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Abstract

Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that
belong to the phylum Glomeromycota. Although a number of plant genes involved in the
plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly
manipulate gene expression to study the potential functions of new candidate genes
remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicoti-
ana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial anal-
ysis of gene expression (SuperSAGE) combined with next generation sequencing, and
established a virus-induced gene-silencing protocol to study the function of candidate
genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched
with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to
Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression
(p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regu-
lated annotated Tags in this study with those of two previous large-scale gene expression
studies, 18 gene functions were found to be up-regulated in all three studies mainly playing
roles related to phytohormone metabolism, catabolism and defense. To validate the func-
tion of identified candidate genes, we used the technique of virus-induced gene silencing
(VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein,
indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and cal-
modulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots
was successful, but only CCaMK silencing had a significant effect on the interaction with R.
irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation,
the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-
complementation. This study demonstrates that large-scale gene expression studies
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across different species induce of a core set of genes of similar functions. However, addi-
tional factors seem to influence the overall pattern of gene expression, resulting in high vari-
ability among independent studies with different hosts. We conclude that VIGS is a powerful
tool with which to investigate the function of genes involved in plant-AMF interactions but
that inoculum strength can strongly influence the outcome of the interaction.

Introduction

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations among most vascular land
plant species and among fungi of the phylum Glomeromycota [1]. The fungi are obligate bio-
trophs that require photoassimilates from their host plants; these photoassimilates are received
in exchange for mineral nutrients, particularly nitrogen, phosphorous, sulphur, zinc and water
[2-4]. Additional benefits of AMF infection are enhanced defense against herbivores and path-
ogens [5,6]. Communication between the two partners starts before physical contact: the fungi
recognize flavonoids and strigolactones, a novel class of phytohormones released by plant
roots, which activate AMF branching [7-9], whereas fungal lipochitooligosaccharides (mycL-
COs) and chitooligosaccharides stimulate calcium (Ca®") spiking in root epidermal cells
[10,11]. The Ca** oscillations, a central feature of the common symbiotic pathway, initiate the
interaction of AMF and of nitrogen-fixing rhizobia with plants. The Ca** signal is assumed to
be decoded by a Ca**- and calmodulin-dependent protein kinase (CCaMK) whose expression
is required for the development of a functional symbiosis [12]. In response to physical contact,
the fungus develops an appressorium on the root surface; roots then develop the pre-penetra-
tion apparatus that enables the fungus to penetrate the root [13,14], which is followed by the
intraradical colonization of the root by the fungus. Ultimately, arbuscules are formed within
the root cortical cells and surrounded by a plant-derived periarbuscular membrane in which
the main exchange of nutrients takes place (symbiotic phase, [15]).

The colonization of the root system by AMF is controlled by highly coordinated gene
expression involving the host plant and the symbiont [16]. In the past, many high through-put
transcriptomic studies using expressed sequenced Tags, suppression subtractive hybridization
and microarrays for the transcriptome analysis identified plant genes that are involved in root
colonization by different AMF species. Those studies were mainly performed with the whole
root system of the legumes Medicago truncatula and Lotus japonicus [17-24], Petunia [25] and
rice (Oryza sativa) [26]. More recent studies have used laser microdissection to identify genes
expressed during different stages of the colonization process [27-30]. Arbuscule-containing
cells strongly express—among many other genes—many genes encoding mycorrhiza-specific
transporters; these transporters have been shown to be crucial for a functional symbiosis [31-
33]. Little information, however, is available about fungal genes expressed in response to plant
infection [34]. AMEF-specific changes in gene expression can be a direct effect of mycorrhiza-
tion or due to indirectly altered physiological conditions caused by AMF, such as improved
phosphate nutrition or changes in phytohormone and metabolite levels [35,36].

Microarray analysis depends on the genes/cDNAs spotted on a chip and may miss genes
expressed only under specific conditions, that is, conditions not considered for the chip. In
contrast, the serial analysis of gene expression (SAGE) is a technique based on the finding that
a short nucleotide sequence called Tag is specific for each gene. After massive parallel sequenc-
ing, the frequency of the Tags is proportional to the amount of the corresponding transcripts
in the sample [37]. Using Blast searches, Tags can be specifically annotated to a gene. Long
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Tags, such as the development of 26 bp Tags for SuperSAGE, improve the specificity of the
annotation process [38]. SuperSage has been used to elucidate the large-scale gene expression
pattern of a non-sequenced organism after it was challenged with an effector [39,40].

However, it is difficult to draw solid conclusions about the importance of a gene for the
interaction if only a change in expression is considered. A common approach for a functional
gene analysis is the use of RNAi gene silencing [41]. The creation of stably transformed lines is
highly time-consuming, whereas transient gene silencing using virus-induced gene silencing
(VIGS) is a much faster approach [42,43]. The method takes advantage of a plant’s RNAi-
mediated antiviral defense mechanism [44] and allows the silencing not only of plant genes but
also of the genes of heterotrophs, e.g. of insect genes expressed in plants that are consumed by
insects [45]. The plant-AMF interaction shares many similarities with a plant-heterotroph
interaction, and host-mediated gene silencing in AMF has been demonstrated by using A. rhi-
zogenes transformation [46].

Nicotiana attenuata Torr. ex Wats., a species native to the Great Basin Desert of southwest-
ern USA (also known as coyote tobacco) is a member of the Solanaceae family. Its interaction
with herbivores, floral visitors and root- and leaf associated bacteria has been extensively stud-
ied [47-49], but its interaction with AMF remains poorly understood [50,51]. Furthermore,
only a few fungal genes essential for the interaction with plants are known [34,52-55].

Here we report the use of SuperSAGE libraries generated from RNA isolated from N.
attenuata root samples, both those infected with R. irregularis (previously named Glomus
intraradices, [56]) and those non-infected to study the gene expression changes involved in the
plant-fungus interaction. An in-house trancriptome N. attenuata database [57] and the pub-
licly available Glomus intraradices database (INRA Glomus database [34]) were used to obtain
longer sequences corresponding to the 26 bp SuperSAGE Tags related to N. attenuata and R.
irregularis. Based on the number of Tags that matched with one of the two databases, we con-
clude that about 10% of the sequenced Tags belonged to the fungal partner. Eleven up and
downregulated N. attenuata and five R. irregularis SuperSAGE Tags were validated by qPCR.
In order to study the function of selected genes and their effect on the symbiosis, we success-
tully silenced three N. attenuata genes by virus-induced gene silencing. We also attempted to
use plant-mediated RNAi to silence fungal genes involved in this plant-heterotroph interaction,
but the attempt did not succeed.

Taken together, our data show that a core set of plant genes is induced during plant-AMF
interactions independently of the host species but that the overall global gene expression pat-
tern varies among different studies. Although we found that tobacco-rattle virus mediated gene
silencing is a useful tool for functional gene analysis in Solanaceaous species, host-induced
gene silencing in the fungal partner was not successful.

Material and Methods
Plant material and inoculation with Rhizophagus irregularis

Nicotiana attenuata wild type plants (31*' inbred line of seeds originating from Utah, USA)
were germinated on Gamborg B5 medium according to [58]. During germination, plants were
maintained at 26°C in an incubator with an 11/13 h day/night cycle. For the SuperSAGE exper-
iment, 10-day-old seedlings (incubated at 30°C) were transferred to 1-L pots containing
3-month-old leek plants (Allium porrum Carentan 2) as nurse plants. Pots contained either
Rhizophagus irregularis inoculum (5% Amykor in expanded clay particles (2-4 mm), topped
with sand (inoculated plants), or 5% autoclaved inoculum (twice at 121°C for 30 min) as con-
trol. For the validation of the SuperSAGE data, seedlings were transferred to 0.45-L pots con-
taining Rhizophagus irregularis (10% Biomyc Vital, www.biomycvital.de, mixed with expanded
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clay particles, 2-4 mm, equivalent to Amykor) and 10% autoclaved inoculum for controls. For
better drainage, the bottom of the pots was covered with large expanded clay particles (8-10
mm), and on top, the pots were covered with sand.

For both set-ups, seedlings were covered with transparent cups for the first week, and
watered with distilled water as needed. Lights were switched on two days after transfer. After 7
days the cups were lifted and the seedlings were fertilized with 30 ml of 0.3 g Ferty B1 (Planta
Diingemittel, Regenstauf, Germany, http://www.plantafert.de/), 0.6 g [Ca(NO5),x4 H,O] per L
every second day. Additional water was given as needed. All plants in the greenhouse were
maintained at a 16/8 h day/night cycle with 26 to 31°C during day and about 20°C during night
and 45 to 55% humidity, average temperature, light intensity, and humidity changed slightly
over seasons.

For the virus-induced gene silencing (VIGS) experiment, 10- to 14-day-old seedlings were
transferred to sand in Teku pots (propagation trays, 5.3 cm diameter, P6ppelmann, www.
poeppelmann.com) with plastic nets, covered with transparent lids and fertilized with 0.21 g
Ferty B1 (Planta Diingemittel, Regenstauf, Germany, http://www.plantafert.de/) and 0.47 g [Ca
(NOs3),x4 H,0], 0.0536 MgSO,, 0.455 ml Fe-DTPA (diethylene triamine pentaacetic acid) per
L. Agro-inoculation with VIGS vectors was done 20 days after transfer. The plants were cov-
ered with a black tray for 2 days to provide high humidity, allowing bacterial cells and their vec-
tors to become established. As soon as the PDS (phytoene desaturase)-silenced plants showed
bleaching of the leaves (after about 13 days), plants were carefully removed from the Teku pots
with their plastic nets, and all roots outside the nets were excised. The nets were transferred to
1-L pots containing Rhizophagus irregularis inoculum (10% Biomyc Vital mixed with
expanded clay particles, 2-4 mm), and large expanded clay particles at the bottom and sand on
the top of the pots as described. The first week after transfer, plants were watered only as
needed and then fertilized with 30 ml of 0.3 g Flory B1 and 0.6 g [Ca(NO3),x4 H,O] per L
every 3 days, and additionally watered as needed. In a second experiment, plants were trans-
ferred to 1-L pots containing freshly cut leek roots grown on Rhizophagus irregularis inoculum
for 48 days before starting the experiment. Fertilization was carried out as described above.

Harvesting of root samples

Root samples for the generation of SuperSAGE data were harvested when they had a similar
rosette size, ranging from 4.3 to 5.8 cm (average 4.9 cm). The first plants were harvested 19
days after transfer (only non-infected plants) and the last plants (mainly infected plants) five
days later. In total, 10 plants were harvested for each library.

For the validation of selected SuperSAGE Tags by qPCR, we conducted a kinetics analysis,
harvesting roots weekly in order to find the time-point when the root colonization of plants was
most similar to the root colonization in samples used for the SuperSAGE analysis. Harvest took
place when both infected and non-infected plants had reached almost the same size. The first
plants were all harvested after 14 days, and the longest leaf was on average 1.77 cm long; the
next set was harvested between 20 and 24 days (the average length of the longest leaf 3.13 cm),
then between 28 and 32 days (average stalk length 12.5 cm), followed by 35-38 days (average
stalk length 26.11 cm) and the last ones between 49 and 51 days (average stalk length 42.5 cm).
For the first two time-points, the roots of two plants were pooled to obtain sufficient material.

For the VIGS experiments, plants were harvested 28 and 35 days after transfer to inoculum,
and the fresh mass of roots and shoots was determined. Only the roots growing outside the
plastic net and not in the large expanded clay particles were used for analysis, and carefully cut.
For all experiments, roots were washed to remove any attached expanded clay particles or
sand, carefully dried and cut into pieces of about 1 cm and mixed. A part of the root sample
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was stored in root storage solution (99% ethanol and 60% acetic acid in the ratio of 3:1) for
staining. The remaining root sample was immediately frozen in liquid nitrogen and kept at
-80°C until further use.

Root fungal colonization rate

To determine fungal colonization rates, we harvested root samples at the time-points indicated
in the text. Before staining, the storage solution was removed, washed with distilled water
twice, cleared with 2% KOH for 5 min at 95°C, washed with distilled water, acidified with 5%
HCI, washed with distilled water and stained with 0.05% Trypan blue in lactic acid:glycerol:
water (1:1:1) [50]. The colonization rate was estimated with the gridline intersection method
[59]. A total of 100-150 visual fields at 200x magnification were observed, and the number of
hyphae, arbuscles and vesicles were recorded.

RNA extraction, SuperSAGE analysis and gPCR

Approximately 100 mg of ground root sample was used for total RNA extraction according to
[60]. To generate the SuperSAGE libraries, 10 RNA samples each of infected and non-infected
roots were mixed and sent to GenXPRO GmbH (Frankfurt am Main, Germany), which iso-
lated mRNA from total RNA by using the mRNA Purification Kit (Amersham Biosciences)
and generated the libraries.

For the confirmation of the SuperSAGE data, we selected 16 differentially expressed Tags, 6
up-regulated N. attenuata Tags, 5 down-regulated Tags and 5 up-regulated R. irregularis genes.
In order to obtain longer sequence information for primer design, we used the transcript
sequence of the Tags’ BLAST hits. To avoid a nutrient drain due to the nurse plants, we used
dry inoculum on expanded clay particles instead of nurse plants; nurse plants were used to gen-
erate the SuperSAGE libraries. Reverse transcription (RT) was done in 96-well microtiter plate
using oligo (dT) and Superscript II reverse transcriptase according to the manufacturer’s
instruction (www.invitrogen.cow). Real-time qPCR was performed on a Mx3005P qPCR sys-
tem (Stratagene, Santa Clara, CA, USA, http://www.stratagene.com) with qPCR Core Kit for
SYBR Green I (Eurogentec, Seraing, Belgium, http://www.eurogentec.com) following the man-
ufacturer’s instructions. For all N. attenuata primers, a normal 2-step PCR (95°C for 10 min,
40 cycles of 95°C for 15 s and 60°C for 1 min) was carried out; the exception was Nicotiana
attenuata-specific phosphate transporter-4 (NaPT-4, [51]) and R. irregularis specific primers:
these primers were amplified with 3-step qPCR at 57°C and 60°C, respectively (95°C for 10
min, 40 cycles of 95°C for 15 s and 60 /57°C for 30 s, 72°C for 30 s), and putative R. irregularis
ATPase 3 with normal 2 step qPCR at 57°C. A complete list of primers is available in Table A
in S1 File. Melting curves were performed for all primers to rule out non-specific amplification.
For the standard curve, a dilution series of cDNA of AMF-infected roots (six progressive 1:3
dilutions, including an undiluted sample of infected roots) and blank (MilliQ water) was estab-
lished. For the normalization of cDNA concentrations, actin transcript levels [61] were initially
determined, but due to variability between plants, Nicotiana attenuata specific elongation fac-
tor alpha-1 was used as a reference gene [39,46,61].

Sequence homology alignment of SuperSAGE data and Gene ontology
(GO) annotation

SuperSAGE Tags provided by the GenXPRO GmbH (Frankfurt am Main,Germany) were
cleaned by removing Tags with a high number adenosine bases (poly-A’s) and by removing
singletons. The workflow is shown in S1 Fig. BLAST searches were carried out using the
BLASTN algorithm with all Tag sequences against our in-house 454-N. attenuata
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transcriptome sequencing database [57] and the publicly available Glomus intraradices
sequencing database (http://mycor.nancy.inra.fr/IMGC/GlomusGenome/blast3.html). Statisti-
cal analysis of differentially expressed tags was calculated according to [62]. For fold-change
(FC) calculations, the libraries were normalized to 1,000,000 tags, and the FC for each tag was
calculated by dividing the number of tags in the normalized non-infected library (-AMF) by
the number of tags in the normalized infected library (-AMF vs +AMF). Tags absent in one of
the libraries (Tag count = 0) were set to 1 for calculation. For protein and gene ontology (GO)
annotations of differentially expressed Tags and for primer design, only Tags with a P-value
<0.05 and a > I2I log2 change between infected and non-infected roots were used. The Blas-
t2GO software (https://www.blast2go.com/) was used to predict gene functions based on gene
ontology (GO) categories [63].

Virus-induced gene silencing (VIGS)

In order to analyze the role of selected putative genes involved in the interaction between N.
attenuata and R. irregularis, we created vectors to silence two plant genes (germin-like protein,
putative indole-3-acetic acid-amido synthetase GH3.9) and two fungal genes (vesicle-associated
membrane protein 7B, plasma membrane ATPase3)-both of which were highly up-regulated in
response to mycorrhizal infection—using tobacco rattle virus for gene silencing (VIGS)
[42,43]. To test whether our approach was successful, we also created vectors for silencing a cal-
cium and calmodulin-dependent protein kinase, a gene whose expression has been shown previ-
ously to be essential for the interaction between different plant species and mycorrhizal fungi
[64,65], and a Rhizophagus irregularis-specific gene, monosaccharide transporter 2 (MST?2),
which was successfully silenced in Medicago truncatula roots using Agrobacterium rhizogenes
for transient gene silencing [46]. Table B in S1 File lists the genes and primers used for the con-
struction of the VIGS vectors. Additionally, the pTVPD vector, harboring a part of the
sequence of a phytoene desaturase (PDS), was used to monitor the progress gene silencing
[43]. The construction of the VIGS-vectors and the inoculation of the plants were performed
according to the published protocol [66], though the experimental set-up was adapted as
shown in Fig 1. The main difference is that plants were grown on sand in larger Teku-pots and
only transferred to 1L pots when pTVPD-treated plants showed bleaching as marker of suc-
cessful gene silencing. At this stage, all roots growing outside the net that was used for planting
were cut immediately before transfer to 1L pots to ensure that roots growing into the 1L pots
were silenced in the gene of interest.

Statistical Analysis

All statistical analyses were performed with the R statistical package (http://www.r-project.org/).
Significance was assessed by one-way ANOVA followed by Tukey’s HSD if the differences were
significant; values of P < 0.05 were considered statistically significant.

The SuperSAGE data were deposited in the Short Read Archive public domain under the
accessions SRX1000071 for the AMF infected roots and SRX1000116 for the controls.

Results
Characterization of the SuperSAGE libraries from Rhizophagus
irregularis infected and non-infected Nicotiana attenuata roots

In order to find out which genes are specifically regulated during the interaction of N. attenu-
ata with R. irregularis, we generated SuperSAGE libraries from R. irregularis-infected and non-
infected roots of size-matched plants. After eliminating incomplete reads, twin-ditags, and
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Germination of N. attenuata

After 10-14 days

<

Transfer to big Teku pots with sieves

After 20 days

@

Agroinoculation with VIGS constructs

After 13 days

@

Transfer to 1-L pots witthoculum

After 28 -35 days

<

4 Harvest of roots growing outside the plastic net:
Root and shoot biomass, gene expression
analysis, infection rates

Fig 1. Experimental set-up for virus-induced gene silencing experiments to study the interaction between Nicotiana attenuata and arbuscular
mycorrhizal fungi.

doi:10.1371/journal.pone.0136234.g001

ditags without complete library-identification DNA linkers, sequencing resulted in 5,264,218
Tags, comprising 1,666,059 for the non-infected roots and 3,598,159 for the infected roots. The
frequency distribution of these Tags showed that the number of copies in groups with low and
average levels of Tags (< 1,000 copies million™") represented 99.8% of the Tags, whereas groups
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with high and extremely high levels of Tags (>1,000 copies million™") represented only 0.20%
(Table C in S1 File).

After multiple adenosine bases were removed to rule out the possibility of sequencing
errors, 92,434 Tags remained, and these were used for all down-stream analyses (S1 Table). For
gene annotation, a basic local alignment (BLASTN) algorithm was performed with the 92,434
Tags against the in-house N. attenuata 454 transcriptome sequencing database [57]. Among
these Tags, 32,808 (35%) showed a perfect match (26/26) with genes of the transcriptome data-
base, whereas 3,698 (4%) of the Tags matched perfectly (26/26) with the publicly available R.
irregularis genome sequencing database [34] (Table 1). Thus, about 10% (3,698/36,506) of the
annotated Tags were from the fungal partner. When we used less stringent annotation parame-
ters, such as 24/26 and 20/26 bp match, 44.5% (41,172) and 51.3% (47,480) of Tags could be
annotated (Table D in S1 File).

Tags with a P-value of less than 0.05 and at least a 2-fold change were considered as signifi-
cantly up- and down-regulated and were used to characterize SuperSAGE Tags.

From 11,194 Tags that significantly changed in response to infection, 4,729 (43%) Tags
were up-regulated and 6,465 (57%) Tags were down-regulated. The vast majority of up-
(4,275) and down-regulated (3,550) Tags were in the range of a two- to five-fold change; 89
Tags and 9 Tags were more than 100-fold up- and down-regulated in response to infection,
respectively (S2 Fig).

Gene ontology analyses were performed to obtain further information about the gene func-
tion of differentially expressed Tags. Only Tags that mapped Nicotiana attenuata and R. irregu-
laris genes and showed at least a log2 expression change >I21 were considered (P < 0.05). We
used this strict cut-off to minimize the number of putative false-positives. Among the most
prevalent GO biological processes (level 3) for N. attenuata, more than 50% of the sequences
were classified as relating to cellular and metabolic processes. Interestingly, the overall pattern
of gene functions regulated in response to infection was similar for both R. irregularis and N.
attenuata (data not shown). However, when GO functions were compared based on node
scores [67], functions related to signal transduction, transport and defense showed a high score
for the plant partner (Fig 2), whereas for the fungal partner mainly basic cellular functions
scored high, but also functions related to stress and cation transport (Fig 2B).

We compared our gene expression data with data from two other recent global gene expres-
sion analyses using AMF-infected tomato [68] and Medicago roots [29]. The comparison
revealed 18 genes that were strongly up-regulated in all three studies (S2 Table). These genes
cannot be related to a single function in the cell but are related to different functional groups.
Remarkably, for all three studies, an auxin-response protein, GA200x and three transcription
factors as well as a nitrate transporter and proteinases, including a subtilisin-like proteinase
were strongly regulated. In general, infected tomato roots showed more overlap with N. attenu-
ata (additional 30 Tags with putative similar functions) than with Medicago (additional 15
Tags). It has to be noted that our comparison does not take into account if different subgroups
of a gene family or subunits of a large protein were activated by AMF in the three studies. We
also compared putative fungal Tags significantly expressed in N. attenuata and tomato, and
the functional description of 51 annotated Tags overlapped (S3 Table). Many of these genes

Table 1. Annotation of SuperSAGE Tags using the in-house N. attenuata 454 transcriptome database [57] and the publicly available Rhizophagus

irregularis sequencing database [34].

No. of Tags matching with N. attenuata No. of Tags matching with R.irregularis Unmapped
454 transcriptome sequencing database (26/26) sequencing database (26/26)
32,808 (35%) 3,698 (4%) 55,928 (61%)

doi:10.1371/journal.pone.0136234.t1001
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have rather general functions in cells, such as actin, 60 and 40S ribosomal proteins, histones and
ubiquitin. Others are related to N- and sugar metabolism (e.g. glutamine synthase, fructose-
bisphosphate aldolase, fructose-bisphosphate class II, triosephosphate isomerase), indicating a
high metabolic turnover within the fungal partner.

Validation of the SuperSAGE data by qPCR

For the validation of the SuperSAGE data, we conducted a time-course analysis to determine
the time-point when plants achieved infection rates similar to those in the roots used for the
SuperSAGE analysis. The amount of infection structures counted based on microscopic obser-
vations and the expression of N. attenuata phosphate transporter 4 gene (NaPT4) as a marker
of arbuscule formation [31] increased with time (S3 Fig), and the values obtained in roots 35
days after inoculation matched best with the values in the roots colonized with fungus that
were used for the SuperSAGE libraries (Table E in S1 File). We also tested gene expression of
two other arbuscule-specific P-transporters from N. tabacum NtPT3 and NtPT5 [69]. Their
expression also corresponded with arbuscule formation, but correlation was less pronounced
(data not shown).

We used genes known from other plant-AMF interactions and genes that have not been
described earlier for validation. The up-regulation of the probable N. attenuata genes ABC trans-
porter A, putative indole-3-acetic acid-amido synthetase GH3.9 (GH3.9), capthepsin L, glutathi-
one-S-transferase (GST), germin-like-protein (GLP) and AB hydrolase could be confirmed by
qPCR (Fig 3; Table F in S1 File). Similarly, the putative R. irregularis-specific genes, chitin
synthase, phospholipid transporting ATPase (PPT-ATPase, vesicle-associated membrane protein
7B (VAMP), plasma membrane-ATPase (PM-ATPase) and extended synaptotagmin-1 (ES-1),
were highly expressed during the symbiotic association with N. attenuata (Fig 3B). We also
checked the expression of five down-regulated Tags and their corresponding genes. For two of
them (putative ornithine decarboxylase and triacyl glycerol lipase), a weak down-regulation in
response to infection could be confirmed, though levels were far less than expected based on the
fold-change ratios obtained for the SuperSAGE libraries, and one gene (cysteine synthase) even
showed the opposite effect while at the same time a putative nuclear transport factor and myb-
related protein 308 were unchanged (S4 Fig). Thus, it seems that the highly up-regulated genes
are directly induced by AMF, and the down-regulated Tags are more dependent on other factors.

Successful silencing of candidate genes by virus-induced gene silencing
(VIGS) in N. attenuata

We selected two putative plant and fungal Tags that were highly expressed in response to infec-
tion to investigate their importance for the interaction. A putative NaGH3.9 was selected
because there is increasing evidence that auxins are important for successful fungal coloniza-
tion [70], but details on the mechanisms are still scarce. GH3.9 is an auxin-responsive gene
functioning in auxin-based plant development [71]. The second plant gene selected encodes a
putative germin-like protein (GLP). GLPs play a broad range of roles as enzymes, structural
proteins, or receptors [72,73]. For M. truncatula, it was shown that GLP is expressed in arbus-
cule-containing cells [74], but it remains unknown whether GLP expression is essential for the
interaction. Additionally, as a proof-of-principle, we constructed a VIGS vector for silencing
CCaMK, because, in accordance with the results obtained for other species, stably transformed
N. attenuata plants are not successfully colonized by AMF [51].

Virus-induced gene silencing of all three plant genes was successful, and plant growth was
not affected (S5 Fig). The silencing efficiency was ~64% for GH3.9 and GLP constructs and
~74% for CCaMK constructs (Table 2). Transient silencing of the CCaMK gene significantly
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Fig 3. Validation of significantly up-regulated SuperSAGE Tags annotated to N. attenuata (A) and R. irregularis (B) by qPCR. Relative transcript
levels of selected plant (A) and fungal (B) Tags significantly up-regulated (P < 0.05) after the infection of Nicotiana attenuata by Rhizophagus irregularis.
gPCR analysis was carried out on root samples harvested 35 days after inoculation. Elongation factor-1 alpha was used as a reference gene for
normalization. Transcript levels were analyzed in four biological replicates ((+ se, N = 4).

doi:10.1371/journal.pone.0136234.9003

Table 2. Selected genes for the functional characterization by virus-induced gene silencing (VIGS).
Silencing efficiency is shown as the percentage of cDNA of the genes of interest in VIGS-silenced plants in
comparison to empty vector roots measured by gPCR and normalized with EF-1alpha. CCaMK — calcium and
calmodulin-dependent protein kinase, GH3.9 —indole acetic acid-amido synthetase GH3.9, GLP—germin-

like protein,

Gene of interest Vector Silencing efficiency (%)*
CCaMK pTVCCaMK 74%

GH3.9 pTVGH3.9 64%

GLP pTVGLP 63%

*significant (p<0.05) difference compared to EV plants.

doi:10.1371/journal.pone.0136234.t002
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reduced the number of hyphae and arbuscules compared to the number found in plants inocu-
lated with the empty vector (EV) (Fig 4). qPCR analysis using NaPT4-specific primers sup-
ported the significantly lower number of arbuscules found for the microscopic analysis (Fig 4).
Silencing GLP and GH3.9 also reduced the infection parameters due to the variability among
samples, but the effect was significant only for arbuscule formation in GH3.9-silenced plants
(Fig 4B). Also auxin levels were not altered in GH3.9-silenced plants (S6 Fig). Interestingly,
when a highly infective inoculum was used to colonize plants, 4 weeks after inoculation root
length colonization and levels of phosphate transporter 4 gene expression were not significantly
different among empty vector controls and plants transiently silenced in CCaMK expression
(S7 Fig).

In addition to these plant genes, we also tried to silence genes of the fungal partner. Because
previous attempts to silence genes of a heterotroph (insect larvae) using leaf material carrying
gene sequences of the heterotroph by VIGS-treatment or using stably transformed plants were
effective [45,75], we hoped for similar success. However, this approach was not successful for
our plant-heterotroph (fungus) system, even when we used MST2, a fungal gene that has previ-
ously been successfully silenced using the Agrobacterium rhizogenes hairy root system in Medi-
cago truncatula [46].

NaCCaMK acts upstream of the putative GH3.9 and GLP

In order to understand how the three plant genes are related with respect to each other after
infection, we measured their expression in the different backgrounds. The transcript levels of
GH3.9 were strongly reduced in NaGLP- and NaCCaMK-silenced plants compared to EV
plants (63 and 84%, one way ANOVA, P < 0.05 followed by Tukey’s HSD, Fig 5). Furthermore,
transcript levels of GLP were found to be similarly reduced in NaGH3.9 and NaCCaMK
silenced plants in comparison to EV plants (65 and 95%, one-way ANOVA, P < 0.05 followed
by Tukey’s HSD, Fig 5B), whereas the expression of NaCCaMK was similar in NaGH3.9- and
NaGLP-silenced and EV-inoculated plants (one-way ANOVA, P = 0.204) (Fig 5C), indicating
that NaGLP and NaGH3.9 act downstream of NaCCaMK.

Discussion

Here we used a SuperSAGE approach in combination with next-generation sequencing to
characterize changes in gene expression after arbuscular mycorrhizal infection of N. attenuata
roots. Unlike microarrays, this approach allowed us to explore genes that were not limited to
those known from the transcriptome of N. attenuata and, additionally, to include fungal genes
in the analysis. We used whole roots to obtain a global picture of the changes induced by AMF.
About 40% of the more than five million sequenced 26 bp Tags could be annotated with
either N. attenuata or R. irregularis transcriptome; this number increased to 60% if only P-val-
ues of less than 0.05 were considered. The number is still lower than expected, but it has to be
considered that the reference database is our in-house transcriptome database of N. attenuata.
This database covers not the whole genome but, rather, only the genes expressed used for the
generation of the library. Additionally, gene identification was based on 26 bp Tags; in these,
sequencing errors more strongly influence the process of annotation than they do in longer
reads, and next generation sequencing methods are known to be prone to sequencing errors
that are substantially higher than the errors found in traditional Sanger sequencing [76,77].
Although the specificity of the 26 bp was high [38], it did not always match with a single gene;
almost 20% of N. attenuata hits were multiple hits. Our study revealed changes not only in
plant gene expression but also in fungal genes. About 10% of the annotated Tags—in total,
3698—matched with the R. irregularis transcriptome and 77% could be annotated with a
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plants silenced for GH3.9, CCaMK and GLP after inoculation with R. irregularis. Nicotiana attenuata
plants inoculated with tobacco rattle virus vectors carrying a vector for silencing a putative indole-3-acetic
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dependent protein kinase (CCaMK), and empty vector (EV) as control. Plants were harvested 28 days after
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inoculation with R. irregularis. A, B) Root length colonization by R. irregularis was determined after Trypan
blue staining with the gridline intersection method. Mean (+ se, N = 5). C) NaPT4 expression was determined
by gPCR and normalized to elongation factor alpha 1 (+ se, N = 6). One-way ANOVA was followed by
Tukey’s HSD, different letters indicate significant differences between the lines (P < 0.05). The VIGS
constructs used for silencing are empty vector (EV) represented by dark gray bars, putative indole-3-acetic
acid-amido synthetase GH3.9 (GH3.9)-white bars, germin-like protein (GLP)-black bars, calcium and
calmodulin-dependent protein kinase (CCaMK)-light gray bars.

doi:10.1371/journal.pone.0136234.9004

putative gene function [34]. This number is higher than the number in the study [68], which
found 762 fungal genes expressed during root colonization.

Many genes that were strongly induced in our study have also been shown in previous stud-
ies to be differentially regulated [29,68], indicating that a core set of genes is induced in plants
in response to AMF infection independent of the plant species. This core group of genes cannot
be related to a single defined function but, rather, relates to very different roles in a cell, such as
transmembrane and vesicle transport, defense, signal transduction and catabolism (Fig 2A).
These are the processes that mediate the reprogramming of cell metabolism in response to
AMF-infection. We confirmed the up-regulation of ABC-transporter A, GLP, cathepsin L, puta-
tive GH3.9 and glutathione-S-transferase after AMF infection in N. attenuata by qPCR; all of
these are genes that have been shown earlier to be induced by AMF infection
[23,28,30,68,78,79]. In contrast, the AMF-induced expression of an AB hydrolase has not been
shown before, though other alpha / beta hydrolases, such as D14/DAD?2, are known to be
important for AMF infection [35,80]. Remarkably, among the phytohormone-related genes
examined in the three studies compared here, auxin, ethylene and gibberellin-related genes are
strongly induced during AMF infection in all three (S2 Table). GA 20-oxidase (GA200x) genes
belong to a gene family that converts C20-GA substrates through successive oxidative reactions
to form C19-GA products [81], and if gibberellin signaling was impaired e.g. by a mutation in
the DELLA protein expression, GA20o0x was not induced by AMF and arbuscule formation
was impaired [82]. This result suggests that the biosynthesis of active GA forms plays a role in
arbuscule formation. AP2-like ethylene-responsive transcription factors (AP2/ERF), whose
expression was found to be enriched in the three independent studies compared here (S3), are
defined in part by having domain-binding ethylene-responsive elements that are known to
mediate nodulation factor signaling [83] and may also play a role in AMF signaling. For exam-
ple, it was shown that the fungal effector protein SP7 interacts with ERF19 from M. truncatula
[84]. The increased expression of genes involved in plant defense against pathogens and herbi-
vores (Fig 2A), such as PR-protein, S-norcoclaurine synthase, MLO-like protein, trypsin protein-
ase inhibitor and CCR4-associated factor 1 found after AMF infection of N. attenuata, L.
esculentum and Medicago truncatula (S2 Table), may indicate the enhanced defense status of
the infected plants; this enhanced status may lead to priming, which in turn may allow plants
to react rapidly to attack [85,86].

Except for the R. irregularis sequencing project [34,55,87] and the 454-transcriptome
sequencing of AMF-infected and non-infected tomato roots [68], few publications on fungal
genes expressed during plant infection are available [27,46,88,89]. Based on node scores, genes
involved in general metabolic processes strikingly dominated the annotated fungal Tags (Fig
2B). The observed pattern of fungal gene expression probably reflects the general metabolic
activity for growth during the different developmental stages of the fungus within the root.
Here, we confirmed the high expression of a fungal plasma-membrane ATPase, a chitin
synthase and a phospholipid transporting ATPase, all of which have been shown earlier to be
regulated during root colonization [27,29,55,89,90]. The two fungal genes VAMP and extended
synaptotagmin-1 have not been shown before to be highly expressed in mycorrhizal tissue;
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Elongation factor alpha 1 was used as a reference gene for normalization (x se, N = 6). One-way ANOVA
followed by Tukey’s HSD, different letters indicate significant differences between the lines (P < 0.05). The
VIGS constructs used for silencing are empty vector (EV) represented by dark gray bars, putative indole
acetic acid amido synthase GH3.9 (GH3.9)—white bars, germin-like protein (GLP)-black bars, calcium and
calmodulin-dependent protein kinase (CCaMK)-light gray bars.

doi:10.1371/journal.pone.0136234.g005

though the expression of extended synaptotagmin-1 was induced after the treatment of R. irre-
gularis hyphae with crude extracts of M. truncatula mycorrhizal roots [90]. For Arabidopsis, it
was proposed that synaptotagmin-1 acts as a site for endoplasmic reticulum-plasma-mem-
brane contact; this contact plays a role in the cellular adaptation of environmental stresses [91].
In M. truncatula, two highly homologous exocytotic VAMPs are required for formation of the
symbiotic membrane interface in plant-AMF and plant-rhizobia interactions [92], and it can
be assumed that the fungal VAMP plays a similar role in R. irregularis [93]. The expression of a
putative fungal SEC13 protein was also up-regulated in infected roots. A Lotus japonicus
homologue to the nucleoporin SEC13 protein plays a role when the rhizodermis is colonized
by AMF, but not for the cortical endosymbiotic infection [94]. Although the function of the
fungal gene is still unknown, it might be important for the early steps of root colonization. Fur-
ther highly expressed putative fungal genes, such as extended synaptotagmin-3, vesicle transport
protein USEL, vesicle transport v-SNARE 12, protein transport proteins SEC1, SEC23, SEC61

and yifI, indicate the presence of strong vesicle trafficking, endoplasmic reticulum-plasma
membrane interactions and high metabolic activity in the fungal cells, and suggest that Tags
related to genes involved in cellular component biogenesis and development are enriched. We
hypothesize that these genes are expressed and needed for the formation of hyphae and in par-
ticular for arbuscule formation.

In general, the fungal genes expressed during root colonization found in the present study
overlap strongly with the genes expressed in the same species (R. irregularis) when it is coloniz-
ing tomato roots [68]. Based on the large number of significant changes in the transcriptomes
found for N. attenuata and for Medicago and S. lycopersicum in resonse to AMF infection, an
overlap of 18 genes with putative similar functions seems rather low, with more similar genes
expressed in the two Solanaceous species [68] than in the legume [29,95] and in N. attenuata.
In addition to the closer evolutionary relationship between tobacco and tomato compared to
Medicago, the different experimental approaches (microarray vs. next-generation sequencing)
may account for some of the differences. However, overall the data suggest that, in addition to
a core set of gene functions expressed in the roots of all plant species in response to AMF infec-
tion (a response that is presumably of ancient origin), a large part of the gene expression pat-
tern seems also to be species-specific and additionally influenced by environmental conditions
and developmental stage. This hypothesis is supported by previous large-scale analyses that
only showed little overlap or high variability even among different sampling years/seasons
using the same species [28,96].

Gene-expression studies visualize only the pattern of genes expressed during the infection,
whereas gene silencing enables a functional analysis of the differentially expressed genes to be
carried out. Here, we used virus-induced gene silencing to further analyze the role of selected
plant genes that were strongly induced during AMF infection. We successfully adapted the pro-
tocol established in our lab [43,66], and used CCaMXK, a gene well-known to be important for
AMEF infection [15], for a proof-of-principle. We observed the expected strong reduction in
arbuscule formation and phosphate transporter 4 expression in response to gene silencing. As
roots that developed before gene silencing were kept in a net and the remaining roots cut before
transfer to inoculum, it was easy to harvest specific roots silenced for the gene of interest. The
approach is similar to the approach used in the VIGS-silencing system established by [97], but
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allows for an increased root growth after gene silencing. Importantly, the strong reduction in
root colonization and the reduced expression of PT4 in CCaMK-silenced roots were observed
only when the inoculum strength was moderate. When highly infected freshly cut leek roots
were used—despite successful CCaMK silencing—root length colonization and the levels of
NaPT4 expression were similar in plants that had been inoculated with CCaMK and EV vectors,
respectively. We infer that not only was the silencing efficiency (73%) insufficient to prevent col-
onization when roots were challenged with a highly active inoculum, but that also the roots of
the cut leeks were functioning as hosts. The effect is probably similar to findings obtained with
Arabidopsis, a plant species which usually cannot be infected by AMF. However, when Arabi-
dopsis grows in close proximity to a highly AMF-infected Medicago host plant, Arabidopsis
roots show typical AMF infection structures but no arbuscules [98]. Similarly, maize mutants
impaired in the expression of an arbuscular mycorrhiza-specific phosphate transporter are not
infected by arbuscular mycorrhiza when grown in single pots but are highly infected when
grown together with infected chives and under field conditions (trans-complementation) [33].

Although the two N. attenuata genes, GLP and GH3.9, were successfully silenced, the effect
on root colonization was not statistically significant. It remains unclear if silencing efficiency
was not sufficiently high to observe an effect on AMF infection or if the genes do not play a cru-
cial role for the infection process. However, the expression of the two genes was also signifi-
cantly lower in CCaMK-silenced plants than in EV plants, indicating that they act downstream
of CCaMK. This result is consistent with the finding that a M. truncatula GLP1 showing 37%
homology at the amino acid level with NaGLP was localized in the arbuscule containing cells
[74]. The consistent up-regulation of an auxin-response factor in N. attenuata, M. truncatula
and S. lycopersicum (S2 Table) and the high expression of a putative GH 3.9 also in Medicago
[95,99] and tomato [68,100] strongly suggest a role for auxin during AMF infection. This infer-
ence is supported by a previous study that showed an increase in conjugated auxins at late
AMF developmental stages [101]. Furthermore, recent findings demonstrate that auxin pro-
duction is needed for root colonization [102] and auxin perception for arbuscule formation
[70], but how this phytohormone is involved in the interaction still needs further clarification.

Based on a recent study showing that tobacco rattle virus VIGS constructs expressing genes
of heterotrophs in plants successfully silence those genes in heterotrophs when consumed [45],
we extended our study to examine the plant-mediated RNAi potential for the AMF-plant inter-
action. However, this approach was not successful, and we infer that the periarbuscular mem-
brane is a barrier that the viral RNA is unable to cross or that fungal RN Aases are able to
dismantle the silencing signal.

In conclusion, our work demonstrates that arbuscular mycorrhizal infection of plants
induces a complex gene expression pattern with a highly conserved set of gene functions across
different plant species. In addition to genes involved in phytohormone regulation, the increase
in genes related to defense is striking and may prime plants to react more rapidly to future
attack. However, a large portion of genes that respond to AMF infection do not do so consis-
tently among different species and conditions, and context probably accounts for the variance
seen in plant species, particular growth conditions and developmental stage. For an analysis of
elicited gene function, we adapted a tobacco-rattle-virus-mediated gene-silencing protocol to
silence genes involved in AMF interactions, allowing more in-depth studies of the roles of
genes induced during AMF infection in roots.

Supporting Information

S1 Fig. Flow-chart showing the experimental approach used for the generation and analysis
of the SuperSAGE libraries to find genes that are differentially regulated in the interaction
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between Nicotiana attenuata and Rhizophagus irregularis. Same-sized samples from infected
and non-infected plants were harvested about 21 days after inoculation.
(TIF)

S2 Fig. Fold-change distribution of significantly up- and down-regulated Tags (infected vs.
non-infected, P<0.05).
(TIF)

S3 Fig. Kinetics of infection of Nicotiana attenuata roots by Rhizophagus irregularis. AMF
colonization of roots harvested at different time-points after inoculation determined after Try-
pan blue staining according to [5959], and relative expression of phosphate transporter 4
(NaPT4) determined by qPCR with gene-specific primers and normalized using actin primers
as a reference. Each bar represents mean + se (N = 5).

(TTF)

S4 Fig. Validation of SuperSAGE Tags down-regulated in response to AMF infection by
qPCR.
(TIF)

S5 Fig. Root and shoot biomass of plants inoculated with tobacco rattle virus carrying the
following constructs: empty vector (EV), probable indole-3-acetic acid-amido synthetase
GH 9.3 (GH3.9), germin-like protein (GLP) and calcium and calmodulin dependent protein
kinase (CCaMK). N = 13SE, one-way ANOV A followed by Tukey’s HSD, different letters
indicate significant differences. If no letters are given, biomasses do not differ.

(TIF)

S6 Fig. Auxin (IAA) levels are not altered in roots of virus control plants and indole-3-ace-
tic acid synthase silenced plants. N = 6+SE.
(TIF)

S7 Fig. A strong inoculum masks the effect of virus-induced gene silencing of CCaMK on
infection by R. irregularis. Root length colonization by hyphae (A) and expression level of
phosphate transporter 4 (NaPT4) (B) in virus control plants (EV) and silenced plants (CCaMK)
(73% silencing efficiency) were not significantly different from empty vector-treated plants
(EV). Roots were harvested 35 days after transfer to fresh leek inoculum (infected roots and
fungal spores on expanded clay particles). N = 6+SE for the microscopic analysis, n = 13+SE
for gene expression analysis. NaEFlalpha was used as a reference gene for qPCR analysis. Dif-
ferent letters indicate significant differences. If no letters are given, differences were not signifi-
cant.

(TIF)

S1 File. Supporting Tables. Table A. List of primers used for the validation of SuperSAGE
Tags related genes 35 days after inoculation with R. irregularis, Table B. List of primers used
for the construction of VIGS vectors, Table C. Features of SuperSAGE libraries from R. irregu-
laris-infected and non-infected N. attenuata root samples, Table D. Annotation of Tags with
the in-house N. attenuata 454 transcriptome database [57], Table E. Fungal infection rates of
roots used for A) SuperSAGE analysis and B) qPCR. Infection rates were determined after Try-
pan blue staining with the gridline intersection method according to [59]. For the SuperSAGE
analysis, roots of 2 roots were pooled to one sample (N = 5); for the qPCR, 35-day-old samples
grown on 10% inoculum were used (N = 4). Table F. Comparison of relative gene expression
of selected genes for SuperSAGE and qPCR

(DOCX)
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S1 Table. Summarizing table characterizing the SuperSAGE Tags used in this study.
(XLSX)

$2 Table. Similar putative function of significantly up-regulated annotated plant genes
overlapping in the present study, the study of Ruzicka et al.(2013) [63] with S. lycopersicum
and the study of Hogekamp et al. (2011) [29] with M. truncatula. Putative functions found
in all three studies (A), and in only two of the studies (B, C). The datasets contained the most
highly up-regulated genes and their function for N. attenuata (log2 fold change >2, P < 0.05,
301 mapped and annotated Tags), AMF-infected tomato (P < 0.05, log2 fold change >2, 977
contigs, [68]), and Medicago roots log2 fold change >2, 394 gene IDs [29]).

(XLSX)

S3 Table. Similar putative functions of annotated fungal tags and contigs significantly up-
regulated after AMF infection found in the present study in N. atfenuata and in tomato
[68] (log2 fold change >2, p<0.05).

(XLSX)
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