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Abstract
Many published research results are false (Ioannidis, 2005), and controversy continues

over the roles of replication and publication policy in improving the reliability of research.

Addressing these problems is frustrated by the lack of a formal framework that jointly repre-

sents hypothesis formation, replication, publication bias, and variation in research quality.

We develop a mathematical model of scientific discovery that combines all of these ele-

ments. This model provides both a dynamic model of research as well as a formal frame-

work for reasoning about the normative structure of science. We show that replication may

serve as a ratchet that gradually separates true hypotheses from false, but the same factors

that make initial findings unreliable also make replications unreliable. The most important

factors in improving the reliability of research are the rate of false positives and the base

rate of true hypotheses, and we offer suggestions for addressing each. Our results also

bring clarity to verbal debates about the communication of research. Surprisingly, publica-

tion bias is not always an obstacle, but instead may have positive impacts—suppression of

negative novel findings is often beneficial. We also find that communication of negative rep-

lications may aid true discovery even when attempts to replicate have diminished power.

The model speaks constructively to ongoing debates about the design and conduct of sci-

ence, focusing analysis and discussion on precise, internally consistent models, as well as

highlighting the importance of population dynamics.

Introduction
Imagine two of your close colleagues have just heard about attempts to replicate their positive
research findings. Colleague A is thrilled that the attempt was successful. Colleague B is upset
that the attempt was unsuccessful. What is the probability that Colleague A’s hypothesis is
true? What is the probability that Colleague B’s hypothesis is false?

This is not a fair quiz, because in truth no one knows the answers to these questions. The
absence of replication in many fields [2–4], combined with the absence of a formal framework
for understanding replication, makes it difficult to even outline an answer. In the absence of
replication, there is substantial concern that many published findings may be false [1], an
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argument with empirical support [5–7]. The history of science buttresses these observations. A
recent catalog of false discoveries of chemical elements outnumbers the current number of real
elements in the periodic table [8]. In addition to concerns about replication are concerns about
research practice and publication bias. Without knowing how many studies were conducted
but not published, it is not possible to assign evidential value to either initial findings or replica-
tions. And it is not yet easy to acquire empirical evidence about these factors, as even the best
empirical studies of publication bias still rely upon researcher self-report [3].

Thus many opinions can be sustained about the evidential value of both initial findings and
replications. As a result, recent controversies over failed replications demonstrate a lack of con-
sensus on norms for replication and publication [9–12]. What is the evidential value of replica-
tion, positive or negative? What is the impact of publication bias [13]? If replication is part of
an “invisible hand”[14] that corrects scientific errors, how much replication is needed? And
what are the risks of poorly designed or interpreted replication attempts [9]? When replication
is not possible or practical, what other measures can be taken to improve the reliability of
research?

These questions remind us that little is understood about the population dynamics of dis-
covery, replication, and scientific communication. Much more attention has been given to indi-
vidual methods of research design and data analysis. And while it is useful to analyze research
methods in isolation, such calculations are unsatisfying. A lot of research activity is hidden
from the public record. This means the actual number of findings for an hypothesis may never
be known [13]. And since researchers select hypotheses for further study from the literature
itself, findings and publication biases cascade into other findings, interacting with biases and
incentives [15].

To know the evidential value of research, we must study the population dynamics that pro-
duce it [14, 16–18]. So here we construct and solve a mathematical model of scientific beliefs
formed by a population of boundedly rational agents who accumulate evidence for and against
hypotheses. We adopt a general signal detection framework that may apply to diverse statistical
paradigms, whether p-valued or Bayesian. We study the joint dynamics that arise from replica-
tion, publication bias, and differences in research quality between original studies and replica-
tions. Our goal is not to accurately simulate science, but rather to understand it better using the
same reductionist tools that have been so successful in illuminating population dynamics more
generally [19, 20]. Our model implicitly provides, for example, a neutral model of scientific
dynamics in which all hypotheses are false and yet discoveries are continuously published. It
also provides a range of “selectionist”models that might be compared to data. The clarity of a
quantitative framework will stimulate and clarify the development of later empirical investiga-
tion and experimental intervention.

The paper proceeds by first outlining the dynamic structure of the model. We then solve the
model for both its long-run dynamics and its epistemological implications—what should a
rational agent believe about an hypothesis, given a record of published results? We present a
general interpretation of the joint dynamics, so the reader can extrapolate lessons from our
simple model to the complexity and diversity of real science. We conclude by relating our
results to ongoing debates about improving the reliability of scientific research.

Model Description
The model is illustrated in Fig 1. We have also constructed an interactive, web-based tutorial
on the conceptual foundations of the model, as well as fully adjustable simulation code, avail-
able at http://xcelab.net/replication/. A population of researchers studies many different
hypotheses. Each hypothesis is either true (green) or false (red). These hypotheses could be
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simple associations, such as green jelly beans cause acne [21], or more general claims, such as
evolution is predictable. Research results in either a positive or a negative finding. These findings
may be the result of formal hypothesis tests or informal assessments. True hypotheses produce
positive findings more often than do false hypotheses, but the researchers never know for sure
which hypotheses are true. Under these assumptions, the only information relevant for judging
the truth of an hypothesis is its tally, the difference between the number of published positive
findings and the number of published negative findings for each hypothesis, and we summarize
results in terms of these tallies. In reality, much other information is relevant to judging the
truth of an hypothesis. Our assumptions are tactical ones. More complex models of scientific
communication are possible, but any such model must include the components in our model,
and so our results establish a critical baseline.

Each time interval, research activity has three stages that alter these tallies. In stage 1 (Fig 1,
upper-left) each researcher chooses to investigate one of n previously published hypotheses,

Fig 1. Population dynamics of replication.

doi:10.1371/journal.pone.0136088.g001
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with probability r, or a novel hypothesis, with probability 1 − r. When replicating, a researcher
chooses a previously published hypothesis at random and performs a new study of it. Later, we
allow researchers to target hypotheses with specific tally values, rather than choosing at ran-
dom. A novel hypothesis is true with probability b, the base rate, reflecting mechanisms of
hypothesis formation. Untutored intuition, for example, may be expected to yield a very low b.
Genome wide association studies likewise have low b, because relatively few loci are associated
with any particular phenotype. There is no consensus on base rate, except that most scientists
we know believe their own personal b values are better than average. So we allow b to vary
freely in the model.

In stage 2, a true hypothesis produces a positive finding 1 − β of the time, its power. A false
hypothesis produces a positive finding α of the time, its false positive rate. We assume that 1 −
β> α. Later we allow the values of β and α to differ between replication attempts and initial
studies. Note that β and α are not merely properties of a statistical procedure, but rather of an
entire investigation. For example, using several procedures and selecting the one that produces
a positive result will inflate α [22].

In stage 3, findings may be communicated to other researchers. Not every finding is com-
municated, either because no one tries to communicate it or rather because it cannot be pub-
lished. Only communicated findings can adjust a tally. Let cN- be the probability that a negative
(−) finding about a new (N) hypothesis is communicated. We assume for simplicity that all
new positive results are communicated (cN+ = 1). Even though replication findings are eviden-
tially equivalent to novel findings, they may be communicated with different probability. Let
cR- and cR+ be the probabilities that replications with negative and positive findings, respec-
tively, are communicated.

These assumptions define the dynamics of the expected numbers of true and false hypothe-
ses with a given tally. We present the full recursions in S1 Text. In the simplest case (full com-
munication: cN- = cR- = cR+ = 1), the number nT,s of true hypotheses with an observed tally s in
the next time step is given by:

n0
T;s ¼ nT;s þ anr � nT;s

n
þ nT;s�1

n
ð1� bÞ þ nT;sþ1

n
b

� �
ð1Þ

where a> 0 is the rate of research activity as a proportion of n. This expression says that the
number in the next time step is just the current number plus all of the flows in and out caused
by replications. In the case that s = −1 or s = 1, there is an additional term an(1 − r)bβ or an(1
− r)b(1 − β), respectively, to represent the inflow of novel findings. Recursions n0

F;s for false

hypotheses are constructed from a change in variables: 1 − β! α, b! 1 − b. Notice that this
implies that the model is easily extended to any number of hypothesis types, such as effect size
differences, that differ in power and false-positive rate. We analyze the true/false dichotomy
because of its prominence and simplicity.

Analysis
By literature review, a tally can be constructed for any given hypothesis. Given an observed
tally, but a number of possibly unobserved studies, what is the probability that an hypothesis is
correct? The model allows us to address this question for a diversity of scenarios. Before pre-
senting the solutions, note that the answers that the model provides can be understood both
from a pure population dynamics perspective and from a probabilistic reasoning perspective.
From the dynamics perspective, the population will converge from any initial condition to a
unique steady state in which the solutions give frequencies of true hypotheses at each tally
value. Equally valid is the epistemological perspective that the solutions tell us for any unique
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hypothesis the probability it is true, given a state of information [23]. One consequence of this
is that the solutions do not require that all hypotheses share the same parameter values.

For each tally value s, we solved for the steady state proportions of true and false hypotheses,
p̂T;s and p̂F;s. We also derived the same solutions under the probabilistic interpretation, and ver-

ified our solutions numerically and through stochastic simulation. We present complete analyt-
ical solutions in S1 Text. In the simplest case (for full communication), solutions take the form:

p̂T;s ¼ bð1� rÞ
X1
m¼1

rm�1
m

1

2
ðmþ sÞ

 !
ð1� bÞ12ðmþsÞb

1
2ðm�sÞ ð2Þ

This expression defines an infinite geometric series of binomial probabilities arising from all of
the different possible histories by which a true hypothesis could achieve a tally of s, for every
possible number of findingsm. In the majority of cases, only the first few terms of the series are
important, because of the leading factor rm − 1. This fact also informs us that the rate of conver-
gence to steady state will be quite rapid, unless r is large.

For any particular tally, for example s = 1, expression (2) yields a closed-form solution like:

p̂T;1 ¼
bð1� rÞ
2br2

ð1� 4r2bð1� bÞÞ�1
2 � 1

� �
ð3Þ

For arbitrary communication parameters, the solutions have a similar structure, but are instead
a series of multinomial probabilities in which the events are combinations of findings (+ or −)
and communication outcomes.

These solutions are not easy to interpret by inspection. But they do provide answers to the
question: what is the probability that an hypothesis with a given tally is correct? For any tally s,
we can calculate:

Pr ðtruejsÞ ¼ p̂T;s

p̂T;s þ p̂F;s

; Pr ðsjtrueÞ ¼ p̂T;sP
ip̂T;i

; Pr ðsjfalseÞ ¼ p̂F;sP
ip̂F;i

ð4Þ

The precision of a tally s is Pr(truejs), the proportion of hypotheses with tally s that are true.
The sensitivity, Pr(sjtrue), is the proportion of true hypotheses with tally s. It indicates where
the true hypotheses are. Sensitivity is important because a high precision for a tally s is little
help when there are few hypotheses that achieve a tally s. And the specificity, Pr(sjfalse), is the
proportion of false hypotheses with tally s, indicating where the false hypotheses are. We use
these definitions to explain the behavior of the system.

Overall dynamics
Fig 2 describes the overall dynamics of precision, as a function of the different parameters. In
each panel, the trend lines show the proportion of true hypotheses at each tally on the vertical
axis. The tally corresponding to each trend is indicated by a number. The horizontal axis in
each panel varies a single parameter. Each vertical hairline shows the value of each parameter
that is held constant in other panels. This figure is complex. We’ll use it to highlight the most
important factors in the reliability of findings and demonstrate counter-intuitive aspects of
communication. Then in the next section, we’ll turn to a more general explanation of the
causes of these results.

There are two clusters of plots. The top cluster represents a normatively optimistic scenario,
with an auspicious base rate (b = 0.1), unusually high power (1 − β = 0.8), low false-positive
rate (α = 0.05), and high communication rates. The bottom cluster represents a pessimistic, or
perhaps more realistic [24, 25], scenario with low base rate (b = 1/1000), lower power (1 − β =
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Fig 2. Effects of base rate, replication, power, false-positives, and communication on the probability that an hypothesis with a given tally is true.
The two clusters illustrate difference scenarios. The blue trends, each labeled with its tally value, show precision as it varies by the parameter on each
horizontal axis. The numbers indicate the tally of a curve. Dashed curves are tallies of an even number. The vertical hairlines show the parameter values held
constant across panels within the same cluster.

doi:10.1371/journal.pone.0136088.g002
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0.6), higher false-positive rate (α = 0.1), and publication bias resulting in low communication
of replications and negative findings. The range of base rates we show represents everything
from genome wide association studies, on the low end (b< 10−4), to predicting the winner of a
presidential election, on the high end (b = 0.5). Every scientist will have a different opinion
about which values represent realism. So in S1 File, we provide a Mathematica notebook for
reproducing and altering these plots, so the reader can explore alternative scenarios of interest.
But keep in mind that unrealistic scenarios are just as important for comprehending system
dynamics.

First, notice that at tally s = 1 very many research findings are false. In the top cluster, the
base rate must get quite high before a majority of hypotheses with tally s = 1 are true. In the
bottom cluster, only the highest displayed base rates are sufficient. This dynamically replicates
Ioannidis’ direct calculation [1], even in the absence of bias and multiple testing. Many initially
published findings are false, unless the base rate is high, and without any invocation of fraud or
researcher bias.

Second, notice that replication helps, but how much it helps varies greatly. In the top cluster,
even one positive replication at s = 2 renders most hypotheses true, at a base rate of b = 0.1. At
lower base rates, s = 3 or s = 4 is required to raise precision above one-half. In the bottom clus-
ter, low power and high false-positive rate make replication quite inefficient. Even at high base
rates, s = 3 is needed. At low base rates, s = 5 or more is required. In either cluster, achieving
near-certainty that an hypothesis is true always requires replication, even with a base rate as
high as b = 0.1. In general, the same factors that make initial findings unreliable also make rep-
lications less reliable.

Note also that the rate of replication, r in panel (b), has remarkably little impact. This is
because replication impacts the rate at which hypotheses reach different tallies, but not so
much the precision at each tally. Therefore at low replication rates, few hypotheses will ever
attain s = 5, but those that do are almost certainly true. We expand on this point in the next
section.

Third, communication of findings, panels (e-g), can both assist discovery or hinder it. Sup-
pression of negative replications (e) reduces precision. But suppression of positive replications
(f) and novel negative findings (g) either improves precision or has almost no impact on it.
These aspects of the population dynamics are counter-intuitive, but quite general and reveal-
ing. The next section explains them.

Dynamics of communication
The “file drawer problem” [13] arises when the failure to publish negative findings distorts the
estimated strength of an association. We consider a related phenomenon by asking how
changes in the communication parameters cN-, cR-, and cR+ alter the precision, sensitivity, and
specificity across tallies. In the process, we’ll have opportunity to explain the joint dynamics of
research quality and communication biases.

In this model, it is rarely best to communicate everything. In S1 Text, we prove for the case
of small b (such that b2 � 0) and small r (r3 � 0) that cN- < 1 will improve precision when α<

β (usually satisfied), that cR- < 1 improves precision when a > 1
2
(hopefully never satisfied),

and that cR+ < 1 improves precision whenever b� a � 1
4
(often satisfied). So some suppression

of novel negative findings (cN-< 1) and positive replications (cR+ < 1) can improve the value
of replication. At larger b and r, the conditions are more complicated, but the qualitative find-
ing remains intact.

To grasp why suppressing findings might help us learn what is true, think of replication as
epistemological chromatography. Chromatography is a set of techniques for separating
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substances that are mixed together. For example, mixed plant pigments can be separated by
painting the mixture onto the tip of a strip of filter paper and then soaking the tip in a solvent.
Different pigments bind more or less strongly to the solvent or the paper. Therefore as the
paper absorbs the solvent, different pigments travel at different speeds, eventually separating
and appearing as differently colored bands on the paper. In the epistemological case, it is true
and false hypotheses that are mixed. We wish to separate the true ones from the false. Replica-
tion applies a “solvent” that diffuses false hypotheses towards negative tallies and true hypothe-
ses towards positive tallies. A true hypothesis diffuses upwards with probability (1 − β)cR+,
while a false hypothesis diffuses downwards with probability (1 − α)cR-. Thus the communica-
tion parameters adjust rates of diffusion. Just as manipulating rates of chemical diffusion can
improve real chromatography, manipulating communication can improve epistemological
chromatography.

In Fig 3, we turn on communication one parameter at a time, in order to explain the contri-
bution of each mode of communication to the resulting population dynamics. All four panels
(a, b, c, d) show steady state precision, sensitivity, and specificity and use b = 0.001, r = 0.2, 1 −
β = 0.8, and α = 0.05. These values are chosen for clarity of illustration. In S1 File, we provide a
Mathematica notebook to construct plots for any parameters the reader chooses. Note that for
sensitivity and specificity, probability above/below the highest/lowest tally displayed is added
up on the highest/lowest tally, so that none of the probability mass is hidden.

In the first three panels (a, b, c), only positive initial findings are communicated, and all new
hypotheses appear at tally s = 1. The mixture of hypotheses at this tally is heavily skewed
towards false hypotheses, and so has a low precision. Replication may cause an hypothesis to
diffuse in either direction, depending upon communication. In panel (a), negative findings are
never communicated. But since true hypotheses diffuse up at a rate 1 − β and false ones only at
a rate α< 1 − β, truth is slowly separated from falsity. At tallies of 8 or more, nearly all hypoth-
eses are true, as indicated by the precision. Note however that most true hypotheses that have
been communicated at all exist at low tallies, as indicated by the sensitivity. With enough time
and replication, every true hypothesis can be split from the false. This is unlike the case in
panel (b), where only negative replications are communicated. The same dynamic works in
reverse here, and replication creates a pure sample of false hypotheses at low tallies.

Combining both directions of diffusion is synergistic, as illustrated in panel (c). Now both
positive and negative replications are communicated. The downward diffusion of false hypoth-
eses makes the upward diffusion of true hypotheses more efficient. This effect arises because 1
− α> 1 − β. False hypotheses diffuse down faster than true hypotheses diffuse up. This purifies
the source mixture at s = 1, allowing for precision to approach high values at much smaller tal-
lies than in the absence of either diffusion process. In this example, hypotheses with tallies of
s = 3 and greater are true more than 80% of the time, and the sensitivity indicates that more
than half of all published true hypotheses have a tally of 3 or more. Keep in mind that this 80%
is equally interpretable as a probability that applies to a unique hypothesis. So it provides epi-
stemic value, independent of the frequency interpretation.

Diffusion in both directions is enhanced by suppressing some positive replications. The
dashed curves in panel (c) provide a comparison when only 20% of positive replications are
communicated. Precision is substantially higher in this case, but at the cost of reduced sensitiv-
ity at high tallies. This effect arises from the same dynamic as before: by setting cR+ < 1, we
have effectively slowed all upward diffusion. This allows rapid downward diffusion from nega-
tive replications to further clean the source mixture, but at the cost of diffusing more true
hypotheses towards negative tallies. This dynamic is beneficial when base rate is especially low.
So we achieve a very clean sample of truth at smaller positive tallies in this scenario, but at the
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price of finding fewer true hypotheses in total. Whether this is an improvement depends upon
context, an issue we take up in the discussion.

Finally, full communication is illustrated in panel (d). High precision is achieved at high tal-
lies, but few hypotheses reside at those tallies. This inefficiency arises from the unbiased alloca-
tion of replication effort. When all initial findings are communicated, replication effort is
overwhelmed by following up on initial negative findings, the spike in specificity seen at tally s

Fig 3. Replication and communication as epistemological chromatography. Precision is indicated in blue, sensitivity in orange, and specificity in gray.

doi:10.1371/journal.pone.0136088.g003
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= −1. When the base rate is low, it can be better to screen for positive findings than to publish
every negative finding. Note however that increasing precision, the proportion of hypotheses at
a given tally that are true, is not necessarily the only objective. It does us little good if sensitivity
is very low at all high tally values. We return to this point in a later section, when we consider
differential power and false-positive rates between initial studies and replications.

Targeted replication
Replication in the preceding analysis is purely random: every communicated hypothesis has an
equal chance of being the target of a replication effort. Targeting particular tally values, like
s = 1, might be more efficient. Here, we demonstrate that the main effect of targeted replication
is to improve sensitivity, the proportion of true hypotheses at positive tallies. It has little effect
on precision, the proportion of hypotheses at positive tallies that are true.

To modify the population dynamics to allow targeted replication effort, assume that a pro-
portion rT of all replication attempts target a chosen list of tally values, selecting an hypothesis
randomly from all hypotheses within the list. For example, this list might consist of all previ-
ously communicated hypotheses with a positive tally of three or less, so that researchers con-
centrate their replication efforts on hypotheses thought to be true but with relatively high
uncertainty. The rest of the time, 1 − rT, replication effort remains unbiased.

Fig 4 shows the resulting modification of the dynamics. The dashed curves in these plots
show the steady-state dynamics in the absence of targeting. The shaded pink regions show the
range of tally values included in the target. In each case, targeting improves sensitivity at higher
positive tallies. Thus it helps to diffuse true hypotheses towards tallies with very high precision.
But there is very little effect on precision itself. Targeting helps because it directs effort towards
tallies that may not have a high density of hypotheses. When replication effort is unbiased,
most effort is directed to tallies where the bulk of hypotheses reside. Therefore when the target
range includes a wide range, as in panel (c), it becomes relatively ineffective.

Why doesn’t targeting improve the proportion of hypotheses that are true at higher tallies?
Targeting serves mainly to speed up diffusion, without altering the relative rates at which true
and false hypotheses diffuse. Changes in communication rates, in contrast, do alter the differ-
ential rates of diffusion, and so may dramatically alter precision, as seen in the previous
section.

Differential power and false-positives
So far, we have assumed that power 1 − β and false-positive rate α are the same in initial studies
and replications. Differences between initial studies and replications have been at the center of
concerns about replication [9]. Here we analyze a version of our model in which we allow the
power and false-positive rate to vary. Let 1 − βR and αR be the power and false-positive rate,
respectively, for replications. What effects do both higher-powered replication and lower-pow-
ered replication have on dynamics?

In Fig 5, we present two extreme, illustrative scenarios. Both scenarios use b = 0.001, cN− =
0, cR− = cR+ = 1, r = 0.2, and rT = 0 unless noted otherwise. The first is a “low/high” scenario in
which initial findings are produced by studies with 1 − β = 0.6 and α = 0.2, but replications
have conventional 1 − βR = 0.8 and αR = 0.05. This scenario reflects a context in which initial
studies use small samples and suffer from motivated data-snooping or data-contingent analysis
that elevates false-positives [22, 26]. This scenario is shown in panel (a). The second scenario is
a “high/low” scenario, with 1 − β = 0.8, α = 0.05, 1 − βR = 0.5, αR = 0.05. This scenario reflects a
context in which replications are prone to error, because a true effect requires skill to produce
[9]. This scenario is shown in panel (b).

The Population Dynamics of Scientific Discovery
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Comparing the two, notice that low/high is more damaging overall, as the elevated false-
positives cascade through the population during diffusion of hypotheses to higher tallies. Thus
it takes more replication in (a) to achieve the same precision as in the high/low scenario (b).
Even with only 50% power in (b), replication successfully separates true hypotheses from false
ones. Unfortunately, it also diffuses many true hypotheses towards negative tallies. The high
precision at positive tallies is a result of a false hypothesis’ relative inability to attain a positive
replication, not a result of a true hypothesis’ ability to avoid a negative replication.

In the last two panels, (c) and (d), we show how these scenarios change when negative repli-
cations are suppressed, cR− = 0.1. The situation generally worsens in both cases, but failure to
communicate negative replications does prevent true hypotheses from attaining negative tal-
lies, in the case in which replication power is low, (d).

Overall, replications continue to have value, even when they are more prone to error than
original studies. As long as true hypotheses are more likely to diffuse upwards than downwards,
replication aids discovery.

Fig 4. Targeted replication effort. In all three plots, tallies marked for targeted replication are shown by the
shaded region. Precision is indicated in blue, sensitivity in orange, and specificity in gray. Baseline
parameters set to b = 0.001, α = 0.05, r = 0.1, rT = 0.5, cN− = 0, cR− = cR+ = 1. Dashed curves display steady-
state without targeted replication, rT = 0. (a) High power setting, 1 − β = 0.8. (b) Low power setting, 1 − β = 0.6.
(c) Low power, 1 − β = 0.6, and including tally s = 0 in the target.

doi:10.1371/journal.pone.0136088.g004
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Discussion
Ours is the first analytical model of the joint population dynamics of scientific hypothesis gen-
eration, communication, and replication. Such a model is necessary to illuminate debates
about scientific practice, because until researchers report the results of every study, empirical
estimates of base rate are not possible. And without consideration of population dynamics, any
discussion of the value of research findings remains at least partly naïve, because it is notori-
ously difficult to reason verbally about complex systems. Our model produces a number of
valuable counter-intuitive results. But even when its results are intuitive, some model like ours
is needed to demonstrate their logic. It is not enough to merely hold the correct belief; we must
also justify that belief.

This model is not a definitive representation of the scientific process, nor does it aim to be.
It omits many relevant factors, such as investigator bias and disagreements about the interpre-
tation of evidence. These omissions allow the model to address focused questions about the evi-
dential value of research as it emerges from the joint dynamics of hypothesis generation,
replication, and communication. Models that account for more and different factors must also
include variants of these complex dynamics, so our model is a necessary and useful first step.

Our analysis re-emphasizes what every textbook says: replication is an essential aspect of
scientific discovery. However, it also quantifies its impact and emphasizes that replication itself
can be unreliable—the factors that make initial findings unreliable also make replication less
reliable. When base rate is low, power is low, or false positives common, then many successful
replications will be needed to attain confidence in an hypothesis. This is especially true when
negative replications are difficult to publish.

We find that low base rate and high false positive rate are the most important threats to the
effectiveness of research, replicated or not. This re-emphasizes the importance of quality theo-
rizing, in order to improve base rate. While it is appealing to think that science works

Fig 5. Differential power and replication dynamics. Precision is indicated in blue, sensitivity in orange, and specificity in gray. (a) Low power initial studies
(1 − β = 0.6, α = 0.2) but high power replications (1 − βR = 0.8, αR = 0.05). (b) High power initial studies (1 − β = 0.8, α = 0.05) but low power replications (1 −

βR = 0.5, αR = 0.05). (c) and (d) as in (a) and (b), respectively, but only 10% of negative replications are communicated.

doi:10.1371/journal.pone.0136088.g005
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regardless of where hypotheses come from, undisciplined hypothesis generation reduces base
rate and makes initial findings mostly false. Then large amounts of replication will be needed
to uncover the truth. In fields such as physics and evolutionary biology, a great deal can be and
is done to vet theory in the realm of pure thought, using mathematics and simulation. But in
fields such as social psychology, theory development is rarely formalized [27].

The results also re-emphasize the value of efforts to suppress false positive findings, such as
pre-registered data analysis plans. It is important to recognize that any single scientific hypoth-
esis may correspond to many different statistical hypotheses. If a statistical hypothesis can be
chosen after seeing the data, reasonable scientific hypotheses can become unreasonably flexible
[28]. And many data-contingent transformations and modeling choices that increase power,
conditional on an hypothesis being true, will also increase false-positives, conditional on the
hypothesis being false. For example, dropping outliers may well aid discovery, if the hypothesis
is true. But it may also dramatically inflate false-positives, if the hypothesis is not true [29].

Our model immediately informs debates over the meaning of failed replications. For exam-
ple, some have suggested that positive replications have more worth than negative replications
[12], or even that failed replications “cannot contribute to a cumulative understanding of scien-
tific phenomena” [30]. We find the opposite: communicating a failure to replicate is typically
more informative than communicating a successful replication. This remains true even when
replication attempts have lower power than original studies. However, a single failure to repli-
cate is entirely consistent with a true hypothesis in many scenarios. So both positive and nega-
tive replications may be regarded with skepticism. But neither is without value. Of course our
model is merely a model. But unlike the verbal arguments we cite, it is at least clear in its
assumptions, and its logic can be verified.

Our model also sheds light on proposals for improving the reliability of research. For exam-
ple, many have called for pre-registration and review with a commitment from journals to pub-
lish research results, positive or negative, in order to reduce under-reporting of negative
findings [31]. Our analysis suggests that these proposals should distinguish between new
hypotheses and replication attempts. If indeed many new hypotheses are false in many fields, a
pre-registration process would merely fill journal pages with null findings, doing great harm by
crowding out candidate hypotheses that have passed an initial screening. In our model, there is
little harm in ignoring novel negative findings, because they add very little information. Indeed,
Fig 2 illustrates that the effect of ignoring novel negative results on precision is negligible. In
contrast, a negative replication may add a lot of information. We suspect however that our
model exaggerates this effect, because the model ignores the wasted effort arising from different
researchers repeating an investigation in ignorance of one another’s negative findings. And
there are certainly fields in which full publication may be the best policy, such as when false-
positive rates are low or when the total number of testable hypotheses is very small. Neverthe-
less, the qualitative difference in information value between novel and follow-up negative find-
ings will remain as long as the base rate in the published literature is higher than it is in novel
investigations.

The model stimulates empirical investigation by clarifying which factors must be estimated
in order to gauge the evidential value of research, as well as being readily translatable into a sta-
tistical framework, due to its analytical specification. Our model provides an implicit ‘null
model’ of research: setting b = 0 provides a null distribution of novel findings and lifespans of
hypotheses. Null models are deliberately unrealistic and usually a priori false, but have never-
theless played an important role in science [20].

There are additional factors to address in future work. Our model ignores researcher bias,
multiple testing, and data snooping, each of which deflates base rate or inflates false-positive
rate. Our analysis is framed in a standard, but unsatisfying, “true” and “false” classification,
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rather than considering practical significance and effect size estimation [26]. Our model can be
directly generalized to consider variation in effect size instead of true and false hypotheses. We
explain this generalization in S1 Text. However, our model does not directly address causal
inference nor point estimation.

Incentives also matter. A dynamic analysis of strategic behavior under different incentive
structures would aid policy analysis [18]. As Karl Popper argued, science does not work
because scientists are selfless and unbiased people. Rather it works because its institutions
channel our bias into the production of public goods [32]. In particular, we worry that a
research environment that lacks replication may actually select for statistical practices that
inflate false-positives, as labs with such practices can more readily publish findings and place
students in new positions, all while outrunning the truth.

Replication may offer other benefits that are not accounted for in our model. A failed repli-
cation may be valuable because it inspires a new hypothesis in order to explain variation in
findings. When findings do not generalize across samples, this creates an opportunity to
explain the variation [33, 34]. In our view, the goal of replication is not merely to find the same
result, but also to discover how a result arises and how it is likely to vary in realistic, non-labo-
ratory, contexts.

Despite these shortcomings, our model provides specific quantitative evaluations of many
verbal arguments, as well as drawing attention to the population dynamics of scientific knowl-
edge. Science is a subtle project. Understanding it demands the same rigor that we apply to
projects within science itself.

Supporting Information
S1 Text. Mathematical details, including derivation of steady-state solutions.
(PDF)

S1 File. Mathematica notebook, with model equations and figures.
(NB)
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