, associated to SAC permanent activation through a currently unknown
mechanism. This is evidenced by Cyclin A downregulation, increased Cyclin B1 levels and condensed
chromosomes visualization. This chronic arrest leads to an apoptotic response involving mitochondrial
signaling pathway activation and up-regulation of ERK pathway, which is a requisite for T44Bf-induced cell
death.

doi:10.1371/journal.pone.0136878.g010
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pathway relate to changes in the expression and post-transcriptional modifications of anti-apo-
ptotic (Bcl-2 and Bcl-xL) and pro-apoptotic (Bad and Bax) proteins, as well as the loss of inner
mitochondrial membrane integrity [60]. The data presented here shows that T44Bf-induced
apoptosis involves the loss of mitochondrial membrane potential, a time-dependent increase of
phosphorylated Bcl-xL fraction, as well as an increase in Bcl-2 and total Bad levels. Also a Bcl-2
phosphorylated fraction, evidenced by a mobility shifted band, was induced after T44Bf treat-
ment. These results indicate the activation of the mitochondria signaling pathway in relation to
apoptosis and the loss of normal mitochondrial function. Several lines of evidence show that
while Bcl-2 phosphorylation may be related to either protein activation or inactivation, it could
also be associated to normal cells in G2/M phase [31, 61]. In this sense, some reports identified
Bcl-2, Bcl-xL and Bad as Cdc2-cyclin B1 targets in G2/M both in normal and arrested cells
[62–66]

Until now, most aromatic TSCs with pharmacological effects in cancer display similar
mechanisms of action, such as inhibition of ribonucleotide reductase and topoisomerase II
alpha, and generation of intracellular ROS [67–71]. All these mechanisms are intrinsically
related to their ability to act as strong chelators of transition metals such as Fe(II), Cu(II), and
Zn(II) through their inherent N-N-S tridentate coordination scaffold [72, 73]. In the particular
case of T44Bf such scaffold is not present, since it has only two potential coordination atoms
(N1 and S in the thiosemicarbazone moiety), thus the chelation of transition metals is not
expected to occur. On the other hand, a series of benzophenone TSC analogs have been devel-
oped as cathepsin L inhibitors with a potential application as therapeutic agents against cancer
metastasis [74]. These TSCs differ from T44Bf in the presence of strong electronegative substit-
uents mainly inmeta- position of one or both aromatic rings, sometimes in combination with
another strong electron withdrawing atom or group in orto- ormeta- position to yield the most
active compounds of the series [75, 76]. This substitution pattern in the benzophenone moiety
has been recently proven essential for cathepsin L inhibition [77]. Since T44Bf is para-methoxy
disubstituted, it is not likely to act as the other benzophenone derivatives described. Although
further studies are needed to unveil its specific target it may be proposed that T44Bf mecha-
nism of action relies on the disruption of normal cell cycle progression.

In summary, our study suggests a new activity for a benzophenone thiosemicarbazone with
high potential to be developed as an anti-leukemic agent for acute leukemia treatment. The
selectivity exhibited, in addition to the mechanism of action involved (Fig 10) makes of T44Bf
a good candidate for preclinical research and encourages further in vivo studies. Also, combina-
torial treatment assays seem to be a promissory alternative for future studies involving T44Bf.
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