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Abstract

Background

Short stature was suggested as a risk factor for diabetes onset among middle age individu-

als, but whether this is the case among young adults is unclear. Our goal was to assess the

association between height and incident diabetes among young men.

Methods and Findings

Incident diabetes was assessed among 32,055 men with no history of diabetes, from the

prospectively followed young adults of the MELANY cohort. Height was measured at two

time points; at adolescence (mean age 17.4±0.3 years) and grouped according to the US-

CDC percentiles and at young adulthood (mean age 31.0±5.6 years). Cox proportional haz-

ards models were applied. There were 702 new cases of diabetes during a mean follow-up

of 6.3±4.3 years. There was a significant increase in the crude diabetes incidence rate with

decreasing adolescent height percentile, from 4.23 cases/104 person-years in the <10th per-

centile group to 2.44 cases/104 person-years in the 75th� percentile group. These results

persisted when clinical and biochemical diabetes risk factors were included in multivariable

models. Compared to the 75th� percentile group, height below the 10th percentile was asso-

ciated with a hazard ratio (HR) of 1.64 (95%CI 1.09–2.46, p = 0.017) for incident diabetes

after adjustment for age, body mass index (BMI), fasting plasma glucose, HDL-cholesterol

and triglyceride levels, white blood cells count, socioeconomic status, country of origin, fam-

ily history of diabetes, sleep quality and physical activity. At age 30 years, each 1-cm decre-

ment in adult height was associated with a 2.5% increase in diabetes adjusted risk (HR

1.025, 95%CI 1.01–1.04, p = 0.001).
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Conclusions

Shorter height at late adolescence or young adulthood was associated with an increased

risk of incident diabetes among young men, independent of BMI and other diabetes risk

factors.

Introduction
The incidence rate of type 2 diabetes among children and young adults is increasing worldwide.
Classic risk factors such as obesity or genetic variants account for only part of the increase in
diabetes incidence [1], thereby emphasizing the need to explore additional risk factors to
improve diabetes risk prediction.

Low stature was associated with abnormal fasting plasma glucose (FPG) [2] and diabetes in
some studies [3–7], but not in all [8–11]. A recent meta-analysis concluded that height was
associated with an increased diabetes risk in women, but not in men and indicated a high
degree of heterogeneity among studies when controlling for diabetes risk factors [12]. The age
of participants included in these studies is another source for ambiguity. Most studies included
middle the characterized the height-diabetes association included middle aged participants
spanning a range of over 3 decades [8,13,14], leaving paucity of data regarding young adults.

The Metabolic, Lifestyle and Nutrition Assessment in Young Adults (MELANY) cohort is a
large ongoing, prospective study assessing risk factors for cardiovascular disease and diabetes
[15–18] among young adults. This database also includes multiple measurements of height
from late adolescence to young adulthood. Our goal was to assess the association between
height at age 17 years and at young adulthood and incident diabetes among 32,055 young and
apparently healthy men of this cohort.

Research Design and Methods

The MELANY cohort
The MELANY cohort is part of an ongoing investigation of the Israel Defense Forces (IDF)
Medical Corps [19]. Israeli army personnel, older than 25-years of age, remaining in military
service beyond the 2 to 3 years of mandatory service, are referred every 3 to 5 years for a routine
health examination and screening tests at a screening center. At each visit the participants com-
plete a detailed questionnaire assessing demographic, nutritional, lifestyle, and medical factors.
Height and weight are measured, and a complete physical examination performed. Blood sam-
ples are drawn following a 14-hour fast and analyzed immediately. All medical information is
recorded in the same central database, independent of scheduled visits, thereby facilitating
ongoing, uniform follow-up as described previously [19]. All participants in the MELANY
cohort, independent of their rank and position, have similar access to medical services which
are provided free of charge [17]. In addition, prior to enlistment in the military at age 17 years,
all MELANY participants underwent the mandatory, standard IDF pre-recruitment medical
evaluation, comprising a physical examination including measurements of weight and height,
assessment of cognitive performance and evaluation of socio-demographic data [17].

Study population
Fig 1 shows a schematic diagram of the study design and its outcomes. Included in this study
were men with complete measurements of weight and height at age 17 years, who attended the

Height and Diabetes Risk in Young Men

PLOSONE | DOI:10.1371/journal.pone.0136464 August 25, 2015 2 / 14

and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



screening assessment at least once between January 1, 1995 and March 8, 2011. Since the first
routine metabolic screen is performed at the first scheduled visit, participants who developed
diabetes (type 1 or 2) prior to their first visit (n = 63) and those with a follow-up of less than 1
year from enrollment to the diagnosis of diabetes (n = 3,009) were excluded from the analysis
(Fig 1). Participants with missing weight and height data at first visit were excluded from analy-
sis (n = 1,251). The Institutional Review Board of the IDF Medical Corps approved this study
without the need for participants' informed consent, given the assurance of strict maintenance
of participants’ anonymity during data analyses. The MELANY dataset included 4,497 women,
28 of whom developed diabetes. This small number of incident cases precluded meaningful sta-
tistical analyses, and thus this study included only male subjects.

Follow-up and outcomes
Follow-up began after the participants’ first visit to the screening center and ended at the
time of diabetes diagnosis, death or retirement from military service or March 8, 2011, which-
ever came first. Screening for diabetes was performed at each visit to the center based on FPG
levels. Incident cases of diabetes were based on a physician’s diagnosis of diabetes according to
the American Diabetes Association criteria by documenting either two FPG levels�126 mg/dL
(7.0 mmol/L) or a glucose level�200 mg/dL two hours after ingestion of 75 grams of glucose,
conducted in cases in which the examining physician deemed the test necessary. All laboratory
studies were performed on fresh samples, in an ISO-9002 quality-assured, core facility
laboratory.

Study variables
The Centers for Disease Control and Prevention (CDC) data were selected by the Israel Minis-
try of Health as the routine reference for anthropometric data for children, and have been

Fig 1. A Diagram of the study outcome and design.

doi:10.1371/journal.pone.0136464.g001
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reported to be appropriate for assessing Israeli children [20]. Accordingly, height and weight at
adolescence were categorized according to the percentile cut-off points of the CDC for age (in
months) and sex as previously reported [21]. Socio-economic status was based on place of resi-
dence and was obtained from records of the Israeli Ministry of Interior, which stratifies all
municipalities according to 10 socio-economic decile groups determined by the Israeli Central
Bureau of Statistics [17]. This scale considers age distribution, available workforce, level of
unemployment, level of education (proportion of undergraduate students and those entitled to
a high school diploma), average per capita income and proportion of income support recipi-
ents. Socioeconomic status was categorized into 3 groups: low (1st-4th deciles), medium (5th

-7th) and high (8th -10th) as reported previously [17]. Education was modeled as a categorical
variable of low or high levels, with a threshold of 11 completed years of school education. This
cut-off was chosen since it represents the maximum potential school instruction at the time of
height measurement at adolescence. The intelligence score (IS), a Wechsler Adult Intelligence
Score-equivalent IQ measure [22] and an independent risk for diabetes in this cohort [17], was
treated as a continuous variable. Low intelligence scores reflect percent of scores lower than
100 points-equivalent in the Wechsler Adult Intelligence Scale. Country of origin, classified by
the father’s or grandfather’s country of birth, was categorized into five geographical areas [17]:
former USSR countries, Asia (non-USSR), Africa (excluding South Africa), Western (com-
prised of non-USSR Europe, North and South America, South Africa, Australia and New Zea-
land) and Israel. Country of birth was similarly classified. Data on mother's country of origin
were not systematically obtained, and therefore were not included. Height at adulthood, body
mass index (BMI), triglyceride and high-density lipoprotein cholesterol (HDL-c) level, FPG,
and white blood cell (WBC) count at enrollment (first visit at the screening center) were treated
as continuous variables. Smoking status (current smoker, past-smoker, never smoked), physi-
cal activity (�150 min/week, <150 min/week, inactivity), breakfast consumption (frequent,
sometimes, none), and family history of diabetes (yes, no) were treated as categorical variables.
The mini sleep questionnaire (MSQ), a comprehensive index of sleep quality [23] and an inde-
pendent risk factor for diabetes in this cohort [18] was treated as a continuous variable.

Statistical analysis
Continuous variables were summarized using means and standard deviation (SD), or intra-
quartile ranges (IQR) when variables did not exhibit normal distribution. Counts with percent-
ages were used for categorical variables. The cohort was divided into 5 groups based on the
CDC age-adjusted height percentiles at pre-recruitment evaluation [24]:<10th, 10–24th, 25–
49th, 50–74th and�75th percentiles. P for trend were calculated using a linear regression where
the independent variable was the 5 height categories and the dependent variable was the mean
or proportion for each covariate (as shown in Table 1). ANOVA was performed to compare
the mean of continuous variables among the study groups. Dunnet T3 and Bonferoni multiple
comparison tests were used when homogeneity of variance test were rejected or not, respec-
tively. Cox proportional hazard models were used to estimate the Hazard Ratios (HR) and 95%
confidence intervals (CI) for developing diabetes among the 5 adolescent height groups and
additionally, using height at enrollment as a continuous variable. The differences in follow-up
among the 5 height groups were compared with ANOVA and Dunnet T3 post-hoc multiple
comparison test. Several models were used to assess the diabetes-height relationships after
adjusting for possible confounders such as age, sex, socioeconomic status and mediators such
as FPG and physical activity as follows: Model 1, age at enrollment and birth year; Model 2, age
at enrollment, birth year and BMI; Model 3, the variables of model 2 and metabolic risk factors
(FPG, HDL-c and triglyceride levels and WBC count); Model 4, the variables of model 2 and
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lifestyle risk factors (physical activity, smoking status, sleep quality, breakfast consumption);
Model 5, the variables of model 2 and socio-genetic risk factors (country of origin, family his-
tory of diabetes, IS, education, socioeconomic status). The final model (model 6) included
covariates that were significantly (p<0.05) associated with diabetes risk in the age-adjusted

Table 1. Characteristics of the study cohort at induction and enrollment to MELANY cohort by US CDC height percentile groups at age 17 years.

Height at age 17 years (CDC-adjusted percentile groups)

<10th 10th-24th 25th-49th 50th-74th �75th Total p for trend

N 4,335 6,876 8,854 7,501 4,489 32,055

Characteristics at IDF induction assessment (age 17 years)

Age at assessment (years) 17.49±0.56 17.43±0.49 17.41±0.51 17.41±0.49 17.41±0.46 17.43±0.50 0.093

Height at age 17 (cm) 162.91±2.86 168.84±1.28 173.26±1.41 178.08±1.44 184.46±3.19 173.61±6.74 <0.001

Range (cm) 148–167 165–172 169–176 174–181 180–207 148–207

BMI at age 17 (kg/m2) 21.2±3.1 21.3±3.0 21.4±3.0 21.4±3.0 21.6±3.2 21.4±3.0 0.005

Participants born in Israel (%) 78 82 83 85 86 83 0.011

Country of Origin (%)

Israel 10 9 9 8 7 8 0.002

USSR 10 11 12 13 15 12 0.002

Asia 33 28 23 20 17 24 0.001

Africa 33 34 32 29 24 31 0.032

West 14 19 25 30 37 25 <0.001

Education �11 years (%) 85 89 92 94 96 92 0.002

Low intelligence score (%) 30.8 25.9 21.2 18.2 13.7 21.8 <0.001

Socioeconomic status (%)

Low 38 35 33 30 26 32 <0.001

Intermediate 51 53 53 54 55 53 0.004

High 11 12 14 16 19 15 0.001

Characteristics upon enrollment to MELANY cohort

Age (years) 32.32±6.2 31.46±5.89 30.96±5.63 30.48±5.31 29.69±4.81 30.96±5.64 0.001

Height at adulthood (cm) 167.50±4.08 172.46±2.99 176.47±2.77 180.84±2.75 186.86±3.83 176.87±6.62 <0.001

BMI (kg/m2) 25.07±3.95 25.37±3.90 25.46±3.96 25.56±3.98 25.64±4.02 25.44±3.96 0.012

Overweight (%) 35 38 37 39 38 38 0.040

Obese (%) 11 12 12 13 14 12 0.009

BPSystolic/BPDiastolic (mmHg) 116.0±12.4/
74.1±9.7

116.6±12.5/
74.2±9.7

117.5±12.4/
74.6±9.5

118.3±12.6/
74.8±9.6

119.7±13.0/
75.2±9.7

117.6±12.6/
74.6±9.6

<0.001/
<0.001

FPG (mg/dL) 90.2±9.2 89.7±9.1 89.4±9.0 89.2±8.8 89.0±8.7 89.5±9.0 0.003

IFG (%) 13.9 12.9 11.7 11.2 10 11.9 <0.001

HDL-c (mg/dL) 46.7±11.0 46.5±10.7 46.2±10.7 45.9±10.5 46.0±10.7 46.2±10.7 0.026

LDL-c (mg/dL) 120.9±34.5 118.3±33.4 117.6±33.1 116.7±32.9 112.8±31.7 117.2±33.2 0.007

Triglycerides (mg/dL)[25th; 75th] 106[73;154] 101[71;149] 102[71;150] 100[72;145] 97[69;141] 101[71;148] 0.022

WBC count (1,000 cells/mm3) 6.77±1.58 6.69±1.49 6.69±1.50 6.61±1.47 6.56±1.41 6.66±1.49 0.004

Physical inactivity (%) 69 67 65 65 61 65 0.007

Abnormal MSQ score (%) 26.9 26.1 26.1 26.5 24.4 26.0 0.102

Family history of diabetes (%) 15.2 14.7 14.4 13.8 12.7 14.2 0.005

Past or current smokers (%) 44 44 41 38 36 41 0.001

Breakfast consumption (%) 83 82 81 80 76 81 0.007

For continuous variables, the mean (standard deviation) is given. MELANY, Metabolic, Lifestyle and Nutrition Assessment in Young Adults; IDF, Israel

Defense Forces; BP, blood pressure; FPG, fasting plasma glucose; IFG, impaired fasting glucose; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-

density lipoprotein cholesterol; WBC, white blood cell; MSQ, mini sleep questionnaire.

doi:10.1371/journal.pone.0136464.t001
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model. As the effect of obesity status on the height-diabetes association was controlled by
adjustment to BMI [9] or weight [25], we also analyzed the height-diabetes association using
weight instead of BMI in the multivariate models (models 2b-6b at Table A in S1 File). The
association between height at adulthood and incident diabetes was also assessed by dividing
the cohort into 6 group with 5-cm increments (�165 cm, 165< and�170 cm, 170< and�175
cm, 175< and�180 cm, 180< and�185 cm and�185 cm). The relationship between inci-
dence rate of diabetes (per 1,000 person-years) and the median height of each group was fitted
with linear and quadratic models.

Tests for linear trend across the height percentile groups at age 17 years and the diabetes
risk estimates were assessed separately for each of the above-mentioned models using the mid-
point of each height percentile group. Log minus log plots for each variable were inspected to
verify the assumption of proportionality of the hazards. For all variables used in the model co-
linearity was assessed using the Pearson correlation and the variance inflation factor (VIF).
The maximal R recorded was 0.357 (triglyceride level and BMI at enrollment) with a maximal
VIF of 1.34 (tolerance of 0.74) for triglyceride level. Subjects with missing data were excluded
from the multivariable analyses (12.4% in model 6). Analyses were performed with SPSS statis-
tical software, version 19.0 (SPSS, Inc., Chicago, IL, USA).

Results
Table 1 shows the baseline characteristics of the cohort at age 17 years and upon enrollment
into the MELANY cohort, according to the 5 height percentile groups at age 17 years. At the
pre-recruitment (17 year old) assessment, subjects of short-stature (<10th percentile) had BMI
values lower by 0.4 kg/m2 than the high-stature group (�75th percentile; p = 0.001). Partici-
pants of Western origin predominate the tallest group (37%) as compared to pre-dominance of
North African (33%) and Asian origin (33%) in the<10th height percentile group. With
respect to the tallest group, the<10th height percentile group had a higher fraction of partici-
pants with lower intelligence (+17.1%), lower SES (+12%), immigrants (+6%) and low-level of
education (+10%). At the first visit to the screening center the�75th height percentile had
higher fasting plasma glucose (+1.0 mg/dL; p = 0.001) and higher IFG rates (+3.9%) despite a
higher BMI (+0.57 kg/m2; p<0.001) compared to the low stature group. The�75th height per-
centile group had also lower rates of physical inactivity (61% vs. 67%), family history of diabe-
tes (12.7% and 15.2%) and positive smoking history (-8%) as compared to the low-stature
group. Of note, the height measured at young adulthood increased in all height percentile
groups, compared to measurements in adolescence, with the largest increase (+4.59 cm)
recorded in the<10th height percentile group, compared with an increase of 2.40 cm in the
�75th height percentile group. Height at adolescence and adulthood were highly correlated
(R = 0.92).

There were 702 new cases of diabetes diagnosed during 202,549 person-years of follow up.
The incident rate of diabetes was 2.44/103 person-years for participants in the�75th height
percentile group of height and increased with decreasing height percentile groups to 4.23/103

person-years among those with height<10th height percentile (Table 2). There was no differ-
ence in the length of follow-up among the study groups (p>0.25 in all comparison), with the
exception of participants in the 10th-24th percentile group who had longer follow-up; 6.51
years vs. 6.11–6.33 in the other study groups (p<0.021 compared to all other groups).

The independent effect of height percentile at age 17 years on the risk for incident diabetes
persisted in the series of Cox models adjusted for socioeconomic, family history of diabetes,
lifestyle and metabolic risk factors for incident diabetes as shown in Table 2. In the multivari-
able analysis adjusted for age, birth year, BMI, FPG, HDL-c, triglycerides level, WBC count,

Height and Diabetes Risk in Young Men

PLOSONE | DOI:10.1371/journal.pone.0136464 August 25, 2015 6 / 14



socioeconomic status, country of origin, family history of diabetes, IS, MSQ score and physical
activity (model 6), participants in the lowest height group had 64% higher risk (HR 1.64, 95%
CI 1.09–2.46, p = 0.017) for incident diabetes compared to the tallest group. Fig 2A depicts the
Cox survival curves for cumulative diabetes incidence across the study groups after controlling
for the variables in model 6. When a forward stepwise model was applied to the risk factors
included in model 6, height at adolescence was included in the seventh step and was preceded
by FPG, BMI, age, family history of diabetes, IS and MSQ sleep quality score.

Table 2. Multivariable assessment of Hazard Ratios (HR) for developing diabetes by US CDC height percentile groups at age 17 years for different
clusters of risk factors.

Height at age 17 years (US CDC-adjusted percentile)

<10th 10th-24th 25th-49th 50th-74th �75th Total or Mean or P for
trend

N 4,335 6,876 8,854 7,501 4,489 32,055

New cases of diabetes 116 173 194 152 67 702

Mean age of diabetes onset
(years)

38.67±6.92 37.99±6.84 37.26±6.79 36.80±6.70 35.81
±6.53

37.30±6.81

Mean follow-up (years) 6.33±4.25 6.51±4.29 6.29±4.25 6.30±4.28 6.11±4.30 6.32±4.28

Person years of follow-up 27,421 44,760 55,658 47,290 27,419 202,549

Diabetes rate (per 1,000
person-years)

4.23 3.86 3.48 3.21 2.44 3.46

Model 1: Age, birth year

HR 1.42 1.37 1.30 1.23 1 (Ref) 0.016

95%CI; P value 1.05–1.92;
p = 0.023

1.03–1.82;
p = 0.028

0.93–1.71;
p = 0.065.

0.92–1.64;
p = 0.156

-

Model 2: Age, birth year, BMI

HR 1.66 1.51 1.37 1.26 1 (Ref) <0.001

95%CI; P value 1.28–2.25;
p = 0.001

1.14–2.01;
p = 0.004

1.03–1.81;
p = 0.029

0.95–1.69;
p = 0.11

-

Model 3: Age, birth year, BMI, FPG, HDL-c, triglycerides, WBC count

HR 1.67 1.52 1.37 1.25 1 (Ref) <0.001

95%CI; P value 1.22–2.27;
p = 0.001

1.14–2.04;
p = 0.004

1.04–1.83;
p = 0.027

0.93–1.68;
p = 0.14

-

Model 4: Age, birth year, BMI, physical activity, smoking status, MSQ score, breakfast consumption

HR 1.76 1.70 1.45 1.18 1 (Ref) <0.001

95%CI; P value 1.19–2.68;
p = 0.005

1.18–2.44;
p = 0.004

1.02–2.09;
p = 0.040

0.82–1.73;
p = 0.371

-

Model 5: Age, birth year, BMI, family history of diabetes, country of origin, intelligence score, socioeconomic status, education

HR 1.44 1.35 1.29 1.20 1 (Ref) 0.015

95%CI; P value 1.05–1.96;
p = 0.023

1.01–1.80;
p = 0.043

0.98–1.72;
p = 0.075

0.89–1.61;
p = 0.216

-

Model 6: Age, birth year, BMI, FPG, HDL-c, triglycerides, WBC count, socioeconomic status, country of origin, family history of diabetes,
intelligence score, MSQ score, physical activity

HR 1.64 1.69 1.48 1.17 1 (Ref) <0.001

95%CI; P value 1.09–2.46;
p = 0.017

1.17–2.44;
p = 0.005

1.03–2.12;
p = 0.036

0.81–1.72;
p = 0.39

-

BMI, body mass index; FPG, fasting plasma glucose; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; WBC, white

blood cell; MSQ, mini sleep questionnaire.

doi:10.1371/journal.pone.0136464.t002
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The height measured at young adulthood (mean age 31.0±5.6 years) was also found to be
independently associated with incident diabetes after controlling for the factors in models 1–6
(Fig 2B). In the multivariable analysis (model 6), the risk for incident diabetes increased by
2.5% for every 1-cm decrement in height (HR 1.025, 95%CI 1.01–1.04, p = 0.001) with similar
results obtained in sensitivity analyses for the categories of socioeconomic status, country of
origin or IS (Figure A in S1 File). We found similar results when height at adolescence was
introduced to the model (model 6) for those measured between 17 and 18 years (n = 27,300;
HR 1.024 95%CI = 1.008–1.041, p = 0.002). We also assessed the height-diabetes association
using height at adulthood categories with 5 cm increments (Table 3). The incidence rate of dia-
betes decreased from 6.1 to 3.7 cases per 1,000 person-years in those shorter than 166 cm and
those in the 171–175cm group, respectively, and plateaued for individuals taller than 175 cm.
For clarity, this is shown in Fig 3. A linear and quadratic fit had a goodness (R2) of 0.73 and
0.96, respectively. These risk estimates persisted in multivariate analysis (model 6 inTable 2)
with a significant increase for those shorter than 170 cm and a borderline significance for those
in the 171–175cm group.

Discussion
The current study of 32,055 men with 202,549 person-years of follow-up is to the best of our
knowledge, the largest prospectively-designed cohort study assessing the relationship between
height and incident diabetes. We demonstrated an inverse relationship between the risk for

Fig 2. The association between height at adolescence and adulthood with incident diabetes. (a) Cox
regression survival curves by US CDC height percentile groups were adjusted for age, birth year, BMI, FPG,
HDL-c, triglycerides level, WBC count, socioeconomic status, country of origin, family history of diabetes,
intelligence score, MSQ score and physical activity (model 6). Follow-up data and risk estimates are shown in
Table 2. (b) The risk for diabetes incident is shown for each 1-cm decrement in height at adulthood
(enrollment) for the different models used in the study (Table 2).

doi:10.1371/journal.pone.0136464.g002

Height and Diabetes Risk in Young Men

PLOSONE | DOI:10.1371/journal.pone.0136464 August 25, 2015 8 / 14



diabetes and height at both late adolescence and adulthood after adjustment for clinical and
biochemical diabetes risk factors. The adjusted risk for incident diabetes increased by approxi-
mately 2.5% for every 1 cm decrement in height measured at adulthood (95%CI = 1.010–1.040,
p = 0.001), with an adjusted HR of 1.64 (95%CI = 1.09–2.46, p = 0.017) among subjects of
short stature (<10th percentile) at adolescence compared to those in the upper height quartile.

Fig 3. Diabetes incidence rate by height categories at adulthood. Data is shown based on the division
shown in Table 3. A linear and quadratic fit had a goodness (R2) of 0.73 and 0.96, respectively.

doi:10.1371/journal.pone.0136464.g003

Table 3. The association between incidence diabetes and height categories at adulthood. Note that hazard ratio across categories were adjusted to
model 6 in Table 2.

Category of Height at adulthood

Range (cm) 152–165 166–170 171–175 176–180 181–185 186–
208

Median height (cm) 164 169 173 178 183 188

N 1,306 4,238 8,183 9,592 5,757 3,079

Incident diabetes cases 48 105 192 179 104 54

Follow-up (person years) 7,889 26,760 51,970 60,561 36,613 18,656

Incidence rate (per 1000
person years)

6.1 3.9 3.7 3.0 2.8 2.9

HR (95%CI) 2.00 (1.25–3.47),
P = 0.001

1.52 (1.02–2.34),
P = 0.038

1.42 (0.95–2.13),
P = 0.08

1.22 (0.82–1.83),
P = 0.32

1.07 (0.69–1.65),
P = 0.76

1 (ref)

doi:10.1371/journal.pone.0136464.t003

Height and Diabetes Risk in Young Men

PLOSONE | DOI:10.1371/journal.pone.0136464 August 25, 2015 9 / 14



We found that the inverse relationship between height at adulthood and diabetes risk was not
homogenous throughout the entire height range with a comparable risk for those taller than
175 cm and borderline risk for those at height 170–175cm. This finding is in agreement with
Njostad et al [9] who also reported an inverse relationship between height and diabetes inci-
dence with a cutoff of 168cm based on 87 cases. While most of the other studies, although not
all [9], support a similar inverse association between height and incidence diabetes [3–5,7], the
later was mostly examined among middle aged participants that spanned an age range higher
than 3 decades [8,13,14].

There is a large heterogeneity in adjustment for confounders and mediators of diabetes.
Socioeconomic status is associated with diabetes [26] and also with height [27,28], but was not
controlled for in nearly half of the studies evaluating the relationship between height and dia-
betes [12]. In our study, the height-diabetes association persisted when three socioeconomic-
related variables were controlled for (area of residence, education level, and cognitive perfor-
mance). Limited access to healthcare services is another important factor that is associated
with both low socioeconomic status and under-diagnosis of diabetes [29,30]. In this respect,
the MELANY cohort is advantageous in minimizing these effects as all participants had similar
and free of charge access to medical services with a scheduled screening program, independent
of their rank and position.

Family history of diabetes was rarely adjusted in some of the studies assessing the relation-
ship between height or hip circumference and diabetes [31,32]. In our study the height-diabetes
association persisted after controlling for a family history of diabetes and participants' origin. It
is noteworthy that the MELANY cohort comprises people from a wide range of different back-
grounds and origins, since Israel is considered a “young” country with a relatively high rate of
immigration. The young age of our participants at enrollment may limit the accuracy of report-
ing family history of diabetes, as it is possible that first degree relatives of participants ruling
out a history of diabetes might develop diabetes in the future. For these participants, short stat-
ure may carry an additional risk to the risk associated with a positive family history of diabetes.

The participants' age at assessment is another source of ambiguity. The literature evaluating
the height-diabetes association is predominantly based on studies including middle aged or
older participants, or those with age ranges spanning 3 decades or more [6–8,13,14,25]. This
age heterogeneity can bias the height-diabetes association either by the age-dependent decline
in height that occurs in midlife onwards, or by an age-dependent susceptibility to obesity and
metabolic abnormalities among young compared to older individuals [33], especially when
metabolic variables are not controlled for [12]. In our study height was measured at two time
intervals; late adolescence and young adulthood. The strict time interval of height measure-
ment and adjustment for sex and age (by month) using US CDC height percentiles, together
with a second measurement in young adulthood, minimizes the age-dependent bias.

Several childhood and metabolic mechanisms may underlie the association between height
and diabetes. These include premature birth, irrespective of size for gestational age [34], fetal
growth retardation especially when followed by a postnatal obesogenic environment [35],
rapid weight gain in the first 3 months of life [36], low rates of linear growth during infancy
[37], altered insulin-like growth factor-I levels [38], and vitamin D level and/or receptor poly-
morphism [39,40].

Our findings should be viewed in the context of the growing fraction of unexplained cases
of diabetes. It is estimated that as many as half of the increase in the prevalence of diabetes
cases occurring during the last three decades were not related to traditional risk factors [1,41].
The fact that the height-diabetes association persisted after adjustment for diabetes risk factors
generally assessed in clinical settings, raises the possibility that height should be added to diabe-
tes risk stratification among young men.
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This study has several limitations. Firstly, our data does not include anthropometric mea-
surements other than height, such as leg length, hip or waist circumference, and therefore
could not assess the relative specificity of height compared to other anthropometric indices
[4,42,43]. Secondly, no antibody data were available and as such the type of diabetes (eg, Type
1) could not be ascertained. However, we recently reported for this cohort that over 98% of dia-
betes-diagnosed cases were not prescribed insulin during the first year after diabetes diagnosis,
thereby supporting type 2 predominance [17]. With that respect it is noteworthy that diabetes
prevalence and age of onset was similar to other cohorts studying risk factors for type 2 diabe-
tes of young adults [44–47].Finally, our study was limited to men. The strengths of the study
include the large number of participants, standardized assessments and repeat measurements,
rather than self-reported measurements [48] of weight and height, with adjustment for a large
number of clinical, social, lifestyle and biochemical diabetes risk factors.

In conclusion, we found that height at adolescence or young adulthood was inversely associ-
ated with diabetes risk among young and apparently healthy young men after adjustment for
clinical and biochemical diabetes risk factors. Our results suggest that height should be
included in the diabetes risk stratification among young men.

Supporting Information
S1 File. Multivariable assessment of Hazard Ratios (HR) for developing diabetes by US
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weight rather than BMI (Table A). Sensitivity analysis for the effect of socioeconomic status
(SES), country of birth and intelligence score on the height-diabetes association (Figure A).
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