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Abstract
Atrial fibrillation (AF), the most frequent cause of cardioembolic stroke, is increasing in prev-

alence as the population ages, and presents with a broad spectrum of symptoms and sever-

ity. The early identification of AF is an essential part for preventing the possibility of blood

clotting and stroke. In this work, a real-time algorithm is proposed for accurately screening

AF episodes in electrocardiograms. This method adopts heart rate sequence, and it

involves the application of symbolic dynamics and Shannon entropy. Using novel recursive

algorithms, a low-computational complexity can be obtained. Four publicly-accessible sets

of clinical data (Long-Term AF, MIT-BIH AF, MIT-BIH Arrhythmia, and MIT-BIH Normal

Sinus Rhythm Databases) were used for assessment. The first database was selected as a

training set; the receiver operating characteristic (ROC) curve was performed, and the best

performance was achieved at the threshold of 0.639: the sensitivity (Se), specificity (Sp),
positive predictive value (PPV) and overall accuracy (ACC) were 96.14%, 95.73%, 97.03%

and 95.97%, respectively. The other three databases were used for independent testing.

Using the obtained decision-making threshold (i.e., 0.639), for the second set, the obtained

parameters were 97.37%, 98.44%, 97.89% and 97.99%, respectively; for the third data-

base, these parameters were 97.83%, 87.41%, 47.67% and 88.51%, respectively; the Sp
was 99.68% for the fourth set. The latest methods were also employed for comparison. Col-

lectively, results presented in this study indicate that the combination of symbolic dynamics

and Shannon entropy yields a potent AF detector, and suggest this method could be of

practical use in both clinical and out-of-clinical settings.

Introduction
Cardiovascular disease is the leading cause of death globally, and the atrial fibrillation (AF) is
one of the most prevalent cardiac arrhythmias in the elder people [1], [2], [3]. The
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Framingham Heart Study indicated the lifetime risks for development of AF are one in four for
adults over the age of 40 years based on the study population which involved 3999 men and
4726 women who were followed up over a 32-year period from 1968 to 1999 [4]. Because of
hemodynamic effects, the AF causes intracardiac-blood stasis which in return may predispose
the formation of clots (thrombus). These blood clots may break loose and can be washed into
the brain, where they may trigger a fatal stroke. Indeed, AF is associated with a fourfold to five-
fold increase in the risk of stroke and the AF-related strokes (i.e., ischemic-type stroke) tend to
be severe, with a major impact on morbidity and mortality [1], [5], [6]. Up to three million
people worldwide suffer the AF-related strokes each year, and the total number of strokes are
increasing because of the aging population [7–9]. Therefore, the early identification of AF is a
necessary step for averting the possibility of blood clotting, and ischemic stroke.

To deal with the computerized AF-detection issue several research studies consider process-
ing the electrocardiograms (ECGs) over the past decades since the AF is characterized by
poorly coordinated atrial activation (AA) of heart and turbulent cardiac beating [10–20]. Most
of these studies based on the RR (R-wave peak to R-wave peak) interval irregularity (RRI) in
ECGs. A very few studies were implemented with reference to the replacement of consistent P
waves by rapid oscillations or F waves that alter in amplitude, morphology, and timing as a
result from the abnormal AA [2]. Although the diversification information of P wave or rapid
AA can be an alternative clue in the identification of AF episodes, it is impossible to pinpoint
the independent P wave accurately because original ECG signals may be corrupted with various
types of high-intensity noise while the P wave is general of very low-intensity magnitude,
which may incur many false classification for episodes. In addition, the relationship between
the rapid AA and diversification information of P wave in the surface ECG to the diverse
mechanisms of AF has not yet been well elucidated [3]. Because of the challenges in detecting
AA, the detection methods based on inferences from RRI are preferred to produce relatively
more precise identification of AF since the R-wave peak of QRS complex is the most prominent
characteristic feature of an ECG recording and the least susceptible to various kinds of noise
[14–16, 21]. However, when evaluated on different types of clinical data, the performance of
some algorithms in this category is not ideal and each can be improved [22]. Some algorithms
are too complicated to be realized in real-time applications and consequently unsuitable for
use in wearable devices.

We herein describe a real-time and low-complexity but robust method for the discrimina-
tion of AF episodes in surface ECGs. This method first generates a symbolic sequence by defin-
ing the heart rate (HR) values into different instantaneous states with a fixed interval. The
symbol sequence is subsequently converted into a word sequence using a novel operator. The
probability distribution of the word sequence in the specified space is obtained, and a coarser
version of Shannon entropy (SE) is next employed to discriminate the AF arrhythmias. An
important feature of this method is that it is different from previous approaches because the
proposed method is based on the HR which is firstly introduced in the field of AF detection.
The performance of this newly proposed method is systematically investigated on four well-
characterized and representative clinical databases under various experimental situations. We
also calculate sensitivity, specificity, positive predictive value, overall accuracy and compare
these parameters with the latest AF detection methods.

Materials and Methods
The AF detection algorithm consists of three steps: 1) HR sequence is converted to a symbolic
sequence in a fixed interval; 2) a probability distribution is constructed from the word sequence
which is transformed from the symbolic sequence; 3) a coarser version of Shannon entropy is
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employed to quantify the information size of HR sequence using the probability distribution of
word sequence, and then differentiates the AF episodes.

Symbolic dynamics of HR sequence
Let hrn denote the obtained successive HR sequence which can be calculated from RR
sequence. The symbolic dynamics is introduced to describe the dynamic behavior of hrn. The
symbolic dynamics encodes the information of hrn to a series with fewer symbols, with each
symbol representing an instantaneous state of heart beating. The mapping function of the sym-
bol transform is given by,

syn ¼
63 if hrn ⩾ 315

bhrn=5c other cases
ð1Þ

(

where b�c represents a floor operator. It is apparent that the maximum HR for analysis in the
present study is 315 beats per minute (bpm). The raw HR sequence hrn is thereby transformed
into a symbol sequence syn with specific symbols from the predefined “alphabet” (i.e., 0 to 63).
It should be noted that the maximum value of the total number of instantaneous states in each
hrn sequence is 64. Fig 1(A) and 1(B) depict examples of a hrn sequence and the corresponding
symbols which are transformed by Eq (1).

In order to explore the chaotic behavior of the symbolic series syn as explained in the follow-
ing subsection and to generate more different instantaneous states of HR, we apply the com-
monly used 3-symbols template (i.e., a word consists of 3 successive symbols) to examine the
entropic properties. The word value can then be calculated by a novel operator as defined
below,

wvn ¼ ðsyn�2 � 212Þ þ ðsyn�1 � 26Þ þ syn ð2Þ
where, syn−2 × 212 and syn−1 × 26 are implemented with syn−2 << 12 and syn−1 << 6, respec-
tively. For instance, the encoded value of 3 successive symbols ‘013’ is 67 = 0 × 4096 + 1 × 64
+ 3. By a simple calculation, we can see that the word value wvn lies within 0 ⩽ wvn ⩽ 262143
(262143 = 63 × 4096 + 63 × 64 + 63). Fig 1(C) further displays the word sequence of syn shown
in Fig 1(D). The symbolic dynamics involving Eqs (1) and (2) can also be partially understood
as applying a finite impulse response digital filter on hrn sequence, and the relevant inherent
time delay of this filter is 1.5 points with respect to hrn.

Shannon entropy
Without loss of generality, let A = (AjP) denote a dynamic system. The characteristic (i.e.,
unique) elements in A can be defined as A = {a1, � � �, ak} with the corresponding probability set
P = {p1, � � �, pk} (1 ⩽ k ⩽ N), where N and k are total number of the elements and characteristic
elements in space A, respectively. Each element ai has the probability pi = Ni/N (0< pi ⩽ 1,Xk

i¼1

pi ¼ 1 ), where Ni is the total number of the specific element ai in A. We thus define a

coarser version of Shannon entropy (SE)H@ (A) to quantitatively calculate the information
size of wvn.H@ (A) is of the form [19],

H
00 ðAÞ ¼ � k

N log 2N

Xk

i¼1

pi log 2pi ð3Þ

In this study, the dynamic A comprises of 127 consecutive word elements from wvn−126 to wvn
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(i.e., the bin size in this case is N = 127). By determining the characteristic set A and the rele-
vant probability set P with these elements, we can thus calculate the coarser SEH@ (A). For
each cardiac beat hrn (and wvn), the AF rhythm is labeled ifH@ (A) meets or exceeds a discrim-
ination threshold, and otherwise the non-AF is decided, which is described in Fig 1(D). In the
present study, we utilize a training database to obtain the optimal discrimination threshold by
investigating various threshold settings which lie within the range [0.0, 1.0] with an increment
of 0.001, the best performing threshold is thus derived and employed from the receiver operat-
ing characteristic (ROC) curve for the performance assessment using testing databases.

Key issues of online processing
Eq (2) can be implemented with a real-time process scheduling algorithm since syn and wvn
involve a causal relationship. The other computational challenges lie in the Eq (3) can be over-
come with a pre-calculated map of� 1

log 2N
pi log 2pi and an elaborately designed recursive

implementation of Eq (3). That is to say, this AF detector can be realized by recursive methods
towards the beat-to-beat, real-time screening.

Fig 1. Example for the application of this method for detecting AF. (A) The original HR sequence hrn; (B)
The distribution of symbols syn; (C) The relevant word sequencewvn of syn in (b), and (D) The distribution of
SEH@ (A).

doi:10.1371/journal.pone.0136544.g001

Atrial Fibrillation Detection Based on the Instantaneous Heart Rate

PLOS ONE | DOI:10.1371/journal.pone.0136544 September 16, 2015 4 / 16



Mapping the definition of� 1

log 2N
pi log 2 pi. It is apparent that every characteristic ele-

ment of each bin Nmay have the probability pi = i/N (1 ⩽ i ⩽ N, i.e., 1/N ⩽ pi ⩽ 1). In light of
this observation, a probability array PiMap can be pre-defined [19],

PiMap½127� ¼ � Cons
log 2N

fp1 log 2 p1; � � � ; p63 log 2 p63;

p64 log 2 p64; � � � ; p127 log 2 p127g
¼b�cf7874; � � � ; 71790; 71291; � � � ; 0g

ð4Þ

where, Cons = 1000000 is a fixed constant such that decimal floating points can be converted

into integers and N = 127 and¼b�c indicates to take the integer part of each� Cons

log 2N
pi log 2pi.

Noteworthily, for each cardiac cycle in screening, this pre-calculated PiMap permits the sole
operation by picking the straightforward integer (i.e., PiMap[i]) from the set PiMap in accor-
dance with the index i rather than calculating � 1

log 2N
pi log 2pi using arithmetic and logarith-

mic operations. The use of PiMap remarkably decreases calculation times.
Algorithm implementation ofH@ (A). Likewise, a buffer array nuwvi (0 ⩽ wvn ⩽ 262143)

is firstly defined to store the total number of the i-th characteristic element wvi in space A. For
a specific A, let wvn be the element that will slide in A (i.e., wvn will be the rightmost element in
A), the present leftmost element in A is wvn−127 (i.e., wvn−127 will depart from A when wvn slide
in A). Because the variation of SEH0 (A) is entirely dependent upon the total numbers of slide-
in element wvn and slide-out element wvn−127 in the dynamic space A (they are nuwvn and
nuwvn−127, respectively), the outcomeH0 (A) can be calculated using a recursive method, see [19]
for the definition ofH0 (A). In addition, the probabilities of nuwvn−127 and nuwvn can be sepa-
rately determined with a stepwise procedure rather than being processed concurrently. There-
fore, a more concise method for calculating theH0 (A) is proposed as follows,

❶ if nuwvn�127
> 0

fsh0
n � ¼ PiMap½nuwvn�127

�;
nuwvn�127

��;

sh
0
n þ ¼ PiMap½nuwvn�127

�;
if nuwvn�127

� 0 k��; g

❷ if nuwvn
� 0 kþþ;

sh
0
n � ¼ PiMap½nuwvn

�;
nuwvn

þþ;

sh
0
n þ ¼ PiMap½nuwvn

�;

❸ sh
00
n ¼

k
127000000

sh
0
n;

where sh
0
n represents theH

0 (A) in Eq (7) in [19], and sh
00
n represents theH@ (A) herein; note

that we fix PiMap[i] = 0 for the case i� 0; and 127000000 = N�Cons = 127 × 1000000. As
before, k is the total number of unique elements in A. In steps❶–❸, μ − = ν and μ + = ν indi-
cate μ = μ − ν and μ = μ + ν, respectively; μ − − and μ + + indicate μ = μ − 1 and μ = μ + 1,
respectively (μ and ν indicate integer variables). The step❶ is designed for dealing with the
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slide-out element wvn−127, and step❷ is applied for dealing with the slide-in element wvn. The

last step❸ is used for calculating the sh
00
n. For the next slide-in word wvn+1, steps❶–❸ are

again executed to obtain the sh
00
nþ1. From an online processing perspective, the inherent time

delays of sh
00
n are 63.5 and 65 points with respect to the wvn and hrn, respectively.

The parameters (syn, wvn, nuwvn, sh
0
n and k) are initially set to zero. A flowchart of the recur-

sive realization of this method can be seen in Fig 2. Presumably, for each cardiac cycle screen-
ing, by using recursive algorithms, this AF detector consists of a very few basic operations, such
as integer addition, subtraction, comparison and shifting operations. In fact, the calculation of

sh
00
n and distinguishing the current cardiac beat hrn, only require to include 1 multiplication

and 1 division lying within k
127000000

�, together with 1 floating-point comparison between sh
00
n

and the decision-making threshold value. Therefore, a significant computational efficiency can
be obtained.

This AF detector is investigated with four independently publicly-accessible sets of clinical
ECGs (the Long-Term AF Database [LTAFDB], the MIT-BIH AF Database [AFDB], the
MIT-BIH Arrhythmia Database [MITDB], and the MIT-BIH Normal Sinus Rhythm Database
[NSRDB]) [23]. The LTAFDB database is designed as an initial training set, while the other
three databases are used as testing sets. A brief summarization of these databases can be found
in [19]. In order to achieve an unbiased assessment, all reference annotations of four databases
are examined without any pre-manipulation. All tests are conducted with the use of C++ pro-
gramming language.

Results

Performance metrics
This new AF detector and the existing methods are investigated in terms of sensitivity (Se),
specificity (Sp), positive predictive value (PPV), and overall accuracy (ACC). For a specific
database, we figure out the number of true positives (TP), true negatives (TN), false positives

Fig 2. Overview of the beat-by-beat AF detection algorithm.

doi:10.1371/journal.pone.0136544.g002
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(FP), and false negatives (FN), and then the Se, Sp, PPV, and ACC are calculated by,

Se ¼ TP
TP þ FN

; PPV ¼ TP
TP þ FP

;

Sp ¼ TN
TN þ FP

; ACC ¼ TP þ TN
TP þ TN þ FP þ FN

ð5Þ

We let Se and Sp as the mainstay quality parameters, while PPV and ACC are complementary.

Results of the training database
Prior to the performance investigation, a decision-making threshold value should be deter-
mined to best separate the AF and non-AF episodes. LTAFDB set is thus used for training the
newly presented AF detector. This database consists of 84 long-term ECG recordings (typically
24 to 25 hours duration) of subjects with paroxysmal or sustained AF. It includes nearly 9 mil-
lion cardiac beats of which 59.2% are annotated with AF. The discrimination threshold forH@
(A) is tested from 0.0 to 1.0 in increments of 0.001 for the training set, and the parameters Se,
Sp, 1 − Sp, PPV and ACC are then calculated for each threshold setting. The ROC curve is sub-
sequently performed as shown in Fig 3, in which the Se is plotted in dependence of 1 − Sp. In
the ROC space of Fig 3, a is the point of the ideal classification assuming that the automatic
annotations of AF and non-AF are both 100% correct, and b is the point of the best perfor-
mance of our method on the ROC curve, at which it has the shortest Euclidean distance to a.
We can thus determine the parameters at position b, where the decision-making threshold is
0.639, and the distance is 0.0576 in ROC space and the area under ROC curve is 0.9845; the
corresponding values of Se, Sp, PPV and ACC are 96.14%, 95.73%, 97.03% and 95.97%,

Fig 3. Receiver operating characteristic for the present algorithm when the training set of LTAFDB
database is applied with threshold values from 0.0 to 1.0 in increments of 0.001. The calculated value
for the area under the blue curve is 0.9845.

doi:10.1371/journal.pone.0136544.g003
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respectively. When compared with our previous method based on the RRI [19], of which, the
area under ROC curve is 0.9829 (+0.0016) and the Euclidean distance is 0.0594 (-0.00180) in
the ROC space; the Se, Sp, PPV and ACC are 96.72% (-0.58%), 95.07% (+0.66%), 96.61%
(+0.42) and 96.05% (-0.08%) for the best performing threshold of 0.353, respectively. There-
fore, the present method demonstrates a slightly better performance.

Results of the testing databases
The derived decision-making threshold (i.e., 0.639) is subsequently applied in this new AF
detector when it is used across all testing databases: AFDB, MITDB and NSRDB sets. For our
newly presented method, the statistical results from the testing databases are listed in Table 1.

Specifically, of the AFDB set, the calculated Se, Sp, PPV and ACC parameters are 97.37%,
98.44%, 97.89% and 97.99%, respectively. The values of SEH@ (A) for AF (519687 beats) and
non-AF (701887 beats) annotations in the AFDB set (a total of 1221574 beats for all 25 records)
can be seen in Fig 4. It is clear thatH@ (A) discriminates AF well since the threshold value (i.e.,
0.639) is very close to the cross point of the histogram of non-AF annotations and the histo-
gram of AF annotations, see the arrow mark in Fig 4 for clarification. There is only a slight
overlap between distributions of AF and non-AF annotations. Regarding the AFDB† set († indi-
cates records “00735” and “03665” excluded), the parameters are 97.31%, 98.28%, 97.89% and
97.84%, respectively. For the AFDB‡ set (‡ indicates records “04936” and “05091” excluded),
the parameters are 98.43%, 98.46%, 97.92% and 98.45%, respectively. As others have shown
[18], the records “04936” and “05091” include many incorrect manual AF annotations, these
four parameters on AFDB‡ set are thus higher than those on AFDB and AFDB‡, respectively.

The MITDB set includes many coexisting various types of complex arrhythmias. The Se
(97.83%) means most true AF beats are correctly detected. However, the Sp (87.41%) is a little
low as several other arrhythmias are detected as AF. It thus incurs a few false alarms. Thereby,
PPV (47.67%) and ACC (88.51%) are relatively low.

Records in the NSRDB set had no significant arrhythmias, the only calculated parameter Sp
is 99.68% for this database since there is no AF annotation in this set. The Sp is high which
implies most true negatives are correctly classified, and then produce a very high degree of pre-
dictive accuracy.

Table 1. Summary of classification performance for three different testing databases with various cases (with the threshold of 0.639).

Method Feature Year Database Key techniques Results

Se(%) Sp(%) PPV(%) ACC(%)

This method HR 2015 AFDB Symbolic dynamics+Shannon Entropy 97.37 98.44 97.89 97.99

AFDB† 97.31 98.28 97.89 97.84

AFDB‡ 98.43 98.46 97.92 98.45

MITDB 97.83 87.41 47.67 88.51

NSRDB NA 99.68 NA NA

AFDB+NSRDB 97.36 99.32 96.86 98.98

AFDB†+NSRDB 97.31 99.31 96.83 98.96

AFDB‡+NSRDB 98.43 99.35 96.82 99.19

† Records “00735” and “03665” excluded.
‡ Records “04936” and “05091” excluded.

‘NA’ indicates not applicable because there is no beat with AF reference annotation in this database.

doi:10.1371/journal.pone.0136544.t001
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Regarding the combination cases of different databases, the Se, Sp, PPV and ACC values are
97.36%, 99.32%, 96.86% and 98.98%, respectively for AFDB+NSRDB set, and 97.31%, 99.31%,
96.83% and 98.96% for AFDB†+NSRDB set, and 98.43%, 99.35%, 96.82% and 99.19% for
AFDB‡+NSRDB set, respectively. They perform almost as well as those on AFDB, AFDB† and
AFDB‡ sets. Because Sp of 99.68% (� 100%) is obtained for NSRDB set, the performances on
these combination cases of the AFDB (AFDB† and AFDB‡) and NSRDB sets are predomi-
nantly determined by detection rates on AFDB, AFDB† and AFDB‡ sets, respectively.

Discussion
Table 2 outlines a brief set of disclosed results of the state-of-the-art AF detection methods in
literature. For more information on detection methods of AF, see elsewhere for detailed com-
parison of accuracy of developed methods prior to 2013 [19], [22], [24].

Petrėnas, et al [20] developed a promising AF detector with the utilization of ectopic beat fil-
tering, bigeminal suppression and signal fusion techniques. The authors believed that a major
advantage of their method was to be used in detecting short durations of AF episode. However,
detailed information about the application of that method on the short durations of AF episode
was not available. For the AFDB set, the Se and Sp values were 97.12% (+0.25%) and 98.28%
(+0.16%), respectively. For the AFDB† set, the Se and Sp values were 97.1% (+0.21%) and
98.1% (+0.18%), respectively. For the AFDB‡ set, the Se and Sp values were 98.0% (+0.43%)
and 98.2% (+0.26%), respectively. For these three sets, our newly designed method shows a
slightly better performance. For the MITDB set, the Se and Sp values were 97.8% (+0.03%) and
86.4% (+1.01%), respectively. We see that the Se of our method matches that of this method,
but Sp of our method is distinctly better than that of this method. For the NSRDB set, the Sp

Fig 4. Probability histogram for annotated AF and non-AF beats of AFDB set.

doi:10.1371/journal.pone.0136544.g004
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was 98.6% (+1.08%) which indicates that our method has fewer number of false alarms. For the
combination cases of AFDB (AFDB† and AFDB‡) and NSRDB sets, our method also demon-
strates certainly better performance, see Tables 1 and 2 for details.

We also compare the test results of this new AF detector with our early work in which the
AF classifier employed RRI information along with the application of nonlinear/integer filters,
symbolic dynamics as well as the Shannon entropy [19]. For the AFDB set, the Se, Sp, PPV and
ACC parameters were 96.89% (+0.48%), 98.25% (+0.19%), 97.62% (+0.27%) and 97.67%
(+0.32%), respectively. For AFDB† set, these parameters were 96.82% (+0.49%), 98.06%
(+0.22%), 97.61% (+0.28%) and 97.50% (+0.34%), respectively. For AFDB‡ set, these parame-
ters were 97.83% (+0.60%), 98.19% (+0.27%), 97.56% (+0.36%) and 98.04% (+0.41%), respec-
tively. This new method shows a better performance on AFDB set cases. It is worth noting that
for the MITDB set, these parameters were 97.33% (+0.50%), 90.78% (−3.37%), 55.29%
(−7.62%) and 91.46% (−2.95%), respectively. Although this new method has a higher Se, it has
significantly poorer Sp, which is possibly because different strategies were used in symbol defi-
nition of symbolic dynamics for the two methods. For the NSRDB set, the Sp was 98.28%
(+1.40%) which indicates this new method has a better performance. The results in Tables 1
and 2 indicate that for the combination cases of AFDB (AFDB† and AFDB‡) and NSRDB sets,
this new method also demonstrates better performance since performances on these

Table 2. Overview of performance comparison of previous algorithm using the same databases.

Method Features Year Database Key techniques Results

Se
(%)

Sp
(%)

PPV
(%)

ACC
(%)

Petrėnas, et al
[20]

RRI 2015 AFDB Ectopic beat filtering+bigeminal suppression+signal
fusion

97.12 98.28 – –

AFDB† 97.1 98.1 – –

AFDB‡ 98.0 98.2 – –

MITDB 97.8 86.4 – –

NSRDB NA 98.6 NA NA

AFDB+NSRDB 97.1 98.5 – –

AFDB†+NSRDB 96.8 98.2 – –

AFDB‡+NSRDB 97.3 98.2 – –

Zhou, et al[19] RRI 2014 AFDB Nonlinear filter+integer filters+symbolic dynamics
+Shannon Entropy

96.89 98.25 97.62 97.67

AFDB† 96.82 98.06 97.61 97.50

AFDB‡ 97.83 98.19 97.56 98.04

MITDB 97.33 90.78 55.29 91.46

NSRDB NA 98.28 NA NA

AFDB+NSRDB 96.89 98.27 92.30 98.03

AFDB‡+NSRDB 97.53 98.26 90.09 98.16

Lee, et al[18] RRI 2013 AFDB‡ TVCF+Shannon Entropy 98.22 97.68 – 97.91

MITDB 91.1 89.7 – –

NSRDB NA 99.7 NA NA

See elsewhere for more disclosed results prior to 2013 [19], [22], [24]

† Records “00735” and “03665” excluded.
‡ Records “04936” and “05091” excluded.

‘–’ indicates without report. ‘NA’ indicates not applicable because there is no beat with AF reference annotation in this database. See text or relevant

literature for abbreviation.

doi:10.1371/journal.pone.0136544.t002
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combination cases are vastly determined by the detection capability on the AFDB set cases.
The preliminary results are promising but improvements are still necessary before finalizing
the algorithm.

Lee, et al introduced a RRI based method to identify AF [18], which was based upon the
time-varying coherence functions (TVCF) and the Shannon entropy (SE). By choosing the
AFDB‡ set for evaluation, the calculated Se, Sp and ACC values were 98.22% (+0.21%), 97.68%
(+0.78%) and 97.91% (+0.54%), respectively. We see that our new method outperforms this
method on the AFDB‡ set. Using the MITDB set, the Se and Sp values were 91.1% (+6.73%)
and 89.7% (−2.29%), respectively. Our method has a markedly higher Se, whereas a lower Sp.
From a standpoint of the early prevention and intervention of possible ischemic stroke, the Se
is more important than the Sp. With regard to the NSRDB set, the Sp was 99.7% (−0.02%),
which indicates these two methods have consistent performances for this database. From the
perspective of computational complexity, the TVCF and SE based AF detector involved many
convolution operations and the Fourier transformation with floating-point operations, conse-
quently posing a computational challenge of the timing of successive detections.

By utilization of the same decision-making threshold (of 0.639), the performance of the
present AF detector is investigated on three clinical databases under different situations. This
might misleadingly imply that the metrics Se, Sp, PPV and ACC are completely dependent on
the threshold for each databases, and the differences in performance from previous methods
might only be a result of statistical scatter. However, the “statistical scatter” is a random event
in Statistics, the performances of this newly presented method are independently tested on dif-
ferent clinical databases with various situations (total 33 parameters are obtained). It is worth
noting that almost all of these 33 parameters are better than that of pervious methods which
definitely indicate that the performance of this new method is better than previous methods.
Another spontaneous question may arise regarding how about the performance when using
different threshold settings in this AF detector for various databases. It is well know that the
area under the receiver operating characteristic (ROC) curve is a better threshold independent
metrics for performance evaluation at various thresholds. However, as far as the AF detection
concerned, it is very difficult to apply this metric for performance assessment of different algo-
rithms, because some methods were implemented in time domain, some methods were imple-
mented in frequency domain, and some were implemented in the domains defined by the
authors themselves. In addition, some methods were implemented without the standard train-
ing process but with a empirical threshold. Nevertheless, we can compare this new method
with our previously proposed method [19], since these two methods are based on the coarser
version of Shannon entropy. We then quantify the performances of two method with various
decision-making threshold settings for each testing database. Discrimination threshold values
from 0.0 to 1.0 in increments of 0.001 are assessed on the AFDB, AFDB†, AFDB‡ and NSRDB
databases with various situations; we can thus obtain the ROC curves and calculate the areas
under the ROC curves. The corresponding test ROC curves of two methods are displayed in
Fig 5, in which, each inset represents results of a database or a combined databases; 2 curves in
each inset stand for ROC curves of previous and this methods, respectively. Table 3 lists the
areas of two ROC curves shown in each inset of Fig 3. We clearly see that the performance of
this new method is better than that of our previous method. Furthermore, findings from these
ROC curves reciprocally offer additional insights to help select a decision-making threshold
value for the AF determination.
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An investigation on computational complexity
This new AF detector is implemented using the C++ programming language. For a single car-
diac beat in screening, the computational complexity of our method is analyzed: (i) for the best
case, it only has one integer comparison and one integer assignment in Eq (1), and two integer
subtractions, two integer additions and two integer-shifting operations in Eq (2), and two inte-
ger comparisons, one integer subtraction, one integer ‘ − =’ operation, one integer ‘+=’ opera-
tion, two integer ‘++’ operations, one integer multiplication, one floating-point division
operation and one floating-point assignment in❶–❸ (ii) for the worst case, it only has one
integer comparison, one integer division, one integer-round operation and one integer-
assignment operation in Eq (1), and two integer subtractions, two integer additions, two inte-
ger-shifting operations and one integer assignment in Eq (2), and three integer comparisons,
one integer subtraction, two integer ‘ − =’ operations, two integer ‘+=’ operations, two integer
‘−−’ operations, two integer ‘++’ operations, one integer multiplication, one floating-point

Fig 5. Receiver operating characteristic (ROC) curves for the present and our previous algorithms when the AFDB, AFDB†, AFDB‡ and NSRDB
databases are tested with various situations. (A) ROC curves of the AFDB set; (B) ROC curves of the AFDB† database († indicates records “00735” and
“03665” excluded); (C) ROC curves of the AFDB‡ database (‡ indicates records “04936” and “05091” excluded); (D) Results of the AFDB+NSRDB database,
(E) Results of the AFDB†+NSRDB database and (F) Results of the AFDB‡+NSRDB database. The calculated values for the area under the curves are listed
in Table 3.

doi:10.1371/journal.pone.0136544.g005
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division operation and one floating-point assignment in❶–❸. Therefore, a very low computa-
tional complexity can be achieved. Table 4 displays the computation time taken by this method
while comparing with the method we developed in [19]. It is apparent that computation time
of this method is diminished approximately 40 percent of that in [19] for each database. In our
previous work, we have attested the RRI based online AF detection method had a high level of
computational efficiency. Nevertheless, computational efficiency of this HR based method is
significantly better than that of the RRI based method [19]. This implies that the newly pre-
sented method is quite suitable in real-time, long-term monitoring. In addition, this method
provides certain benefit in remote cloud computing.

The accuracy of estimation of the probability of word wvn distribution is critically depen-
dent on the adequacy of width of the analysis bin (i.e., N herein). A small amount of words
inside a small bin (	 N) might incur a poor estimation [25], and then can cause false alarms;
the size of bin N for calculation ofH@ (A) was thus empirically set to 127 in the present study.
However, we have observed that most of the AF episodes of relatively short duration (e.g.,
around decades of seconds) in these four databases were correctly classified. Nevertheless, for

Table 3. The areas under receiver operating characteristic (ROC) curves for the present and our previ-
ous algorithms when AFDB, AFDB†, AFDB‡ and NSRDB databases are tested with various situations.

Databases Areas under the ROC curves

This method In [19]

AFDB 0.9965 0.9944

AFDB† 0.9962 0.9940

AFDB‡ 0.9975 0.9958

AFDB+NSRDB 0.9980 0.9949

AFDB†+NSRDB 0.9980 0.9948

AFDB‡+NSRDB 0.9989 0.9970

† Records “00735” and “03665” excluded.
‡ Records “04936” and “05091” excluded.

doi:10.1371/journal.pone.0136544.t003

Table 4. The computation time of the processing of this method.

Databases Signal duration (sec) Computation time (sec)§

This method In [19]

LTAFDB 6970560 (1936.27 hours) 6.434 11.09

AFDB 917052.96 (254.74 hours) 0.872 1.445

AFDB† 843688.72 (234.36 hours) 0.774 1.353

AFDB‡ 843688.72 (234.36 hours) 0.811 1.406

MITDB 86666.67 (24.07 hours) 0.0834 0.116

NSRDB 1574976 (437.49 hours) 1.139 1.825

AFDB+NSRDB 2492028.96 (692.23 hours) 1.757 3.258

† Records “00735” and “03665” excluded.
‡ Records “04936” and “05091” excluded.
§ Desktop test environment: (a) hardware: Intel Pentium(R) Dual-Core E5800(3.20GHz)/DDR3 RAM (2GBytes, 800MHz)/ HDD(7200rpm); (b) software:

WINDOWS XP Professional(in [19])/WINDOWS 7 Professional(in this method)/mingw32-g++/C++. The computation times are the average values of 100

trials, and they include the time consumption for importing annotation data from the HDD into the RAM.

doi:10.1371/journal.pone.0136544.t004
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sporadic AF episodes of very short duration (e.g., less than 20 seconds), it might incur false
negative detection. From this respect, this may be a possible limitation. As stated previously,
we also reiterate the fact that a small Sp calculated from the MITDB set implies that this new
AF detection method could be further refined when various complicated arrhythmias are coex-
istent; in the meanwhile, we hope that this study will stimulate further discussion and innova-
tion such that a more robust AF detector can be developed to deal with these clinical cases.

In summary, the present AF detector takes advantage of straightforwardly defined symbols
in the original HR sequence, and a very low computational complexity is obtained. The combi-
nation of symbolic dynamics and SE produces a more robust and more concise AF capture
method. This could be incorporated into ECG interpretation computerized systems to improve
the reliable classification of supraventricular tachyarrhythmia regarding the use of noninvasive
cardiac rhythm monitoring.

Conclusions
The higher sensitive and more accurate detection algorithms are clinically desirable for the
attainment of quick differentiation of AF episodes in ECG recordings. This study is a pilot trial
that employs the HR as a key feature for the accurate AF discrimination. It is also worth men-
tioning that the present detection method doesn’t require any digital filters (i.e., convolution),
and a real-time, low-complexity screening can be achieved by operating with a pre-determined
set of the probability of word wvn distribution (i.e.,� 1

log 2N
pi log 2pi) as well as clever recursive

realization of the symbolic dynamics and SE. In effect, a very few arithmetical operations are
required for AF identification per heartbeat. Our new method is investigated on four publicly-
accessible sets of clinical data with different situations. The well established and understood
statistical parameters Se, Sp, PPV and ACC are calculated for each data set, and compared with
those of the latest AF detection methods. Taken together, the newly presented method outper-
forms the traditional methods. The AF is firmly established as a risk factor for ischemic-type
stroke, and there is a high incidence of morbidity caused by the acute ischemic stroke in non-
hospitalized patients. A principal concern in health informatics is to research and develop tech-
niques that enable the reliable identification of AF at an early stage. We believe that this
method would be integrated into wearable devices, such as ECG mini-machine, smart phone
and smart watch, for the AF episode screening in outside of clinical settings in the near future.
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