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Abstract

Background

Gene expression analysis is an essential part of biological and medical investigations.

Quantitative real-time PCR (qPCR) is characterized with excellent sensitivity, dynamic

range, reproducibility and is still regarded to be the gold standard for quantifying transcripts

abundance. Parallelization of qPCR such as by microfluidic Taqman Fluidigm Biomark Plat-

form enables evaluation of multiple transcripts in samples treated under various conditions.

Despite advanced technologies, correct evaluation of the measurements remains challeng-

ing. Most widely used methods for evaluating or calculating gene expression data include

geNorm and ΔΔCt, respectively. They rely on one or several stable reference genes (RGs)

for normalization, thus potentially causing biased results. We therefore applied multivariable

regression with a tailored error model to overcome the necessity of stable RGs.

Results

We developed a RG independent data normalization approach based on a tailored linear

error model for parallel qPCR data, called LEMming. It uses the assumption that the mean

Ct values within samples of similarly treated groups are equal. Performance of LEMming

was evaluated in three data sets with different stability patterns of RGs and compared to the

results of geNorm normalization. Data set 1 showed that both methods gave similar results

if stable RGs are available. Data set 2 included RGs which are stable according to geNorm
criteria, but became differentially expressed in normalized data evaluated by a t-test. geN-
orm-normalized data showed an effect of a shifted mean per gene per condition whereas

LEMming-normalized data did not. Comparing the decrease of standard deviation from raw

data to geNorm and to LEMming, the latter was superior. In data set 3 according to geNorm
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calculated average expression stability and pairwise variation, stable RGs were available,

but t-tests of raw data contradicted this. Normalization with RGs resulted in distorted data

contradicting literature, while LEMming normalized data did not.

Conclusions

If RGs are coexpressed but are not independent of the experimental conditions the stability

criteria based on inter- and intragroup variation fail. The linear error model developed, LEM-

ming, overcomes the dependency of using RGs for parallel qPCRmeasurements, besides

resolving biases of both technical and biological nature in qPCR. However, to distinguish

systematic errors per treated group from a global treatment effect an additional measure-

ment is needed. Quantification of total cDNA content per sample helps to identify systematic

errors.

Introduction
Fluorescence-based quantitative real-time PCR (qPCR) is the commonly accepted gold stan-
dard to quantitate the amount of mRNA transcripts in biological samples. Benefits of this pro-
cedure over conventional methods for measuring RNA include its sensitivity, large dynamic
range and its potential for high throughput as well as accurate quantification [1]. To achieve
final correctly evaluated results, however, appropriate normalization strategies are required to
control the experimental errors introduced during the multistage process from RNA extrac-
tion, processing and to final evaluation.

Depending on the number of measured gene transcripts and samples the available normali-
zation strategies can be roughly divided into three groups, (i) knowledge-driven approaches,
(ii) data-driven approaches and (iii) modeling approaches. Knowledge-driven approaches are
usually applied to small data sets that measure only few gene transcripts in a limited number of
samples. In such cases, preselection of internal standards is used for data normalization. Usu-
ally, such an internal standard is represented by a number of reference genes (RGs) known to
be stably expressed under the different experimental conditions. While a single RG is sufficient
for data normalization under ideal assumptions, according to MIQE guidlines [2] it is best
practice to rely on the information of multiple RGs for calculation of a sample specific normali-
zation factor. To this end, a number of methods have been proposed for the identification of
stable reference genes. Three of the most prominent ones are geNorm [3], NormFinder [4] and
BestKeeper [5]. While these methods differ in detail, the basic principle remains the observation
and evaluation of inner- and inter-sample/group variation among the preselected RGs. Thus, it
is presumed that the selected RGs are not regulated under the observed experimental condi-
tions and most of all, that they are independent from each other.

The second group of approaches encloses the data-driven normalization methods such as
quantile normalization and rank-invariant set normalization. These methods where initially
developed for the normalization of high-throughput gene expression data such as microarrays.
In their study, Mar et al. [6] proposed that these data-driven normalization methods are
applied to data sets with a minimum of 50 primer pairs per sample. Similar to the knowledge-
driven approaches, there is a number of presumptions that are made when using data-driven
normalization methods. Quantile normalization for example assumes that on average the dis-
tribution of the expression values within the cell remains about constant across the different
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samples. Given a small number of genes, estimation of the quantile distribution from different
samples becomes prone to outliers.

The third group of methods is formed by modeling approaches, i.e., approaches that model
the gene expression values as a composition of the true gene expression and various effects of
technical and biological nature. For example Steibel et al. [7] use linear mixed models to esti-
mate different effects on gene expression. Matz et al. [8] use generalized linear models. They
model the initial transcript copy number and use a Poisson-lognormal distribution of errors in
order to estimate different effects on gene expression.

The use of RGs in a knowledge-driven approach is widely spread for normalization and is
implemented in many software tools for qPCR data analysis. Software tools are reviewed by
Pabinger et al [9]. A basic technique for normalization is the ΔΔCt method described by Livak
and Schmittgen [10] and Pfaffl [11]. The ΔΔCt method relies on a single RG. Current tools like
qBase+ [12], DAG Expression [13] and SASqPCR [14] use multiple RGs for normalization.
They implement a normalization strategy that originates from Vandesompele et al [3], who
suggested the use of multiple RGs. Their tool geNorm allows the most appropriate RGs to be
chosen. geNorm calculates gene expression stability values (M) values for each gene, being val-
ues below 1.5 the most stable RGs. Additionally, it estimates the normalization factor (NFn)
using the geometric mean of expression levels of n best RGs, given by the pairwise variation
(V) analysis, by selecting a cut-off (0.15) below which n RGs should be used for normalizing.

Bas et al [15] and Tricarico et al [16] demonstrate that experimental results depend on the
choice of RGs. The reason for that is responsiveness of RGs towards experimental conditions,
which has often not been tested previously.

Numerous studies [17–19] have shown that common RGs, like genes for albumin, actins,
Gapdh, tubulins, cyclophilin as well as 18S or 28S rRNA, may vary under experimental condi-
tions. Furthermore, the difficulty of finding reliable RGs increases with the number of experi-
mental conditions used in one experimental setup. The usage of multiple RGs can reduce the
impact of single outliers in a RG measurement on the whole sample. However, in case of
responsiveness of RGs towards experimental conditions, the number and the choice of RGs
will alter the results. A distortion of results can be identified if the mean of raw values com-
pared to processed values is shifted under an experimental condition.

To solve these problems we introduce a new modeling approach based on multivariable
regression, which is specialized for the normalization of parallel qPCR data. Spurgeon et al.
[20] introduced a high throughput approach for qPCR with microfluidic dynamic arrays. It
enables to assess 48 or 96 transcripts in 48 or 96 samples on one array in parallel. The design of
the microfluidic arrays for parallel qPCR measurements allows application of a tailored linear
error model which circumvents the dependence on RGs. This approach is called LEMming
(linear error model) and uses linear mixed models. LEMming allows the exclusion of technical
errors, the retention of the biological variation and the exclusion of systematic errors, if they
are identified by external measurements (e.g. cDNA quantification). LEMming reduces the var-
iance in measurements while exerting no influence on the mean value of gene measurements
under an experimental condition. Here we use LEMming to analyze three data sets with differ-
ent stability patterns of RGs. Furthermore, we use LEMming to assess the contribution of sev-
eral sources of variation in qPCR data. LEMming is implemented in the freely available
language R and can be applied by customization of an R-script to a data set.

Materials and Methods
We selected three data sets with different stability patterns of RGs reflecting different experi-
mental situations:
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Data set 1 (DS1): The first experiment was designed for precise quantification of various
technical errors, as well as for the evaluation of reverse transcription (RT) reaction variability.
In detail, HepG2 cells were treated with peroxisome proliferator activating receptor alpha
(PPARa) agonist (N = 4). HepG2 cells, passage 11, were plated out in 12-well plates at 5 × 105

cells/well density in high-glucose DMEMmedium (11965-092, Life Technologies), containing
Glutamine and 10% FCS. 24h later, 100 μMWY14,643—4-Chloro-6-(2,3-xylidino)-2-pyrimi-
dinylthioacetic acid (C7081, Sigma) or solvent control, DMSO—Dimethyl sulfoxide (D9170,
Sigma) were added to 4 wells each (DMSO for the samples A, B, C, and D; WY14,643 for the
samples E, F, G, and H). After 48h of treatment, all wells were lysed using 300 μL of RLT buffer
from RNeasy kit (74104, Qiagen) and RNA was immediately isolated following manufacture’s
instructions. Next, three independent RT reactions have been performed from each sample,
resulting in 3 cDNAs for each sample (i.e. A1, A2, A3, etc). Finally, 24 generated cDNAs were
run in technical duplicates on a 48×48 microfluidic dynamic array. To sum up, DS1 has four
biological replicates, three technical replicates for each cDNA conversion step and two repli-
cates for the qPCR step per condition. DS1 is available in S1 Table.

Data set 2 (DS2): DS2 was selected because of its technical replicates and its seemingly sta-
ble RGs in raw data. Male mice (C56Bl6N) (20–25g, Charles River, Sandhofer Weg 7, Sulzfeld,
Germany) were employed in this study. The animal protocol was reviewed and approved by
the “Thüringer Landesamt für Lebensmittelsicherheit und Verbraucherschutz—Dez.22/Fach-
gebiet Tierschutz/Tierarzneimittel” Germany (§15 Tierschutzgesetz, Reg.-Nr. 02-009/14).
Liver tissue samples, generated in a vivo experiment in mice, were investigated under the influ-
ence of starvation on the kinetic expression level with 7 housekeeping genes (Actb, Itih4,
Ywhaz, Rps13, Ppia, Hprt1, Eef1a1). The mice were denied access to food for a period of 0, 24,
48 or 72 hours (n = 6 each group). The mice were housed under standard animal care condi-
tions and access to water over the whole time. After observation times liver tissue samples were
taken. The mRNA was extracted from the frozen tissues using the Qiagen RNeasy Mini Kit
(Valencia, CA). RNA quantity was measured using Nanodrop (Thermo Scientific, Waltham,
MA). RNA integrity number (RIN) was checked by Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA) and was above 8.5 for all samples. cDNA synthesis was performed
with 2 μL of 50 ng/μL total RNA, 1 μL of 10 × TaqMan RT Buffer, 2.2 μL 25mMMgCl2, 2 μL of
2.5 nM dNTP-Mix, 0.5 μL of 50 μM random hexamers, 0.2 μL of RNase Inhibitor, 0.25 μL of
50 U/μL Multiscribe reverse transcriptase and 1.85 μL RNase-free water. All reagents were pur-
chased from Applied Biosystems (TaqMan Reverse Transcription Reagents: N808-0234). The
reaction mixtures were mixed with RNA and incubated by 25°C for 10 min, 48°C for 30 min
and then 95°C for 5 min. All RNA samples were transcribed twice to detect systematic errors
during the cDNA synthesis. In the end, 48 generated cDNAs were put on in technical dupli-
cates on a 96×96 microfluidic dynamic array. Likewise, all 46 primers were put in twice on the
array as technical replicates. The DS2 is available in S2 Table.

Data set 3 (DS3): DS3 was selected as a complex in vivo experiment where no stable RGs
were identified in raw data. Male inbred Lewis rats (Lewis/HanTMHsd) (250–350g, Central
Animal Laboratory, University Hospital Essen, Germany) were employed in this study. The
animal protocol was reviewed and approved by the “Thüringer Landesamt für Lebensmittelsi-
cherheit und Verbraucherschutz—Dez.22/Fachgebiet Tierschutz/Tierarzneimittel” Germany
(§15 Tierschutzgesetz, Reg-Nr. 02-042/10).

Liver tissue samples, generated in a complex in vivo experiment in rats, were used to investi-
gate the influence of different experimental conditions (surgery, drug treatment, vascular con-
gestion) on the kinetic expression level of 9 commonly used RGs (Ywhaz, Tfrc, Rpsl13, Rpl32,
Rpl27, Mrps18a, Hprt1, Gapdh and Actb).
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The experiment was originally dedicated to explore the effect of vaso-active drugs (L-NAME,
Molsidomine, saline) on the recovery from focal outflow obstruction in rats with portal hyper-
tension due to liver resection (named: ligation/PH). Focal outflow obstruction was induced by
ligation of the right median hepatic vein. Animals subjected to ligation only (named: ligation)
and untreated rats (named: untreated) were used as controls. Samples were obtained after obser-
vation times of either 0h, 24h, 48h and 7d from 3 different locations of the right median lobe:
the obstructed zone, the border zone and the normal zone. Further details regarding the experi-
mental design and procedures are published in Hai et al. [21].

The mRNAs were extracted from the frozen tissues based on manufacturer’s protocols from
Qiagen RNeasy Mini Kit (Valencia, CA). RNA quantity was determined using Nanodrop
(Thermo Scientific, Waltham, MA) and the quality was assessed by Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA). RNA integrity number (RIN) was above 8.5 for all
samples. cDNA synthesis was performed as described in DS2 with reagents by Applied Biosys-
tems (TaqMan Reverse Transcription Reagents: N808-0234).

Taqman qPCRmeasurement using Fluidigm Biomark
Pre-designed validated Taqman Gene expression assays were purchased from Life Technologies
(Darmstadt, Germany) for the detection of human (DS1), mouse (DS2) and rat (DS3) tran-
scripts. Gene expression assays are listed in the according data set table (S1, S2 and S3 Tables).
The company claims assessed PCR efficiency of the assays to be 100 ± 5%. We nevertheless ana-
lyzed the amplification efficiency of three exemplary assays on our own using a dilution series
of a control cDNA sample and could reproduce the data provided by the manufacturer.

For the analysis of DS1, following genes were used as potential reference genes: ACTB—
Actin beta (Hs01060665_g), TBP—TATA box binding protein (Hs00427620_m1), POLR2A—
polymerase (RNA) II (DNA directed) polypeptide A (Hs00172187_m1), GAPDH—Glyceralde-
hyde-3-phosphate dehydrogenase (Hs02758991_g1),HMBS—hydroxymethylbilane synthase
(Hs00609296_g1) and RPLP0—ribosomal protein, large, P0 (Hs02992885_s1).

The assays of 9 reference genes used for DS2 and DS3 analysis are: Actb—Actin beta
(Rn00667869 m1), Gapdh—Glyceraldehyde-3-phosphate dehydrogenase (Rn01775763 g1),
Hprt1—Hypoxanthine phosphoribosyltransferase 1 (Rn01527840 m1),Mrps18a—Mitochon-
drial ribosomal protein S18A (Rn01511938 m1), Rpl27—Ribosomal protein L27 (Rn00821099
g1), Rpl32—Ribosomal protein L32 (Rn00820748 g1), Rps13—Ribosomal protein S13
(Rn02606812 g1), Tfrc—Transferrin receptor (Rn01474701 m1) and Ywhaz—Tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (Rn00755072 m1).

qPCR was carried out using the 48×48 (for the DS1) and 96×96 (for the DS2 and DS3)
Dynamic Array (Fluidigm Corporation, CA, USA) with minor modifications to the manufac-
turer’s protocol found in Spurgeon et al. [20]. Briefly, 2.7 μL sample mixture, 0.3 μL 20X GE
Sample Loading Reagent (Fluidigm PN 7385000746) and TaqMan Universal PCR Master Mix
(2X) (Applied Biosystems, PN 744304437) was used. After, 3.3 μL of Assay mix was prepared
with 3.3 μL 2× Assay Loading Reagent (Fluidigm PN 85000736). After loading, the chip was
placed in the BioMark Instrument 76 (GE96X96 Standard v1.pcl—protocol file) for PCR and
run was set for an initial cycling at 50°C for 2 min, 70°C for 30 min and 95°C for 10 min, fol-
lowed by 40 cycles at 95°C for 15 sec and 60°C for 60 sec. Raw data was analyzed with Real-
Time PCR Analysis Software in the BIOMARK instrument (Fluidigm Corporation, CA, USA).

Basics of parallel RT-qPCR
A dynamic array for Fluidigm Biomark measurements has 48 or 96 probe slots and 48 or 96
sample slots. The center of the chip is an integrated fluidic circuit (IFC), which is a network of
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fluid lines, NanoFlex valves and reaction chambers [20]. The fluid lines with the associated
valves on the IFC combine each probe with each sample in a total number of 2304 or 9216 indi-
vidual reaction chambers (RC) each carrying out a qPCR reaction. An experiment can include
numerous arrays, where various tissues and treatments are measured.

A protocol for quantification of mRNA by real-time RT-qPCR (reverse transcription (RT)
followed by polymerase chain reaction (PCR)) is given by Nolan et al. [22]. The target mRNA
must be extracted and converted to cDNA in a reverse transcription process. Starting with the
cDNA concentrationm0, the cDNA is roughly doubled (PCR efficiency E is around 2) in every
PCR cycle. The cDNA generates a fluorescence signal. When the fluorescence signal exceeds a
certain threshold T the number of cycles Ct are registered.

T ¼ m0E
Ct ð1Þ

A positive shift in the Ct value indicates a lower mRNA starting concentrationm0.
Sources of variation. RT-qPCR measurements have technical and biological sources of

variation. Sources of technical variation are pipetting errors of probes and samples, as well as
errors within the steps of RNA extraction, reverse transcription (RT) and qPCR. The most crit-
ical step is the RT, which contributes most to the variation of mRNA measurements [23]. The
errors due to RT and qPCR steps may vary from gene to gene. Biological variation of gene
expression may vary between treatment conditions and is especially increased after stimulus
experiments. As we will show, the distinction between technical errors and biological variation
improves the reliability of measured differential expression especially in cases of small effects.

ΔΔCt method and geNorm
The ΔΔCt method is described by Livak and Schmittgen [10] and Pfaffl [11]. It determines the
relative quantification of a target gene (TG) in comparison to a reference gene (RG). The rela-
tive expression ratio of a TG is calculated based on PCR efficiency E and Ct deviation of a sam-
ple (s) versus a control (c) [11]:

ratio ¼ ðETGÞðC
TG;c
t �CTG;s

t Þ

ðERGÞðC
RG;c
t �CRG;s

t Þ
ð2Þ

geNorm is a method for the identification of the most stable RGs given a list of potential candi-
date RGs [3]. The method relies on the principle that the expression ratio between two ideal
RGs remains constant over all samples. Variation in this ratio however corresponds to a
decreased expression stability. This provides a ranking of the candidate RGs for their use as
part of the normalization factor (NF). For each sample, NF itself is defined as the geometric
mean of their expression values. The computation of expression stability and normalization
factor as well as the calculation of geNorm normalized values that are comparable with raw and
LEMming processed data is described in detail in S2 File section 2. Application of the ΔΔCt

method for normalization as well as identification of stable RGs using geNorm require com-
plete data sets without missing values. Therefore, imputing of missing values was performed
using K-nearest neighbor imputing [24] with default values (K-value of 10) as provided by the
R-package impute.

Linear error model (LEM)
A framework for data analysis of relative qPCR using linear mixed models has been introduced
by Steibel et al [7]. This framework is used to test for inferences in complex experimental lay-
outs but is still using RGs. We also use a linear error model, but focus on the generation of a
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correct tool independently of RGs. The matching of probes and samples in the reaction cham-
bers of microfluidic arrays imply an experimental design that allows to determine probe and
samples errors in a tailored error model. Here, the sequence of estimated effects plays an
important role.

We distinguish two types of technical errors: The probe error per array (�P:A) is the effect or
mean of all 48/96 sample measurements of a gene on an array. Pipetting of the probe and the
channel for probe transportation on the array influence �P:A. The sample error (�S) is the effect
or mean of all 48/96 gene measurements of a sample. Sample preparation steps which are
exclusive to a sample like pipetting, the channel for sample transportation and the RNA-extrac-
tion influence �S. Both technical errors are systematic influences which are present in 48/96
measurements at a time. They can be excluded in order to reduce variance of all
measurements.

Furthermore, systematic errors or batch effects ~� can cause offsets. Systematic sample errors
can be identified by single-stranded DNA quantification and considered in the error model
(see S1 and S4 Files).

Other systematic effects like influence of treatment and biological variance are part of the
measurement and should be retained for visualization. The treatment effect splits up into two
parts, the global effect (ΔT) and the treatment effect per gene (ΔT:G). Biological variance and
non-systematic technical errors are described by the variable �.

To sum up, a measurement Y is composed of

Y ¼ �PA þ �S þ ~�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

~Y

þ DT þ DT:G þ �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Ŷ

ð3Þ

The different effects are estimated by linear model fitting. The variable Ŷ collects influences

which are retained. ~Y describes the estimated technical errors which can be subtracted. Since
parallel qPCR evaluates only a selection of genes, the average of Ct measurements may change

with the treatment. This effect is the global effect ΔT which need to be retained for Ŷ .
The different effects are estimated in the following order:

1. Estimate the probe error per array (�P:A).

2. Estimate systematic errors/batch effects (~�).

3. Estimate the treatment/tissue effect (ΔT).

4. Estimate the sample error (�S).

5. Estimate the treatment effect per gene (ΔT:G).

It is important to stick to this order. If the sample error would be estimated first of all, system-
atic errors and treatment effects would be included in this sample error. Sticking to the estima-
tion order above guarantees that ΔT contains no systematic errors and is not removed by the

sample error �S. The variables Ŷ are used to compute the −ΔCt values of a gene under a treat-
ment compared to the untreated group

�DCt ¼ �ðŶ �Mean½Ŷ untreated�Þ ð4Þ

The fold change values are 2−ΔCt. They are visualized per gene and treatment group in boxplots
with the fold change on a base-2 log scale. The displayed boxplots have a centered thick line
which marks the median. Lower and upper bounds of the box are the quantiles q25% resp. q75%.
Red points are classified outliers (1.5 times outside of interquartile range below/above of q25%/
q75%).
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S3 File is an example R-script for using LEMming with data set 2. To assess the statistical
significances of differences we used the function ebayes with option robust from the limma
package [25].

Recommendations for using LEMming. We recommend to use a proper experimental
design (e.g. latin square). Based on that systematic errors can be identified and excluded by
using LEMming.

Results

Evaluation of data sets
DS1. We calculated the average expression stability and the pairwise variation of common

RGs in DS1 according to geNorm (plots are shown in S1 File). GAPDH is the most stable RG
which was used for normalization with the ΔΔCt method. The normalization factor (NF) calcu-
lated from the genes GAPDH, HMBS, RPLP0 and TBP show a low pairwise variation compared
with the NF that includes POLR2A (pairwise variation 0.15). Thus, there is no need to include
POLR2A into the calculation of the NF. Consequently, we used the four most stable RGs for
normalization with geNorm. Standard deviations (σ’s) per gene and condition were computed
from raw data, from ΔΔCt, geNorm and LEMming normalized data. The comparison of σ’s
between raw data, ΔΔCt and LEMming normalized data is presented in S1 File. We tested the
H0-hypothesis of equality of σ’s with the Wilcoxon signed-rank test. Std. devs of LEMming
residuals per gene and condition are significantly smaller than std. devs of raw data (p� 10−11)
and std. devs of ΔΔCt normalized data (p� 10−6). Additionally, we present a proof in S1 File,
showing that the std. devs of ΔΔCt with a single RG is greater than of std. devs LEMming pro-
cessed data. The boxplots per gene and condition comparing raw data, geNorm and LEMming
processed data are presented in S1 File. The variance-mean plots in S1 File show a slight shift
of the mean values for WY14,643 treated cells with geNorm, but not with LEMming. A com-
parison between std. devs of geNorm and LEMming processed data per gene is shown in Fig 1.
The std. devs of control measurements are reduced on average by 26.8% ± 4.9 with geNorm
and 23.7% ± 3.8 with LEMming compared to raw data. The std. devs of WY14,643 treated sam-
ples are reduced on average by 1.5% ± 9.7 with geNorm and 6.5% ± 2.8 with LEMming

Fig 1. Comparison of standard deviations for geNorm and LEMming per gene in DS1 and DS2. The x-
axis shows the difference between standard deviation (sd) of raw values and sd of geNorm processed data
per gene. Accordingly the y-axis shows the difference of sd of raw values to LEMming processed data. If
points are in the positive quadrant and above the dotted line, sd of LEMming processed data is smaller
compared to sd geNorm and raw data.

doi:10.1371/journal.pone.0135852.g001
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compared to raw data. Fig 1 shows few genes whose std. dev. is enhanced by usage of normali-
zation techniques.

DS2. The average expression stability and the pairwise variation of common RGs in DS2
according to geNorm are presented in S2 File. The RGs Eef1a1, Hprt and Ppia were chosen for
geNorm normalization (M-values below 0.36). We applied LEMming to DS2 (R-Script in S3
File) and found a systematic effect that relates to the variable cDNA in the data. This effect was
validated by single stranded DNA quantification (details in S2 File) and was excluded with
LEMming as a systematic batch effect (~�). geNorm inherently considers this effect due to the
normalization with RGs. An exemplary plot comparing the log2 fold differential expression for
the gene Foxo1 in DS2 for raw, geNorm and LEMming processed values is presented in Fig 2.
The variance-mean plot in Fig 2 demonstrates that geNorm normalized data shows a displace-
ment effect of the gene wise mean (ΔCt of -0.28 at 24h, of -0.14 at 48h and -0.15 at 72h com-
pared to 0h) which is present for all genes measured in DS2 (see S2 File).

T-tests on the three RGs in raw data have no significant results comparing the 24h, 48h and
72h condition to the 0h condition with a Bonferroni corrected α-level (smallest p-Value for
Eef1a1 for 0h vs 72h: p = 0.0502). In contrast, t-tests with geNorm normalized data have signifi-
cant results for all three RGs (Eef1a1: 0h vs 48h p = 1.46 × 10−9, 0h vs 72h p = 1.51 × 10−9,
other RGs have under all comparisons p< 10−11). LEMming normalized data shows also sig-
nificant results for the three RGs (see S2 Table worksheet LEM_diff).

Std. devs of geNorm and LEMming processed data are compared in Fig 1. LEMming data
displays significantly reduced std. devs when comparing to geNorm (sign test p� 10−11). The
mean reduction of std. dev. per gene and condition is 49.4% for geNorm and 50.5% for LEM-
ming. LEMming excludes systematic effects that are responsible for 83.1% of variance of the
median gene in this experiment.

DS3. The average expression stability and the pairwise variation of common RGs in DS3
according to geNorm are presented in S4 File. Raw, geNorm and LEMming processed data of
RGs in DS3 is available as S3 Table. Data of other genes in DS3 will be published elsewhere
under a biological issue. The plots of log2 fold differential expression comparing raw, geNorm

Fig 2. Example boxplot for Foxo1 in DS2. Left: Log2-fold differential expression of the gene Foxo1 in DS2.
Conditions are 0h, 24h, 48h and 72 h. Right: Variance-mean plot showing the mean over the standard
deviation per condition for Foxo1.

doi:10.1371/journal.pone.0135852.g002
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and LEMming processed values and the according variance-mean plot is part of S4 File. Both
geNorm and LEMming shift the mean values per gene and treatment, whereby the distance to
the mean of raw data is smaller with LEMming. In LEMming this effect appears, because the
data set is measured on three different arrays. The exclusion of batch effects with LEMming in
DS3 is discussed in S4 File (subsection 1.1).

The fold change values (2�DCt ) of RGs calculated from raw values are shown for various
treatments in three tissue types in Fig 3. Statistical comparisons of raw values from untreated
and treated conditions (unpaired t-test with unequal variances, Bonferroni corrected signifi-
cance level a ¼ 0:05

48
) colorize the boxplots: conditions with significant differential expression are

shown as red boxplots, other ones are shown as blue boxplots. The different experimental con-
ditions in the plot are dedicated in S4 File. According to geNorm (and NormFinder) Rpl27,
Rps13 and Rpl32 are the most stable RGs which were selected for calculation of the NF (details
in S4 File). However, Fig 3 indicates that none of the RGs is stably expressed. We used two
approaches to assess the stability of the proposed RGs (details in S4 File subsection 1.1). First,
we used an external measurement (ssDNA quantification) to estimate the introduced error
during cDNA conversion. Second, we made use of the experimental setup, estimated potential
systematic errors and removed them. This provides a conservative estimate of the stability of
the observed RGs. Both approaches failed in explaining the significant differences between
experimental conditions for the RGs.

Using the three RGs in this case distorts the results as it is demonstrated by the variance-
mean plot in S4 File. A particular example is the gene Pcna whose evaluation is disturbed by
using the three RGs for normalization. Pcna is upregulated with raw data and LEMming pro-
cessed data but is downregulated with geNorm normalized data under the condition ligation
partial hepatectomy after 24h and 48h (see Figure J in S4 File). Pcna is used as marker for par-
tial hepatectomy [26]. It is upregulated under these conditions [27], which was validated in
microarray data (GEO GSE55434).

Analysis of variance
We analyzed how variance relates to the absolute Ct-value with raw values of DS1 in Fig 4.
With increasing Ct-value, which means with lower mRNA content, the standard deviation of
technical replicates increases (Fig 4(a)). The same phenomenon—called heteroscedasticity—
was observed for variances of biological replicates (Fig 4(b)). Here the heteroscedasticity means
that measurements with higher Ct-values are less trustable than measurements with lower
ones. The biological variance in the control group is significantly smaller compared to the
treated WY14,643 group (ANOVA of standard deviation values per gene for the mean expres-
sion values of 4 biological replicates: p = 0.01).

DS1 and DS2 with its multiple technical replicates allow to further discriminate sources of
variation in the data. Thus, the contribution of non-systematic technical errors (cDNA conver-
sion error and qPCR error) to the sample error �S and the residuals of LEMming � (Eq 3) can
be resolved. We determined the contribution of biological variance, cDNA conversion error
and qPCR error to the variance per gene in DS1 by an ANOVA. The analysis was performed
directly with the raw data and with LEMming processed data. The proportions of variance con-
tribution are shown in Fig 5.

The contribution of biological variance, cDNA conversion error and qPCR error to the
overall variance varies from gene to gene. In raw data the cDNA conversion contributes most
(median over all genes: 62%) to the overall variance, while biological variance only accounts for
23% and qPCR error for 15% of the overall variance (see Fig 5(a)). This is in accordance with
published data [23]. The variance of LEMming residuals � is explained by 24% (median)
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biological variance, 36% (median) cDNA conversion error and 38% (median) qPCR error in
the control group (blue boxplots Fig 5(b)). The contribution of biological variance is signifi-
cantly increased in the WY14,643 treated samples (red boxplots Fig 5) in both raw data and
LEMming residuals.

Fig 3. Raw data of common reference genes in data set 3. Boxplots of the untreated conditions are black, boxplots of treatment conditions (dedicated in
S4 File) that are not significant differentially expressed compared to untreated are blue and boxplots of treatments with significant differentially expressed
measurements are red. Significance was calculated by an unpaired t-test with unequal variances and Bonferroni corrected significance level α = 0.05/48.
Outliers are marked by red circles.

doi:10.1371/journal.pone.0135852.g003
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The same analysis was performed with DS2 (see Fig 6). With DS2 it is possible to split up
the sample error �S into a cDNA conversion error and a sample pipetting error. Here the
cDNA conversion is the dominant variance source in the raw data. Due to the multiple techni-
cal replicates in the experiment, this effect is nearly completely removed by the LEMming
approach.

Distribution of Ct-values of reference genes
The residuals � of LEMming can be described by a Student-t distribution. Distribution tests
(H0 hypothesis (Student-t distribution of residuals)) for DS1 accepted theH0 hypothesis (Kol-
mogorov-Smirnov test p = 0.228 and Kuiper test p = 0.096). Fig 7 shows the distribution of raw
data and LEMming residuals for reference genes in DS3. The H0 hypothesis (Student-t distri-
bution of residuals) was accepted by a Kolmogorov-Smirnov test (p = 0.723) and a Kuiper test
(p = 0.397). The QQ-Plot Fig 7(c) shows the quantiles of the estimated Student-t distribution
on the angle bisector with the quantiles of the residuals.

Fig 4. Technical and biological variances over mean value per gene. (a) Standard deviation of Ct value
of each gene and well over the meanCt value for data set 1 (DS1). Each gene is measured six times per
biological replicate (3× cDNA and 2× PCR per cDNA). The regression line shows that the standard deviation
increases with the Ct values (lower mRNA content). (b) Standard deviation of biological replicates over the
meanCt value for DS1. The mean of all six technical replicates is computed per biological replicate and gene.
The standard deviation of these means is computed with 4 biological replicates for each gene. The biological
variance is higher under treated conditions compared to the control conditions.

doi:10.1371/journal.pone.0135852.g004

Fig 5. Contribution of biological variance, cDNA conversion error and qPCR error to the overall
variance for data set 1. Proportions of variance contribution are estimated from raw data (a) and from
residuals of LEMming (b). Blue boxplots are measurements of the control group, red boxplots are
measurements of WY14,643 treated cells.

doi:10.1371/journal.pone.0135852.g005
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Discussion
Here we generated and validated a method for normalization of parallel qPCR measurements,
called LEMming, which is based on a linear error model to exclude technical and systematic
errors. LEMming takes advantage of the experimental design of qPCR studies conducted on
microfluidic arrays, which is a high throughput platform for qPCR. Our LEMming tool allows,
therefore, the analysis of such data without usage of reference genes (RGs). We applied LEM-
ming to three data sets with different stability patterns of common RGs.

DS1 represents a data set with stable RGs available. geNorm and LEMming resulted in
nearly the same results. The slight shift in the mean value of 5 genes in geNorm processed data
could be neglected since the RGs themselves were affected. We concluded that in DS1 geNorm
and LEMming are on a par in reduction of standard deviation per gene and treatment group.
Both methods were superior to the use of a single RG with the ΔΔCt method.

DS2 evaluated mice under starvation conditions in liver samples. It represents a data set
where stability of RGs is questionable after normalization. RGs were not significantly differen-
tial expressed in raw data and were selected according to geNorm criteria. However, after geN-
orm and LEMming normalization none of them was accepted as stably expressed by t-tests.

Fig 6. Proportional contribution of different effects to the variance of a gene in data set 2 (DS2). Black
—raw data, Green—LEMming processed data. (a) Proportion of sum of squares associated to the effects
time, primer pipetting, biological variance, cDNA conversion, qPCR error and sample pipetting error (SPE)
resulting from a ANOVA for each gene. (b) Proportion of sum of squares of LEMming processed to raw data
without the effect of time (treatment effect). The median is 16.9%, which means that LEMming excludes
systematic effects that are responsible for 83.1% of variance of the median gene in this experiment.

doi:10.1371/journal.pone.0135852.g006

Fig 7. Distribution of raw data and residuals in reference genes in DS3. Density plot of raw data (a) and
residuals of LEM-method (b) of reference genes in DS3. Blue: kernel density estimation of raw data/residuals.
Red: estimated Student-t distribution. (c) Quantile-Quantile plot with quantiles of estimated Student-t
distribution versus quantiles of residuals.

doi:10.1371/journal.pone.0135852.g007
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Here the question appears, whether such RGs are appropriate for normalization. geNorm-nor-
malized data finally showed an effect of a shifted mean per gene per condition compared to the
raw data and LEMming-normalized data. Comparing the decrease of standard deviation from
raw data to geNorm and to LEMming, the latter was superior. LEMming compensated for
errors that are responsible for 83.1% of variance in the raw data for the median gene (see Fig
6). We concluded that the use of RGs is not necessary in this case and would result in slightly
distorted results.

DS3 evaluated rats after partial hepatectomy under vaso-active drugs in different zones of
the liver after various observation times with a control of untreated and ligation of the right
median hepatic vein. Thus, DS3 presents a very complex in vivo experiment. According to geN-
orm criteria (M-values and pairwise variation) stable RGs existed, while t-tests between treat-
ment conditions in raw data suggested that this is not the case. Even after exclusion of
systematic errors by LEMming no stable RGs existed following this t-test criteria. Applying
RGs for normalization shifted the mean value per gene under most treatment conditions,
which distorts the data analysis. The case of the marker gene Pcna, which is upregulated after
24 h and 48 h of partial hepatectomy (PH), demonstrated that raw data and LEMming are in
accordance with microarray data. geNormmakes the opposite claim of down regulation. Inter-
estingly, Assy et al [26] found the protein PCNA as a marker for PH, but found no increase at
the mRNA level using RT-qPCR and normalizing with RGs. It might be, that this occurred due
data distortion by the use of RGs.

This rises the question, whether M-values and pairwise variation criteria for stable RG selec-
tion are complete. The criteria are based on inter- and intragroup variation of the RGs. The
selected RGs Rpl27, Rps13 and Rpl32 showed similar expression patterns (see Fig 3). If RGs are
coexpressed but are not independent of the experimental condition the stability criteria fail.
However, to renounce the use of RGs in those complex in-vivo experiments without stable RGs
following the t-test, LEMming is an alternative for experiment analysis investigated with paral-
lel qPCR.

The analysis of variance in DS1 and DS2 revealed that the reverse transcription step (cDNA
conversion error) is the dominant technical error. Treatment conditions had a positive effect
on the biological variance compared to the untreated condition. LEMming was able to remove
large proportions of technical errors and retained the biological variation. We showed theoreti-
cally and practically that applying LEMming results in reduced gene wise variances per treat-
ment group compared to normalization with a single RG. The reduction of these variances is
based on the removal of systematic errors which are part of a linear mixed model estimated
from the data. It is important to estimate the effects of this model in a particular order, other-
wise effects like the global treatment effect would be removed as a sample error. Usually the
residuals of linear mixed models are assumed to be normally distributed. If this is not the case,
estimated parameters might be biased. We observed a Student t-distribution of residuals of the
linear mixed model. This distribution is symmetric like a normal distribution, but has heavier
tails. Thus, the estimated effects are not biased, but the standard error of the estimated effects
might be inaccurate. To not overestimate the significances of differential expressions, we rec-
ommend to use robust tests to analyze them. We used the function ebayes with option robust
from the R package limma [25] in order to do that.

LEMming uses the assumption that the means of Ct values within the samples of similarly
treated groups are equal. Since the genes are selected by the criterion to see a difference
between conditions, a global treatment effect ΔT can be shown in most data sets. However, a
systematic sample error per treated group ~� and the global treatment effect ΔT are indistin-
guishable by LEMming. The use of RGs which are provably independent of the treatment
would automatically compensate this. If such RGs are available, we strongly recommend to use
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them because of their capability to automatically remove systematic batch effects. However,
with a growing number of experimental conditions the chance of finding such RGs decreases.

Thus, we recommend to use quantification of total cDNA content per sample as a second
independent measurement in order to identify systematic sample errors per treated group (~�).
We exemplified and discussed this issue in detail in S2 File and in S4 File. The usage of total
cDNA quantification helps to ensure that the global treatment effect (ΔT) is not distorted.

Despite a method being independent of RGs, we would still recommend to measure at least
two RGs which is recommended according to the MIQE guidelines [2]. We see LEMming as a
tool which could complement current qPCR data analysis software by an RG independent nor-
malization approach.
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