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Abstract

We propose and test three statistical models for the analysis of children’s responses to the
balance scale task, a seminal task to study proportional reasoning. We use a latent class
modelling approach to formulate a rule-based latent class model (RB LCM) following from a
rule-based perspective on proportional reasoning and a new statistical model, the Weighted
Sum Model, following from an information-integration approach. Moreover, a hybrid LCM
using item covariates is proposed, combining aspects of both a rule-based and information-
integration perspective. These models are applied to two different datasets, a standard
paper-and-pencil test dataset (N = 779), and a dataset collected within an online learning
environment that included direct feedback, time-pressure, and a reward system (N = 808).
For the paper-and-pencil dataset the RB LCM resulted in the best fit, whereas for the online
dataset the hybrid LCM provided the best fit. The standard paper-and-pencil dataset yielded
more evidence for distinct solution rules than the online data set in which quantitative item
characteristics are more prominent in determining responses. These results shed new light
on the discussion on sequential rule-based and information-integration perspectives of cog-
nitive development.

Introduction

Two types of cognitive processing are often considered, and fiercely debated, in theoretical dis-
cussions of cognitive development: sequential rule-based processes (RB) versus information-
integration (Inl) based processes. These two types of processing are also contrasted in other
areas in (cognitive) psychology. For example, in the study of information-integration in cate-
gory learning [1] and in the study of explicit and implicit learning [2]. Moreover, Pothos [3]
provides a discussion of the rules versus similarity distinction in cognition, and Kahneman [4]
provides an broad overview and examples of dual route models, explicit versus implicit, in

psychology.
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In the study of cognitive development the balance-scale task [5] is the primary battlefield
for this debate and it is the focus of this article. Recent publications [6-8] attest that this debate
is still very much alive. Proponent of the RB perspective, initiated by Klahr [9] and Siegler [10],
state that the cognitive process consists in the sequential comparison of different features of the
stimulus. Cognitive development is described as discontinuous jumps between stages charac-
terized by qualitatively different rules, that correspond to the consideration of different stimu-
lus features in different combinations. With age, children acquire new insights that result in
the use of more complex rules [11, 12]. From the Inl perspective, cognitive processing is based
on integrating different features of the stimulus before making a decision [13, 14]. Knowledge
in this perspective is considered graded and implicit in nature, and development is viewed as
due to changes in the implicit weights of each dimension [7, 15].

The cognitive processes used by children on the balance-scale task are especially interesting
because their development spans a long period of time. Young children demonstrate interest-
ing types of (erroneous) thinking, and many adults fail to use proportional reasoning to answer
balance scale problems correctly. Also, over age, a mixture of developmental patterns seems to
occur, ranging from sudden transitions to continuous change (see for example Jansen and Van
der Maas [12]).

Many researchers developed computational models to investigate learning and development
on the balance-scale task. Computational models from different research traditions have been
proposed: production-rule models [9], decision-tree models [16], connectionist models [7, 15,
17-19] and ACT-R models [20]. Although the current models all adopt some characteristics of
both theoretical positions, there is still no consensus on the best cognitive processes underlying
children’s behavior in the balance-scale task [21].

In our view, this lack of consensus is partly due to the lack of adequate statistical models for
the analysis of empirical data. Computational models such as production rule models and con-
nectionist models cannot easily be fitted to data, and the existing models within the RB frame-
work cannot test hypotheses following from the InI perspective. The empirical status of
process models differs form traditional descriptive models, and a direct evaluation of these
models is difficult since their aims are different [22]. In this paper we test empirical predictions
that follow from both theoretical perspectives—discussed hereafter. Therefore we develop sta-
tistical models for the RB and Inl perspective and a hybrid model that combines features of
both theories. We apply these models to two different datasets, a paper-and-pencil dataset
(N =779) and a dataset collected within an online learning environment that includes direct
teedback, time-pressure, and reward (N = 808).

The Balance-Scale Task: Two Different Perspectives

In the balance-scale task [5], children have to predict the movement of a balance-scale (see Fig
1), on which the number of blocks on each peg, and the distance between the blocks and the
fulcrum are varied. Depending on the number of blocks and the distance between the blocks
and the fulcrum on each arm, the beam tilts to one side or remains in balance. Thus, to succeed
on the balance-scale task, a child has to identify the relevant task dimensions (number-of-
blocks and distance) and to understand their multiplicative relation [12].

To measure proportional reasoning with the balance-scale task, Siegler [10] classified items
into six item types. There are three simple item types: balance (B) items with an equal number
of blocks placed at equal distances from the fulcrum; weight (W) items with a different number
of blocks placed at equal distances from the fulcrum, and distance (D) items with the same
number of blocks placed at different distances from the fulcrum. We also include weight-dis-
tance (WD) items, in which the largest weight is positioned at the largest distance, such that a
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Fig 1. Three example items of the balance-scale task as programmed in the Math Garden (upper-left = Distance item; upper-right = Weight item,
positive feedback; upper-right = Distance item; lower = Conflict-Balance-Addition item).

doi:10.1371/journal.pone.0136449.g001

focus on either weight (i.e. number of blocks) or distance leads to a correct answer. Next to
these simple items, there are three conflict item types in which the weight and distance cues
conflict: conflict-weight (CW) items, in which the scale tips to the side with the largest weight;
conflict distance (CD) items, were the scale tips to the side with the largest distance and con-
flict-balance (CB) items where the scale stays in balance.

Using these item types Siegler [10, 23] differentiated between a postulated series of rules
that children might use to solve balance-scale items. A child using Rule I will only consider the
number of blocks in the prediction of the movement and disregards the distances—the number
of blocks is more dominant than the distance. A child using Rule II does include the distance
dimension in the prediction, but only when the number of blocks on each side of the fulcrum is
equal. A child using Rule III does know that both the number-of-blocks and the distance
dimension are relevant but does not know how to integrate both dimensions. A child using this
rule will guess or ‘muddle through’ when both dimensions are in conflict. A child using Rule
IV compares the torques on each side resulting in correct responses on all problems.

Some studies proposed alternative rules, the main example being the addition-rule (Rule
[II-ADD; [12, 24-26]). Children who use the addition-rule compare the sums of the number of
blocks and the distance of each side of the fulcrum and predict that the side with the largest
sum goes down. Detection of this rule is possible because some conflict items are solvable with
the addition rule whereas others are not (see Table 1). In this study, we consider conflict items
of the type conflict-balance-addition (CBA), conflict-weight-addition (CWA) and conflict-dis-
tance-addition (CDA), next to conflict-balance (CB), conflict-distance (CD) and conflict-
weight (CW) items. The latter three cannot be solved with the addition rule, whereas the for-
mer can be.
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Table 1. Siegler’s Rules on the Balance-Scale Task and the Expected Percentage (%) of a Correct Responses.

Problem Type
Weight-Distance
(WD)
Balance (B)
Weight (W)
Distance (D)

Conflict-Balance-
Addition

Conflict-Weight-
Addition

Conflict-Distance-
Addition

Conflict-Balance
Conflict-Weight
Conflict-Distance
Rule Description

Note. Weight = Number of blocks.

doi:10.1371/journal.pone.0136449.1001

Rule |
100

100
100

100
0

Only
weight

Rule 1l
100

100
100
100
0

100

0

0
100
0

Distance when weight

is equal

Rule lll Rule llI-Add Rule IV
100 100 100
100 100 100
100 100 100
100 100 100
33 100 100
33 100 100
33 100 100
33 0 100
33 0 100
33 0 100

Distance and weight, product
when conflict

Distance and weight, addition
when conflict

Distance and weight, guess
when conflict

In contrast to the RB perspective, according to the Inl perspective children use a weighted
integration of the number-of-blocks and distance between the blocks and the fulcrum, either
based on a sum or a product for each side of the fulcrum and compare these integrations to
select their response [13]. Either the number-of-blocks or the distance dimension is more dom-
inant, resulting in a higher weight for one of the dimensions. In this perspective, differences
between children are due to the differences in the weights that they apply to either dimension
in integrating information. In the statistical extension of the connectionist models introduced
in this paper, the weighted integration is only based on the sums and not the products.

Different empirical predictions: Individual Differences and ltem
Characteristics

The RB and Inl perspectives make different predictions about children’s behavior in the bal-
ance-scale task. Here we discuss the main differences. A first prediction concerns the characteri-
zation of individual differences between children. According to the RB perspective, children can
be classified into subgroups or classes associated with qualitatively different rules. For example,
Jansen and Van der Maas [26] found evidence in agreement with the RB model of Siegler [10],
using latent class models. However, according to the Inl perspective, these seemingly qualitative
individual differences are due to quantitative differences in integration weights.

A second distinctive prediction concerns responses to different items of the same type.
According to the RB perspective, the response probability is solely dependent on the item type.
Items of the same item type should have equal response probabilities. This assumption of item
homogeneity applies to each rule. For instance, all conflict balance items should have equal
response probabilities for all users of Rule L. In the Inl perspective, differences in number of
blocks and distances between items of the same item type influence the response probabilities.
According to Ferretti and Butterfield [24, 27, 28], children are more likely to provide correct
answers when the difference between the product of the number of blocks and distance, on
each side of the scale is larger. Two studies reanalyzed data of Ferretti and Butterfield [27] and
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concluded that this was only the case for items with extreme product differences [12, 20, 26].
Therefore, supporters of the RB perspective have argued that item homogeneity holds.

Statistical Models: Measuring Rules vs Information Integration

As the RB and Inl response mechanisms are latent (i.e., unobserved), a measurement model is
required to test whether the observed patterns of responses correspond to expected responses
following from the different mechanisms. The empirical detection of rules was first conducted
by using rule-assessment-methodology (RAM; [10, 29]). RAM was designed to classify children
to a set of a-priori defined rules, based on their observed responses instead of their verbal
explanations of balance-scale answers. RAM is a two-step procedure. First, based on the set of
a-priori defined rules the expected responses to the items are determined for all rules. Second,
children are classified to one of the rules based on the best match between their observed
responses and the expected responses following from each rule. In this classification some devi-
ation between the observed and expected response pattern is allowed. The degree of deviation
allowed depends on the item set. In the Inl approach, a comparable rule-assessment method
[13] is used. For some specific choice of weights, expected response patterns are calculated and
children are classified as using these particular values based on their observed response pattern.

Although RAM proved to be a valuable method for studying the cognitive processes of chil-
dren on the balance-scale task, is has two important disadvantages. First, RAM is not based on
a statistical model, and as such does not incorporate measurement error. Hence, RAM lacks a
statistical test of the fit of the classification of children to rules. As a result, it is problematic to
decide on the necessity of incorporating all the rules and to compare competing rule models
statistically. Second, by using a priori defined rules one risks overlooking alternative rules [30]
and other response mechanisms. These limitations apply to some extent as well to the Inl
method of detecting integration rules used by [13].

To overcome these problems latent class analyses (LCA; see McCutcheon [31], for an intro-
duction) were introduced in the balance-scale literature [12, 26, 32]. A latent class model
(LCM) is a latent variable model, in which both the manifest (i.e., the item responses left, bal-
ance or right) and the latent (i.e., the rules) variables are categorical. Latent variable models are
statistical measurement models, which allow for goodness of fit tests and statistical model com-
parison. It is best seen as a statistically advanced version of RAM. It is important to note that
the rule model underlying RAM is in fact an instantiation of a restricted confirmatory LCM
with fixed conditional probabilities [30]. Recently [21] demonstrated in a simulation study that
the response probabilities of small classes (N = 20) are characterized by high standard errors.
This lack of power due to small class probabilities is indeed problematic for parameter estima-
tion in LCMs. Therefore the description and interpretation of small classes should be done
with care. However, the simulation study also showed that the LCM correctly recovered the
number of classes and the classification of subjects to classes, also for the small classes. To con-
clude, these difficulties do not outweigh the advantages of LCA over RAM [6, 8, 33, 34].

In the next section we describe the RB model and introduce a statistical Inl model and a
hybrid model based on predictions from both perspectives.

Rule-Based Model. Inthe LCM, both the latent variable and the responses are categorical.
Participants are assigned to a latent class, associated with a distinct rule or strategy, based on
their observed responses on the balance-scale items—Ileft side down, balance or right side
down. Eq 1 describes the probability of a response vector r in a LCM:

I

P(R=r) = ZP(C:a)HP(R,. =rlC=0), (1)

i=1
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where r; denotes the response to item i and ¢ denotes the latent class. The LCM consists of two
parts: the prior (or latent class) probabilities, P(C = c), describing the estimated proportion of
children in a given class ¢, and the conditional response probabilities, P(R; = r;|C = ¢), describ-
ing the probabilities of a response to each item given a class. In our formulation, these response
probabilities are estimated using a multinomial logit formulation [35]. The left response is used
as the reference category resulting in two odds-ratios: left versus balance, log(p(L)/p(B)), and
left versus right, log(p(L)/p(R)). The model described in Eq 1, is referred to as the exploratory
model since no constraints are imposed on the response probabilities between different items.
We also consider a second LCM, in which the response probabilities between items of the
same type are not allowed to vary, following the item homogeneity assumption of the RB per-
spective. The response probabilities can be expressed using the following logit formulation:

e[}(lrc

PR =r|C=¢)=——F.
( i rr‘ C) 1 + zf;]l e/’)l')rc

(2)

The response probabilities of all items, of one item type, are modeled as a function of a gen-
eral intercept fy,.—per odds-ratio, per item type and per class. Hence, in this model, referred
to as the item homogeneity model, the response probabilities are constrained to be equal over
items of each item type and each latent class. Note that the item type index is missing in Eq 2
since the model is fitted separately to data of each item type.

Information-Integration Model. For the Inl approach a statistical model is missing.
Here, we propose a new measurement model, the Weighted-Sum Model (WSM). According to
the Inl perspective individuals differ in two respects: a) in the dominance for either the num-
ber-of-blocks or the distance dimension and b) in the preference of balance responses. Given
these two sources of individual differences the following model for the weighted-addition rule
[13] is proposed:

0, = o,Aw, + (1 — a,)Ad, (3)

If 6, < —C, Then LEFT
If 6, > C, Then RIGHT, Else BALANCE,

where o, expresses the persons dominance for either the number-of-blocks (a, >.5) or dis-
tance (@, <.5) dimension, and Aw; and Ad; are defined as respectively the difference between
the number of blocks (weights) and distance on both sides. Based on 6, and a personal thresh-
old, C,, the observed responses are derived. C, serves as a boundary between responding either
left or right (|6] > C,) or balance (|6] < C,). A high C, implies a strong preference for the bal-
ance response. The parameters o, and C, are estimated per child, based on the likelihood-func-
tion of the model (see S1 Text for a detailed description of the estimation procedure). Since this
statistical model is estimated per child, no distributional assumptions about the model parame-
ters are required. According to the Inl theory, differences between children are gradual and the
distributions of o, and C, are assumed to be unimodal. A bi- or multimodal distribution of
these parameters provides support for a mixture distribution representing qualitative differ-
ences between children, thereby resulting in a hybrid WSM.

Hybrid Models. Furthermore, to bridge the gap between the RB and Inl perspective, we
extend the item homogeneity LCM with item covariates [36] based on continuous item charac-
teristics. This extension provides a formal measurement of the effect of quantitative item char-
acteristics, such as the product-difference, on the response probabilities, combining the
qualitative differences that follow from a RB perspective with quantitative item effects
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following from an Inl perspective.

X,
1rc™?

R=1 BoretB,, %’
]‘ + Zr:l € tre

eﬁurﬁrﬁ

PR, =r|C=¢) = (4)
In this LCM, the item heterogeneity model, a slope parameter f,. is included allowing for
differences in the response probabilities within items of the same item type based on some item
characteristic x;. We focus on the most often used characteristic, the product-difference (PD),
the differences between the product of the number of weights and the distance on each side of

the fulcrum. To conclude, we present three measurement models: a LCM following from the
RB perspective, a WSM following from an Inl perspective and a hybrid LCM that combines
both RB and Inl effects.

Method
Participants

The paper-and-pencil version of the balance-scale task was administered to 805 children.
Responses to the first block and responses from children that did not understand the task or
with missing responses (N = 26; hereafter the paper of Jansen and Van der Maas [12] is
referred to as JM) were discarded. On average children needed 10 minutes to complete the test
(20 seconds per item). Further details on this data set can be found in JM.

The Math Garden data set consists of data of 808 children who completed at least five blocks
during the data collection period (between 2011-06-10 and 2011-08-12). In the Math Garden
children practiced either during school or outside school hours, resulting in large differences in
both the number of items made and in the amount of time spent playing the balance-scale
game. On average these five blocks were completed within 8 days (SD = 10.5, range = 0-54).
The responses on items of the first block were discarded since children had to get acquainted to
the task. Table 2 shows the distribution of age of both the paper-and-pencil and the Math Gar-
den dataset. Note that older children are somewhat underrepresented in the Math Garden
dataset compared to the paper-and-pencil dataset.

Materials

Paper-and-Pencil. The paper-and-pencil version of the balance-scale task consisted of five
items of the types W, D, CW, CDA and CBA (see S2 Text for the item characteristics). Before
administration of the task, the experimenter explained that the pegs were placed at equal dis-
tances, that all the weights had the same weight, and showed that a pin prevented the scale
from tipping. Subsequently, three example items were presented to familiarize the children
with the format of the test.

Math Garden. In the balance-scale game, children are asked to predict what would happen
if the blocks under the balance are removed (see Fig 1). The three answer options are displayed
below the item. The Math Garden game differs in three respects from the standard paper and
pencil test. First, items are presented with a time-limit of twenty seconds. Second, children
receive feedback on the accuracy of their response directly after responding. Third, children are

Table 2. Distribution of Age for the Paper-and-Pencil and Math Garden dataset.

age in years: <6.00 6.00-7.99 8.00-9.99 10.00-11.99 12.00-13.99 14.00-15.99 >16.00
Paper-and-Pencil 1 63 148 171 146 147 93
Math Garden 15 209 281 186 41 14 0

doi:10.1371/journal.pone.0136449.t002
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rewarded for correct responses and are punished for incorrect responses. The time-limit/pres-
sure is an inherent aspect of the feedback system where size of reward/punishment is positively
related to speed [37]. If a child has no clue of an answer he or she may press the question mark
button. These task elements are designed to keep the task challenging, and enable learning
through feedback (see [38], for an extended description of the Math Garden system and its
rationale).

The original item set consisted of 260 items, divided in twenty blocks of thirteen items of
different types. Ten item types are presented in Table 1. The remaining item types were items
with weights on multiple pegs on one or two arms of the scale. We analyze responses to the
four D, CW, CDA and CBA items to increase comparability with the paper-and-pencil and the
Math Garden dataset (see S2 Text for the characteristics). In both datasets, for all item types,
except CBA items, the quantitative item characteristic of interest was the product-difference.
For CBA items we use weight-difference as an alternative (for CBA items the product-differ-
ence is zero by definition since the weight- and distance-differences are the same). Although
the items were not explicitly constructed to test a quantitative effect, they exhibit sufficient vari-
ation in this item characteristic. For both datasets the responses were recoded such that the cor-
rect response is the left response for D, CW and CDA items, and such that the largest amount
of pegs resides on the left side of the fulcrum for CBA items.

Model Estimation and Comparison

Following the approach of JM, we applied LCA in two consecutive steps. First, the responses
per item type were investigated. The number of latent classes was determined (investigating
qualitative individual differences) with exploratory LCA (the exploratory model). Thereafter,
parameter restrictions, formulated in the item heterogeneity model and the item homogeneity
model, were sequentially tested. Second, building on the results of this fitting procedure per
item type, response to multiple item types were analyzed with the hybrid LCM (item heteroge-
neity model; formulated in Eq 3). This approach reduces the sparse data problem in LCA when
analyzing a large set of variables since it limits the number of estimated parameters compared
to exploratory model. Hence the power to detect different classes increases. Third, this item
heterogeneity model—the hybrid LCM—is compared with the item homogeneity model—the
rule-based model.

For the LCM including all responses, we analyzed the posterior probabilities, P(C = ¢|R =r).
These probabilities—based on the observed responses of a person and the estimated prior and
conditional response probabilities—indicate the classification probabilities of a person to each
class. The probabilities are related to the homogeneity of responses of subjects belonging to a
certain class and the class separation [39]. A high (maximum is one) posterior probability
implies that the observed response pattern of a subject is well described by the estimated
response probabilities of a latent class. A value of one divided by the number of classes indi-
cates that the observed responses pattern cannot be clearly assigned to any latent class. The
average (and standard deviation) of the posterior probabilities over subjects assigned to each
class is presented. A high mean indicates that subjects can be clearly assigned to this class com-
pared to the other classes.

All RB and hybrid models were estimated with the depmixS4 package [40] in R [41]. For
stable model estimation we scaled the product-difference, per item type, such that the mean
equals zero. Twenty replications were used with random starting values to prevent solutions
based on local optima. All presented models were stable. We used the Bayesian Information
Criterion (BIC) [42] for model selection since this fit measure provides a good balance between
goodness-of-fit and parsimony [43]. In addition, BIC-weights, P(BIC), are presented to
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facilitate the interpretation of BIC differences. BIC-weights are transformed values of the BIC
differences to a probability scale representing the probability of each model being the best
model given the data and the set of candidate models [44].

For the estimation of the WSM only responses to the conflict items were analyzed since sim-
ple items can be solved without the integration of the two dimensions and therefore do not dis-
criminate between differences in the integration strategy [13].

Results

To investigate whether children in the Math Garden version of the balance-scale task under-
stood the task we first fitted the exploratory model to WD items. All children should succeed
on these items. The LCM with two classes showed the best fit (see Table B in S3 Text).
Responses of children assigned to the class with high probabilities (N = 667) of a correct
response (on average 93% correct) were included in further analyses. Of the selected children,
603 played the task before the start of the study, and made on average 800 items (SD = 965,
range = 1-7695). Subjects with missing responses were only excluded if the missing response
corresponded to the investigated item type, resulting in a different number of children for each
analysis. 566 children responded to all selected items. In the next section we compare the
results of the exploratory model, item heterogeneity model and the item homogeneity model,
per item type in the two datasets.

LCM per ltem Type

Distance. For the JM dataset, the three class item homogeneity model was the best fitting
model for D items. The observed response probabilities of each class are presented in Fig 2.
The three classes resembled respectively children that provided balance responses (Rule I), pro-
vided the correct left responses (Rule II or more advance strategies), or predicted that the side
with smallest distance goes down. See Table A in S3 Text for the goodness-of-fit statistics of all
models. Although JM concluded that the responses of children were best described by four
qualitatively different rules, the BIC indicated that the three-class model showed the best fit for
the paper-and-pencil dataset. This difference results from a different model specification. JM
analyzed direct response probabilities, whereas we used a logit transformation of the odds
ratios (see Methods section). As a result some conditional probabilities of JM were zero and
therefore these parameters did not contribute to the model fit, which is not possible in the logit
model specification. For the Math Garden dataset, two classes were needed to describe the
observed responses. The first class showed an average probability of the correct left response
0£.36, and the product-difference did not relate to the response probabilities (item homogeneity
model). This class is described as guessing behavior. The second class showed a high probabil-
ity of the correct response indicating that these children use a more advanced rule than Rule I.
Furthermore, for this class the probability of a correct response was higher for items with a
large product-difference (item heterogeneity model) indicated by an increase in the left-right
and left-balance odds ratio. The first latent class found by JM, described as Rule I, was not
found in the Math Garden dataset.

Conflict-Weight. For the JM dataset, the three-class model showed the best fit. These
latent classes resembled the classes found in JM, described as: a class of children with near per-
fect responses (Rule I, Rule II or Rule IV), a class of children using the addition rule and a class
of children that perceived the distance dimension as the dominant dimension (DD). For each
latent class the item homogeneity model resulted in the best fit, i.e., item responses were homo-
geneous across different product-difference values. For the Math Garden dataset, the two-class
model showed the best fit. Moreover, the item heterogeneity model fitted better than the

PLOS ONE | DOI:10.1371/journal.pone.0136449 October 27,2015 9/21
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Fig 2. The observed response probabilities (y-axis) of the left (L) and balance (B) response of respectively the paper-and-pencil dataset (left
panels) and the Math Garden dataset (right panels), ordered on the product-difference or weight-difference for CBA items (x-axis). M1 (exploratory
model), M2 (item heterogeneity model) and M3 (item homogeneity model) indicate which model provided the best fit. The x-axis labels show the class
description of JM for the paper-and-pencil dataset, and the prior probabilities between brackets. The Small-Distance-Down, Distance-Dominant and Addition

Rules are abbreviated as SDD, DD, and ADD.
doi:10.1371/journal.pone.0136449.9002

exploratory model and the item homogeneity model. The first class showed a low probability
of the correct response. The second class showed an overall high probability of the correct
response corresponding to Rule I, Rule IT or Rule IV (the first class in the paper-and-pencil
dataset). This indicated that children in the second class perceived the number of blocks as
dominant whereas children in the first class perceived distance as dominant. The positive rela-
tion between the response probabilities and the product-difference of the item showed that
responses of children improved with increasing product-differences.
Conflict-Distance-Addition. The LCM for the JM dataset resembled the results of JM,
and consisted of three classes resembling Rule I or Rule I, Rule III and Rule IV or an addition
rule, respectively. Moreover, the item heterogeneity model resulted in the best fit for each latent
class. These results correspond to the results of JM, since they also found that the response
probabilities of CDA items could not be constrained over items that differed with respect to
the product-difference. Even for children using Rule I or Rule II (class 1) the probability of the
correct response increased as a function of the product-difference. In the Math Garden dataset,
the two-class model showed the best fit. In the first class the item heterogeneity model and in
the second class the item homogeneity model resulted in the best fit. The first class showed an
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average probability of the correct response of .5. Children in the second class showed a proba-
bility of the correct response of .9.

Conflict-Balance-Addition. In the JM dataset, the four-class model showed the best fit,
resembling the results of JM. Children in the first class had a high probability of the left
response (the side with the largest number of blocks), resembling Rule I or Rule II. Moreover,
the LCM with a negative effect of the weight-difference in the second latent class (Rule III)
resulted in the best fit. For children in this class, the probability of a correct response was
smaller for items with a large differences in the number of blocks between the sides of the ful-
crum. The response probabilities of the third class are described by JM as produced by children
who use Rule IV or the addition rule. For the Math Garden dataset, the two-class exploratory
model showed the best fit. Hence, the variation in the observed response probabilities cannot
be explained by the weight-differences of the items. Also, the LCM did not reveal a class of chil-
dren with a high performance on CBA items.

Conclusions. The LCMs based on the paper-and-pencil dataset replicated, in general, the
class structure found by JM. In contrast, the models based on the Math Garden dataset deviated
in number and description of the classes. In eight out of thirteen latent classes in the models
for the paper-and-pencil dataset, the responses of children were best described by the rule-
based item homogeneity model, but this model was the best model in only two out of eight
latent classes of the models for the Math Garden dataset. In the majority of the classes in Math
Garden dataset the item heterogeneity model appeared to be the best model.

Mix of ltem Types

The following analyses concerned responses to multiple item types. We estimated a second set
of hybrid and RB LCMs and applied the WSM to a selection of items of different item types.

LCM. Inthe LCM itis assumed that the responses to items of the same type can be modeled
as repeated measures, only allowing variations as a function of the product- or weight-difference
of the items. This assumption is not met for the item types where the exploratory model showed
the best fit in the previous analysis (see results of the CBA items in the Math Garden dataset).
Therefore, in the Math Garden dataset responses to all D, CW, and CDA items and only the last
CBA item were selected and in the paper-and-pencil dataset all responses were selected.

Paper-and-Pencil Dataset. We estimated LCMs with one to ten latent classes. As can be
seen in Table 3, the BIC and p(BIC) indicated that the LCM with nine classes showed the best
fit. Furthermore, the RB LCM resulted in a better fit than the hybrid LCM (see Table 3).

Fig 3 shows the response probabilities of the nine classes. The first six classes represented a
clear Rule I, Rule II, a small-distance-down (SDD) rule, a distance-dominance (DD) rule, addi-
tion (ADD) rule and Rule IV, replicating the findings of JM. Moreover, the average person fit
(the posterior probabilities of class membership) of these classes showed that subjects could be
rather clearly assigned to most of these classes, respectively .95 (SD = .09), .65 (SD =.18), .77
(SD =.22), .67 (SD =.17), .65 (SD = .15) and .75 (SD = .17). The fourth class, representing the
DD rule, was also found in the LCM results per item type. This class was probably not found
by the analyses of a mix of item types by JM because of a lack of power. The higher power is
achieved by a different item selection and the use of item covariates in the LCM. The sixth
class, representing Rule IV, showed perfect performance on all items.

The remaining two classes in JM were interpreted by JM as either Rule III or Rule III/ADD.
The current analyses led to three extra classes rather than two, probably as a result of the higher
power. The posterior probabilities of the LCM showed that the classification of children to
rules was rather ambiguous for these remaining classes, indicated by the high variation and the
overall low fit of respectively, .56 (SD = .15), .57 (SD =.19) and .63 (SD =.19), for class 7, 8 and
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Table 3. Fit Results LCM mix of item types.

Paper-and-Pencil Dataset Math Garden Dataset
Model NC NPar BIC 1:p(BIC) 2:p(BIC) Model NC NPar BIC 1:p(BIC) 2:p(BIC)
Hybrid 6 101 12357 <.001 Hybrid 2 29 9541 <.001
Hybrid 7 118 12343 <.001 Hybrid 3 44 9465 .108
Hybrid 8 135 12336 <.001 Hybrid 4 59 9461 .892 >.999
Hybrid 9 152 12315 >.999 <.001 Hybrid 5 74 9516 <.001
Hybrid 10 169 12373 <.001 Hybrid 6 89 9565 <.001
RB 9 88 12152 >.990 RB 4 35 9510 <.001

Note. For the paper-and-pencil (N = 779) and Math Garden (N = 566) dataset, responses of 16 and 13 items, respectively, were analyzed; NC = number
of latent classes; NPar = number of parameters; p = BIC weight (1) for comparison of models with different number of classes and (2) for the comparison
of the hybrid and RB model.

doi:10.1371/journal.pone.0136449.t003

9 (see Fig 4). Hence, the response probabilities cannot be reliable interpreted as governed by a
distinct set of rules. Therefore, these classes are only loosely described as: a distance dominant
class providing a lot of balance responses (class seven), a class providing left or right responses
(eight) and a class that guessed between the left and balance response (nine).
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Fig 3. Paper-and-Pencil Dataset. The plots show per class the response probabilities, per item type ordered on the quantitative item effect (on the x-axis).
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item type ordered on the quantitative item effect (on the x-axis).

doi:10.1371/journal.pone.0136449.9004

To conclude, in general, the results of JM are replicated with the new LCM. The gained
power to detect individual differences resulted in two additional classes. The person fit indi-
cated that subjects assigned to these latter classes showed a high response variability. Hence,
the response patterns were difficult to interpret and could not be ascribed to a clear set of rules.

Math Garden Dataset. For the Math Garden dataset, the fit of the sequence of LCM:s indi-
cated that four classes were needed to describe the responses, according to the BIC (Table 3).
Fig 5 provides a description of the LCM. The first class (Weight Dominant) had a high proba-
bility of the correct response on CW and a low probability on CDA items. Furthermore, the
high probability of the left response on the CBA items showed that subjects perceived the num-
ber-of-blocks dimension as more dominant. These response probabilities resembled to some
extent Rule II. The second class showed high performance on all item types, except on the CBA
item. Again, the high probability of the right response on the CBA item indicated that children
in this class perceived the distance dimension as more dominant than the number-of-blocks
dimension (for CBA items the right side is the side with the largest distance). In the third class
the probability of a correct response was higher on CDA items than on CW items, and highest
for D items. Moreover, the high probability of the right response on the CBA item indicated
that the distance dimension is perceived as dominant. The forth class mostly resembled the
third class, with the addition that the response probabilities for a balance response were consid-
erably lower on CDA, CW and CBA items compared to the third classes.

In general, Fig 5 shows that none of these classes resembled Rule I, Rule II, SDD or Rule IV,
but rather resembled variations of Rule III. Also, distance-dominant classes were found that
have not been reported earlier in paper-and-pencil versions of the balance-scale task. As indi-
cated by the BIC-weight, the response probabilities depended on the product-difference of the
item. The probability of the correct response is higher for items with a larger product-differ-
ence. Finally, the average posterior probabilities of the LCM, respectively .58 (SD = 23), .64
(SD =11), .62 (SD =.19) and .59 (SD = .16) indicates that children could not be clearly ascribed
to one of the four classes.
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Conclusion. A comparison of the results of the LCM of both datasets show that large dif-
ferences are present in the response mechanism. This is alluded by the better fit of the hybrid
LCM in the Math Garden and the rule-based LCM in the paper-and-pencil dataset. Moreover,
in the paper-and-pencil dataset the majority of children could be clearly ascribed to latent clas-
ses representing qualitative different rules, earlier described by Siegler [23] and JM [12]. In the
Math Garden dataset the four classes did not resemble any earlier found strategies. Also, the
overall lower posterior probabilities showed that differences between the children were more of
a quantitative nature when tested in the Math Garden.

Age and Practice Effects. JM already showed that large age differences are present
between children classified to different classes in the paper-and-pen dataset. Using the latent
class models introduced in the current paper, we investigated the relation between the depen-
dent variable class membership in the best fitting latent class model (nine classes), and the
independent variable age using multinomial regression models. Different models are compared
based on the BIC. Results of the paper-and-pencil data again showed large age effects (BIC of
model with and without age was respectively 2673 and 3113)). In the Math Garden dataset, age
was not related to class membership (BIC of model with and without age was respectively 1140
and 1125). However, the class membership was related to the amount of practice (BIC of
model with and without practice was respectively 1120 and 1125). Practice was defined as the
log of the number of items made before the start of the data collection. We use the log function
to transform the skewed distribution of the number of item made per child to a normal density.
Fig 6 shows the predicted probability of a child being assigned to each class as a function of age
for the paper-and-pencil data, and as a function of practice for the Math Garden data.

In line with the previous results, large differences are found between both analyzed datasets.
In the paper-and-pencil data a clear developmental change is highlighted by the age effect
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(further described by JM). In the Math Garden data the developmental pattern is solely based
on the amount of practice.

WSM. Fig 7 shows the distribution of the estimated @ and C parameters of the WSM
based on responses to the four CW, CDA and CBA items. In the paper-and-pencil dataset the
distribution of @ was clearly not unimodal, and deviated from a normal density as indicated by
the Shapiro-Wilk test [45] (D =.226, p < .001). The large peak at o = 1 reflected that some chil-
dren (N =277, 36%) only responded to the number-of-blocks dimension, including children
using Rule I and II [13]. The smaller peak at o = 0 indicated that only the distance dimension
was reflected in the responses of 2.4% of the children (N = 19). Both values of ¢ indicate that
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these children did not integrate the information regarding both dimensions. Furthermore, the
distribution around a = .5 illustrated that the remaining children weighed both dimensions
about equally in their responses. The distribution of C showed that 45% of the children already
predicted that the scale would tip to a side when their integration of both dimensions resulted
in a value just above zero (note that this does not mean they did not provide any balance
answers).

In the Math Garden dataset, the distribution of @ showed a different pattern—again the dis-
tribution deviated from a normal density (D = .145, p < .001). In contrast to the paper-and-
pencil dataset, the peak at & = 1 was small (N = 23, 4.2%). The large distribution around a = .5
showed that the majority of the children weighted both dimensions about equally. However,
also a small peak at a = 0 was found representing children who only took the distance-dimen-
sion into account (N = 34, 6.2%). The distribution of C resembled the distribution in the
paper-and-pencil dataset. The majority of the children decided that the scale would tip if their
outcome of the weighted integration of the differences between the arms was higher than zero.

Conclusion. The distribution of @ and C indicated that also qualitative differences were
present since differences between children cannot be described by an unimodal distribution.
Moreover, as mentioned previously, a substantial group of children did not integrate informa-
tion of both dimensions. Hence, a hybrid WSM model is needed to provide a description of the
full range of individual differences. However, further developments of the WSM are needed to
investigate this. The estimation of the WSM to responses of multiple subjects, and the formula-
tion of the random parameters therein, should provide a test on distribution of these parame-
ters, resulting in a formal test of the InI versus hybrid account. However, a visual inspection of
the distribution of the model parameters over persons clearly indicates that a rule-based com-
ponent is needed to fully explain the observed responses within the WSM framework.
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Discussion

The aim of the paper was to compare a RB and an Inl perspective on the cognitive processes
used by children to solve balance-scale items, using a new set of statistical models.

According to the LCM analyses aspects of the InI perspective are required to describe the
Math Garden data and the CDA items in the paper-and-pencil dataset. The results of the
WSM, allowing for quantitative (continuous) differences between children in the preference of
the number-of-blocks or distance dimension and the preference for balance responses, indicate
that quantitative and qualitative differences show up in the inspection of the distribution of the
estimated parameters. Hence, results of both statistical models support a hybrid account inte-
grating RB and Inl perspectives.

Although we found additional classes in the paper-and-pencil dataset, the majority of chil-
dren can be clearly assigned to one of the rules described by Siegler [10, 23] and Jansen and
Van der Maas [12, 26]. None of the classes in the Math Garden dataset resembles any of these
earlier proposed rules. The results indicate that children tested within Math Garden integrate
the number-of-blocks and distance dimension to solve balance-scale problems. However,
although some children did play the task intensively prior to this study, the LCM did not reveal
any children with a perfect integration rule (RIV users). Additionally, whereas Siegler [10]
stated that the number-of-blocks dimension is the dominant dimension, both the LCMs and
the WSM reveal that a subset of children perceive the distance dimension as dominant.

In the Math Garden data, the response probabilities are related to differences in the prod-
uct-difference between items, and to a much smaller extent in the paper-and-pencil dataset.
This undercuts the conclusions by Jansen and Van der Maas [26] and Van Rijn, Van Someren
and Van der Maas [20] that this item characteristic was only related to the response probabili-
ties of items with extreme product-differences. Based on a latent-class regression modeling
approach resulting in more power to detect an effect of the product-difference, our results indi-
cate that items with a larger product-difference are easier than items with a small product-dif-
ference even for items with a reasonably small product-differences. Moreover, the magnitude
of this effect differs between both datasets.

Although in both datasets a hybrid account is evident to fully explain the responses of chil-
dren, differences between both datasets are present as well. In the classical paper-and-pencil
version of the task, collected under the standard task demands, cognitive processes are best
described by a RB perspective, with the exception of the product-difference effect that follows
from a InI perspective. Testing children within the Math Garden, with direct feedback, time-
pressure and a rewards system, seems to induce a different cognitive process, providing more
evidence for elements of an InI perspective. Where the debate between the RB and Inl perspec-
tives in the field of proportional reasoning is concerned with the underlying mechanisms of
one cognitive process (or a single response mechanism), the results of this study indicate that
the characteristics hereof might depend on the task demands. Positioning the findings based
on the Math Garden data alongside the findings of the paper-and-pencil dataset suggests that
different response mechanisms are at play. This result sheds new light on the debate of RB and
InI perspective in the balance-scale literature.

This study was not designed to investigate and isolate the effect of task demands. Also, both
age and amount of experience with the task of the tested children differs between both datasets,
and have a different relation to the latent classes. Further research is needed to determine which
factors influence the response mechanism of children. However, it is surprising that so far, the
predictions following from both rule-based and information-integration perspectives on chil-
dren’s knowledge on the balance-scale task, have mainly been tested with only one type of empir-
ical data: responses to a paper-and-pencil test and the computer analogue thereof [12, 26, 46].
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This is even more surprising since Ferretti [27] already showed that rule assignments differ when
children are asked to rebuild one side of the scale instead of predicting the movement.

In other fields of cognitive psychology it is known that task demands influence the type of
cognitive processes (or response mechanisms) that are activated or learned. For example, in
category learning, differences in the type of task result in the use of qualitatively distinct learn-
ing systems [47], and task demands such as time-pressure and feedback have different effects
on these distinct learning systems [48, 49]. Maddox, Bohil and Ing [50] show that the perfor-
mance on a rule-based learning task is impaired when subjects have a short period to process
the feedback after a response, while this manipulation did not affect the performance of sub-
jects using information-integration (or similarity) based learning processes.

Therefore, we argue that the differences between the results of both datasets in the present
study, are best understood by relating these differences to the differences in the task demands
under which children are tested. Based on the described literature, it is expected that the influ-
ence of feedback, time-pressure and/or a reward system promotes the usage of different pro-
cesses. This possible influence of task demands on the response mechanism and an appeal for
the integration of RB and Inl perspectives in a model of development is already made by
Fischer [51] [p.626]: “under certain conditions of observation and degrees of abstraction, uni-
versal stages of cognitive organization can be observed; under others, important individual dif-
ferences in developmental sequences occur.” They conclude that: “What is needed is a view
fully grounded in the fact that cognitive development appears diverse under some observa-
tional conditions and universal under others.” This is also alluded to by McClelland [15], since
he states that rule-like behavior can be induced by different testing situations.

To make the RB perspective compatible with the current results, at least one of the available
response mechanisms should be of a more quantitative (similarity-based) nature. The descrip-
tion of Rule III [10] production model provides such a possibility. Siegler describes children
using Rule IIT as “muddling” through. This strategy could include a mixture of implicit infor-
mation integration strategies and a preference could be present for either the number-of-blocks
or the distance dimension. Moreover, for these children the responses could be based on quan-
titative item characteristics resulting in the presence of for example a relation between the
product-difference and the response probabilities.

To make the InI approach compatible with the current results, it would be necessary to
incorporate some qualitative rule-based effects, as found in the LCMs of both the paper-and-
pencil and Math Garden dataset. The work of Dandurand [21, 52] already combines RB effects
in an InI approach by including an external learning module in which the model is ‘taught’
RIV—the correct rule where the difference is calculated between multiplication of the weights
and distance on each side of the fulcrum. This approach is based on the assumption that chil-
dren might also learn this rule in an educational setting from instruction instead of from their
own experience, which makes it an explicit rule. Such an interpretation of RIV performance
fits very well in a rule-based approach. Furthermore, Schaprio and McClelland [7] also propose
a combination of RB and InI processes. They state that: “It is possible that the best account will
involve a mixture of explicit and implicit strategies.”

To describe the cognitive processes of children used on a proportional reasoning task like
the balance-scale task, a model is required that (1) incorporates both a RB and a InI account
and (2) specifies in what conditions the behavior is caused by which account. Hybrid models
with components relying on rule-based and similarity-based processing of items have become
the norm in modeling categorization learning, for example COVIS [53] and Atrium [54].
These models can serve as a valuable starting point for including multiple response modes
based on different response mechanisms for development of proportional reasoning in general
and balance-scale learning specifically under different task demands.
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