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Abstract

The study of the initial phase of the adaptive immune response after first antigen encounter
provides essential information on the magnitude and quality of the immune response. This
phase is characterized by proliferation and dissemination of T cells in the lymphoid organs.
Modeling and identifying the key features of this phenomenon may provide a useful tool for
the analysis and prediction of the effects of immunization. This knowledge can be effectively
exploited in vaccinology, where it is of interest to evaluate and compare the responses to
different vaccine formulations. The objective of this paper is to construct a stochastic model
based on branching process theory, for the dissemination network of antigen-specific CD4+
T cells. The devised model is validated on in vivo animal experimental data. The model pre-
sented has been applied to the vaccine immunization context making references to simple
proliferation laws that take into account division, death and quiescence, but it can also be
applied to any context where it is of interest to study the dynamic evolution of a population.

Introduction

The analysis of regulating mechanisms underlying T cell activation, division, death, differentia-
tion and dissemination represents a fundamental issue in numerous contexts of cell biology.
The initial phase of the adaptive immune response after first antigen encounter, known as
immune priming, is a critical event that strongly affects the magnitude and quality of the
immune response. It is markedly characterized by T cell proliferation and dissemination pro-
cesses ([1],[2]). Priming of T helper cells represents a key step in vaccination due to the close
relationship between CD4+ T cells and long term immunity [3]. Generation of primed T cells
requires contact between antigen presenting cells and specific T helper cells within lymph
nodes, thus leading to T cell proliferation. CD4+ T cells undergo numerous rounds of division
expanding the population of antigen specific T helper cells that are able to interact with and
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regulate B cell immune function [4]. T cell primary activation indeed influences both Band T
cell memory generation, thus determining the success of a vaccination strategy. In fact, recent
studies have shown that the frequency of Ag-specific primed CD4+ T cells can predict the
intensity of the secondary humoral responses ([5],[6]).

Characterization of the T-cell priming properties of different vaccine formulations is essen-
tial for the rational design of effective prime-boost combinations [7]. The heterologous prime-
boost approach is aimed at the generation and enrichment of antigen-specific B and T-cell
responses required to fight a specific pathogen ([8],[9]).

Since only a few of the essential features characterizing proliferation and dissemination of T
cells can be directly obtained by experimental measurements, mathematical models represent
an attractive tool for estimating biologically meaningful parameters determining proliferation,
trafficking and death of the T cell population after vaccination ([10, 11]). A further added value
of a validated model is to provide a simulation tool capable of predicting the priming properties
of different vaccination strategies. Moreover these models could be also adapted to human
studies to rapidly predict vaccine immunogenicity and distinguish between responders and
non responders. Quantifying the dynamics of T cells in terms of division, dissemination and
death is indeed extremely important for the evaluation and comparison of vaccine candidates,
adjuvants, vectors, immunization routes and for testing biological hypotheses regarding the T
cell population. In recent years, experimental studies on T cell proliferation both in vivo and in
vitro have benefited from the development of methods to measure the number of divisions that
a T cell undergoes. One of the most informative techniques for characterizing the kinetics of T
cells in the immune system is the vital dye 5-(and 6-) carboxyfluoroscein diacetate succinimidyl
ester (CFSE) labeling ([12],[13]), that stains T cells very stably and it can be used to monitor
lymphocyte proliferation due to the progressive halving of the dye fluorescence following cell
division. Mathematical models have been used widely and successfully for the analysis of in
vitro CFSE proliferation data ([14],[15],[16],[17],[18],[19],[20],[21],[22],[23]). For instance, in
[14] a multi-type Galton Watson (MGW) process is applied for the T cell proliferation and a
quasi likelihood approach is used on CESE cell count data in order to obtain proliferation rate
estimates. Although the stochastic and deterministic models used in these works capture realis-
tic aspects of the T cell proliferation process, their direct application to in vivo studies would
require neglecting several important phenomena, like for example the spatial dissemination of
cells in the lymphoid organs, which would prevent the model from capturing the huge increase
of complexity implicit in the real experimental setup. On the other hand, these intriguing
aspects, which are discussed in the following paragraphs, make it rather difficult to adopt
sophisticated stochastic models, like that proposed in [18], which take into account the com-
petitive inhibition of T cell proliferation and possible differentiation.

The aim of this contribution is to address the main problems encountered when dealing
with in vivo experiments, having no counterpart in in vitro studies and to propose possible
modelling techniques to solve them.

It is known that the draining lymph node is where primed T cells can firstly be detected after
immunization and it is also known that in this organ the division process starts. However, we
know that the draining lymph node is just one of the compartments of the complex network
composed of draining and distal lymph nodes, blood, lymphatic vessels and lymphoid organs.
Actually, T cell proliferation starts in the draining lymph nodes, from where T cells migrate to
lymphoid organs. Moreover, in the first time steps after immunization, naive T cells are recruited
from the entire network to the draining lymph nodes. Both in- and out- migration rates, which
cannot be measured directly, increase the complexity of the dynamics of the T cell population.
This situation makes the construction of a comprehensive and physiologically meaningful math-
ematical model an extremely challenging problem. The picture becomes even more challenging if
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one takes into account that an important feature which characterize T cells in the decision-mak-
ing process leading to further division, migration or apoptosis, is the number of divisions it has
undergone, i.e., the generation number after the initial stimulus. Actually, fate determination is
strictly related to the generation number of the lymphocyte (see [24], [14] and references
therein). This calls for model structures providing the flexibility of considering different cell gen-
eration or cells with time varying proliferation parameters. Only few studies have been applied to
in vivo experiments, and these involve only draining lymph nodes ([14],[25],[26],[27]). We have
indeed recently applied a MGW to model in vivo T-cell proliferation in draining lymph nodes
following vaginal immunisation ([28],[29]), however very little is known on how to model the
entire dissemination network, taking into account the cell aging features. For example, the inter-
esting paper [30] proposes a mechanistic third order state equation model of the CD8+ T cell
population evolution (irrespective of T cell generations) and trafficking during influenza infec-
tion, involving lung, spleen and mediastinal lymph node. The model identified on real data from
mice allowed the authors to assess that spleen represents the main source of effector T cells in the
lung. Further complexity is added to the picture, if one considers the fact that the fate of primed
lymphocytes is also subject to competitive inhibition regulated by a broad range of conditions
such as cell-cell interactions, secreted cytokines and external signals in general (see e.g. [31] and
references therein). An additional challenging element of complexity of an in vivo setup is the
necessity of sacrificing animals to collect data. This means that measurements taken at different
time points do not refer to the same individual, rather they refer to different individuals. This
introduces an inter-individual heterogeneity aspect which must be properly taken into account
when estimating and validating the mathematical model.

The objective of the present work is to propose a model capable of reproducing both the
dynamic evolution and the spatial dissemination of the in vivo T cell population in the various
compartments upon vaccination. A stochastic model based on the theory of branching processes
has been constructed, by including in its representation immigration and migration processes
which characterize the cell population dissemination. This allowed us to model the cell dissemi-
nation network in an effective way, at the same time keeping both the model computational com-
plexity and its comprehensibility at acceptable levels. We have chosen a stochastic setting mainly
because the results from several experiments [11], show that the intrinsic variances of the cell
counts at different time points can be hardly explained through the introduction of an artificial
external noise. Moreover, a stochastic approach naturally lends itself to possible extensions of the
model adopted here, to take into account cell-cell interaction and differentiation.

Materials and Methods

Mice

Nine week old female OT-II TCR-transgenic mice (H-2b) and C57BL/6] mice were purchased
from Charles River (Lecco, Italy). Animals were maintained under specific pathogen-free con-
ditions in the animal facilities at the University of Siena, and treated according to national
guidelines (Decreto Legislativo January 27, 1992 n. 116, implementing 86/609/CEE Directive).
All animal studies were approved by the Ethics Committee “Comitato Etico Locale dell’A-

zienda Ospedaliera Universitaria Senese” and the Italian Ministry of Health (number 4/2011,
July 20, 2011).

Adoptive transfer of transgenic CD4+ T cells

Single cell suspensions from the spleen and pooled lymph nodes (cervical, brachial, axillary,
mesenteric and iliac lymph nodes) of OT-II transgenic mice were enriched for CD4 + T cells,
by negative selection using the Easy-Sep magnetic nanoparticles (StemCell Technologies,
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Vancouver, BC, Canada), according to the manufacturer’s protocol. The purity of the CD4+ T
cell population in the enriched fraction was > 95%, as determined by flow cytometric analysis.
CD4 + isolated T cells were pooled and stained with carboxy-fluorescein diacetate succinimidyl
ester (CFSE, 7.5 uM, Invitrogen) [32], for 10 min at 37 °C. An amount of 2.5 10° of CFSE-
labelled CD4+ T cells was injected into the tail vein of each recipient mouse.

Nasal immunization of mice and sample collection

Twenty-four hours after adoptive transfer of CFSE-labelled OT-II CD4+ T cells, C57BL/6]
mice were nasally immunized with OV A grade V (Sigma-Aldrich) (25 yg/mouse) and CpG
ODN 1826 (20 pug/mouse). Mice were lightly anaesthetized by intraperitoneal injection of tile-
tamine and zolazepam hydrochloride (Zoletil 20, Laboratoires Virbac, France, 6 mg/kg) and
xylazine (Xilor 2 per cent, Bio 98 Srl, Italy, 3 mg/kg) and then inoculated with OVA and CpG
into the nostrils with a volume of 15 yl. Groups of five mice were sacrificed 0, 57, 72, 84 and 96
hours following immunization. Lymph nodes draining the nasal immunisation route, iliac, and
mesenteric lymph nodes and spleen were individually harvested from each mouse. Single-cell
suspensions from lymph nodes and spleens were obtained as previously described [33].

Flow cytometric analysis

Cell suspensions from lymph nodes and spleens were incubated with Fc-blocking solution [0.5
mg CD16/CD32 mAb (clone 93) (eBioscience, USA), 5% mouse serum, 5% rat serum, 0.2%
sodium azide (all from Sigma-Aldrich) in 100 ml of HBSS] for 30 min at 4 °C. Cells were
stained with PerCP-conjugated anti-mouse CD4 (clone RM 4-5) (BD Pharmingen) for 30 min
at 4 °C. Count Bright absolute counting beads (Invitrogen, Molecular Probes, Oregon, USA)
were used for counting the number of lymphocytes in each sample. All samples were analyzed
by flow cytometry (FACScalibur, Becton Dickinson, San Diego, CA) on individual samples col-
lected from each animal. Data analysis was performed by using Flow Jo software (Tree Star,
Ashland, OR, USA).

Results
CD4+ T cell proliferation experimental data

To characterize T cell clonal expansion and dissemination, ovalbumin (OVA)-specific trans-
genic CD4+ T cells, labeled with CFSE, were adoptively transferred into recipient mice. CFSE
is a vital dye that can label cells very stably by covalently coupling to intracellular molecules,
and it can be used to monitor lymphocyte proliferation due to the progressive halving of the
dye fluorescence following cell division [33] (Fig 1A). The induction of OV A-specific CD4+ T
cell clonal expansion was analyzed in draining cervical lymph nodes, distal iliac and mesenteric
lymph nodes and spleen at 0, 57, 72, 84 and 96 hours after nasal immunization with ovalbumin
OVA plus CpG ODN 1826 adjuvant (Fig 1B). The time course analysis of antigen-specific T-
cell proliferation provided important information about the dynamic of the clonal expansion
and the dissemination of antigen-specific primed CD4+ T cells. The starting time point was
fixed at T' = 72 hours, when it was assumed that the migration process of T cells from the drain-
ing lymph node starts. In fact, no proliferated T cells were detected in the distal lymph nodes
and spleen until T = 84 hours (Fig 1B), with a very low frequency of transgenic CD4+ T cells in
the generations one, two and three suggesting that proliferated T cells observed in these organs
are migrated from draining lymph nodes, as previously reported ([34],[35]) (Fig 1B). The time
step was estimated as At = 4 hours considering that in draining cervical lymph nodes cells start
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Fig 1. Dissemination of primed antigen-specific T cells after nasal immunization with OVA and CpG ODN 1826. CD4+ T cells, isolated from OT-II

N

Generations

>

mice, were labeled with CFSE and adoptively transferred into recipient C57BL/6J mice. Twenty-four hours later, recipient mice were immunized with OVA (25
pg/mouse) and CpG ODN (20 pg/mouse) by the nasal route. CD4+ T-cell proliferation was assessed in cervical (CLN), iliac (ILN), mesenteric (MLN) lymph
nodes and spleen (SPL) by CFSE dilution at different time points following immunization.(A) OVA-specific proliferation of OT-1l CD4+ T cells was analysed in
different lymphoid organs three days after immunization. Histograms are gated on CD4+CFSE+ population, with light scatter properties of lymphocytes. The
number of generation is reported for each peak. (B) Graphs reporting the percentages of CD4+ CFSE+ T cells for every cell generation in CLN, ILN, MLN and
SPL 0, 57, 72, 84 and 96 after immunization. Values are reported as mean + standard error of the mean (SEM).

doi:10.1371/journal.pone.0135787.g001

to divide about 42 hours after nasal immunisation (data not shown) and that 4 new cell genera-

tions are observed 57 hours after immunisation (Fig 1B).

Mathematical model of the network

Each component of the model is a node of the network. The draining lymph nodes are the

source for our proliferation and trafficking model, while the distal lymph nodes and the spleen
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are sink nodes for T cells. The dissemination process is modeled through a suitable number of
transfer nodes, depending on the relative magnitude of the transfer time from the source node
to the sink nodes and the elementary time step of the dynamic evolution of the cell population.
For example, if we have prior knowledge that the migration time from the source to the sinks is
approximately 12 hours and we adopt a time step of 4 hours, we will simulate this setup by
characterizing the transfer compartment (TR) through three transitions (see Section A in S1
Text). The set of transfer nodes represents the transfer compartment of the network, including
lymphatic and blood vessels, which are assumed to be the main routes for T cells dissemina-
tion. In each node, T cells proliferate according to the basic proliferation process and the
migration or immigration flows (see Section A in S1 Text).

In Section A of S1 Text, first and second order moments of cell counts in each model com-
partment are computed analytically. The basic proliferation model underlying the equations is
a MGW process with migration and immigration. In our experimental setup, the model com-
partments are represented by the draining lymph nodes, which act as a source for the network,
the transfer compartment, made by three serial stages, the spleen and the distal lymph nodes,
which act as sinks for the network. Although we will explicitly mention these compartments,
we point out that the presented results hold for any dissemination network with no feedback
(recirculation) paths.

The basic proliferation process is assumed to follow a MGW branching process. This pro-
cess assumes a given time step for the proliferation, during which each cell of a given genera-
tion has a certain probability of dividing, giving rise to two cells of the next generation, dying
or remaining in quiescence. Although this setting is the simplest one in the theory of branching
processes, the multi type nature of the process allows for characterizing and tracking different
generations of T cells. This allows us to capture one of the complexity sources of the model, i.e.,
the time variation of cell propensity to division or death. In fact, the generation number of a
cell is commonly considered as a meaningful indicator in the decision making process of a cell
leading to division, apoptosis or differentiation ([14],[18],[31]). On the other hand, the sim-
plicity of the probabilistic structure of the resulting Markov chain allows us to derive closed
form expressions for first and second order moments of the process also in the presence of
immigration and migration in/from certain nodes of the model (see Section A in SI Text). Let
us now mention a couple of aspects of in vivo CFSE data which impact over model statistical
inference. First, we know that there are limitation on measurements in the transfer compart-
ments, i.e., lymph and blood vessels. Hence, in our statistical identification scheme we will
exploit only data from lymph nodes and spleen. A second issue regards the sampling of the
proliferation process to collect CFSE data. To collect a sample of measurements requires
sacrificing an animal at a chosen time point after immunization. In this case, performing mea-
surements at different time points (or even repeating the measurements at a given time point)
asks for sacrificing different immunized animals. This means that measurements taken at dif-
ferent time points refer to individuals which can be quite different. This situation makes any
multi type mathematical model of cell population kinetics based on cell counts not suitable for
reliable statistical inference [36]. To overcome this problem, we further elaborate the cell count
model to generate a model involving relative frequencies of each type of cells, assuming as nor-
malizing variable the total number of cells recorded at each time point. In doing this, starting
from the method proposed in the seminal paper [36], we derive first and second order
moments of different type cell relative frequencies. Beyond the above mentioned individual
heterogeneity problem, this approach shows additional advantages, the most important being
that it allows us to derive analytically a normal approximation of the log likelihood function of
cell relative frequencies in the lymph nodes, whereas computation of such a function is intrac-
table when dealing with cell counts [14]. Moreover, in the special case when only the draining
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Table 1. Network model parameter definition and biological variable measured. For the variables Z,/(n), Z; (n), Zmes,{n) and Zsy, (n) see also Section A

in S1 Text.

Biological
data

Zar,i(n)
Zin)
Zmes,i(n)
Zsp1,i(n)

Vi
6;
m;
Pir
p mes
Pspl
At

Definition

Number of OT-II cells for each generation identified by CFSE dilution (i) in draining lymph
nodes

Number of OT-II cells for each generation i identified by CFSE dilution in iliac lymph node

Number of OT-II cells for each generation i identified by CFSE dilution in mesenteric lymph
nodes

Number of OT-Il cells for each generation i identified by CFSE dilution in the spleen

Probability of division for T cells in generations i

Probability of quiescence for T cells in generations i
Probability of migration for T cells in generation j

Probability of splitting towards iliac lymph nodes

Probability of splitting towards mesenteric lymph nodes
Probability of splitting towards spleen

Probabilistic time of division, quiescence, death and migration

doi:10.1371/journal.pone.0135787.t1001

Units

Cells per
generation

Cells per
generation

Cells per
generation

Cells per
generation

adimensional
adimensional
adimensional
adimensional
adimensional
adimensional
Hours

Assay

Flow
Cytometry

Flow
Cytometry

Flow cytometry
Flow cytometry

Estimated
Estimated
Estimated
Estimated
Estimated
Estimated
Estimated

lymph node is considered, it allows for analytic computation of the exact asymptotic likelihood

function ([28],[36]).

Parameter estimation and sensitivity analysis

In this subsection we report the numerical results obtained by performing the lymph node net-
work model identification (see Section B in S1 Text for the model estimation procedure) on
data recorded in the immunization experiments reported above. The definition of biological

variables and model parameters are in Table 1.

According to the experimental results in [29], we assumed different division and quiescence
probability parameters y;, J;, for the generations i = 0,1,2, while the probability parameters for
generations i > 2 were assumed equal to those for i = 2. Moreover, we assumed that the prolif-
eration parameters &;, y;, are equal for all the model compartments. The overall parameter vec-

tor 6 contains the division and quiescence probabilities for the various cell generations J;, ;,
i =0,1,2, the migration probability # from the draining lymph node (here we assume that
migration probabilities of the various generations are equal, except for the generations 0 and p
which do not migrate) and the splitting probabilities py,s, pi1, pimes Of migrating cells in the net-
work sink nodes [37], (again we assume that splitting probabilities of the various generations
are equal) (see Table 2). In order to estimate the model parameter vector 6, we need to know
the T cell counts at the initial time point in the draining lymph node, which is the network
source. The starting time point for the counting process (n = 0) has been fixed at T =72 hours
as stated in Subsection CD4+ T cell proliferation experimental data.
Table 3 shows parameter estimates and standard errors obtained through minimization of
the normal approximation of the negative log likelihood function of the cell frequencies (see
Section B of S1 Text). The standard errors are computed with the Fisher information matrix.
Fig 2 shows the good quality fitting of the relative frequencies predicted by the model to the
experimental data from the experiments in all the model compartments at time point n = 6
(T = 96 hours). At this time point, in the spleen and in draining lymph nodes about 1.7 x 10
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Table 2. Model network parameters assumptions.

Parameter Description

Time step The time step of the model was fixed as At = 4 hours.It was estimated
considering 42 hours after nasal immunisation as the average time in which
a cell starts to divide and the 4 new cell generations observed in draining
cervical lymph nodes 57 hours after immunisation.

Division and quiescence Different division and quiescence probability parameters y;, 5; were

probabilties assumed for the generations i = 0,1,2, while the probability parameters for
generations j > 2 were assumed equal to those for i = 2, as shown in [29].

Migration probabilities It was assumed that the cells in generation i = 1,2,3 migrate and their
migration probabilities are equal.

Immigration probabilities It was assumed that immigration probabilities of the various generations

towards distal lymph nodes are equal except for the generations i = 0 which
does not migrate.

doi:10.1371/journal.pone.0135787.t002

Table 3. Network model parameter estimates and standard errors.

Parameter Notation Value Std. Err.
Probability of quiescence for T cells in generation 0 %o 0.43 0.05
Probability of division for T cells in generation 0 Yo 0.06 0.01
Probability of quiescence for T cells in generation 1 &4 0.31 0.05
Probability of division for T cells in generation 1 Vi 0.29 0.014
Probability of quiescence for T cells in generation 2 [ 0.23 0.012
Probability of division for T cells in generation 2 Yo 0.24 0.09
Probability of migration for T cells in generations 1, 2, 3 m 0.14 0.013
Probability of splitting towards Spleen Pspl 0.95 0.017
Probability of splitting towards iliac lymph nodes Pil 0.01 0.005
Probability of splitting towards mesenteric lymph nodes Prmes 0.04 0.0201

doi:10.1371/journal.pone.0135787.t003

and 1.5 x 10> antigen-specific CD4+ T cells/organ were observed, respectively; in distal iliac
and mesenteric lymph nodes about 5 x 10” and 2 x 10* cells/organ were detected, respectively
(data not shown).

Some comments are in order when examining Table 3. First of all, we point out that in spite
of the limited number of measurement time points (n = 0,3,6), the magnitude of standard
errors indicate a good quality of the parameter estimates. This is due to the fact that spatially
distributed measurements are informative for model parameter evaluation. Actually, from the
information viewpoint, measurements in different points of the network are equivalent to
repeated measurements in the same site. To further check reliability and significance of the
estimates, a numerical sensitivity analysis of the estimates has been carried out. This analysis
quantifies the extent to which each parameter affects the relative frequencies predicted by the
model estimated over the experimental data available. In this sense, it provides a quantitative
evaluation of the potential of each parameter in explaining the experimental data. To this pur-
pose, we introduce the following definition of relative sensitivity S(6;):

_1AL9) | /1£0) |

- Li=1,...,10,
| A0, | /0,

5(6,)

where @ = [0, . ..

,0,,]" is the parameter estimate, £(8) is the optimized cost function at
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doi:10.1371/journal.pone.0135787.g002

6=0,A0, € [-0.10,,0.10,) and
AL (0) = L(6+ A0, e) — L(B),

where e; is a vector with null components, except for the i — th entry which is 1. Fig 3 shows the
relative sensitivity functions computed for each of the parameters. We notice that sensitivities
of parameters &y, &1, ppi» 72 are the largest ones, showing that they represent the parameters
which capture most information contained in the experimental data sets.

The estimate numerical values in Table 3, showed that cells that lost the competition for the
antigen and are still undivided 3 days after immunization has a negligible probability to divide
and do not contribute any longer to the proliferation process Rather, the number of naive cells
decreases exponentially with a mortality rate greater than 0.5: this agrees nicely with the biolog-
ical knowledge on the immune response evolution. The migration rate from the draining
lymph node is around 14%, while the splitting rate among the distal lymphoid organs shows a
clear prevalence of the migration towards the spleen.

As a final test on the model, we simulated 1000 stochastic sample paths using the parameter
estimates. Fig 4 shows the simulated paths of the proliferation process for T cells of first genera-
tion in the various model compartments.

Discussion

T cell priming is an essential event for the induction of the primary immune response to vacci-
nation. It is influenced by the type of vaccine formulation (antigen, adjuvant, delivery system),
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the dose and the route of administration. The characterization of T cell priming is therefore
critical in order to develop optimal prime-boost combinations capable of eliciting the type of
immune response required to contrast a specific pathogen [3]. To this purpose, quantification
of the adaptive immune response temporal dynamics through the features of T cell prolifera-
tion and dissemination represents a key challenge for experimental immunologists and
vaccinologists.

The application of systems biology in the context of vaccinology has recently been proposed
as a new powerful tool to model and characterize host immune responses to vaccination [38]
and offers great promise for future translation of basic immunology research advances into
successful vaccines [39]. System immunology provides indeed new tools to assess immune
responses investigating the cell dynamics following immunisation, understanding the mecha-
nisms of cell activation and deriving models of efficient vaccine induced immune responses
[39]. Furthermore mathematical models represent an attractive tool to gain insight into the
complexity of the immune response by providing quantitative information on the rates of divi-
sion, death and migration of T cells upon vaccination and to understand the effectiveness of
different vaccination strategies through computational simulation. While mathematical models
have been widely applied to in vitro studies, in vivo analysis raises several difficulties, mainly
due to the fact that a lymph node is not an isolated site but is part of the complex immunologi-
cal system. In the present work we succeeded in constructing a stochastic model for the prolif-
eration and dissemination of antigen-specific CD4+ T cells upon vaccination. The
proliferation mechanism is based on the probabilistic laws typical of multi-type Galton Watson
branching processes. In this context, a further contribution of the paper consists in the closed
form derivation of a normal approximation of the log likelihood function of relative frequen-
cies in the different nodes of the dissemination network. This allows to deal with cell count
data coming from in vivo experiments where measurements at different time points are taken
on different individuals.

Since in our experimental data, the intranasal immunization route is adopted, we consider
as main compartments of the network, the cervical lymph nodes as draining compartment and
the spleen, iliac and mesenteric lymph nodes as distal compartments. We identified this model
on the basis of CFSE data in mice, obtaining key immunological parameters at generation level,
which could be difficult to retrieve only through CFSE histograms.

Model parameter estimates reveal several features of the antigen-specific CD4+T cells
dynamics. While we have previously characterised the proliferation dynamic during the early
phase of T cell priming (from 42 to 57 hours after immunization) only in the draining lymph
nodes ([28],[29]), the results in this work characterize the later phase (from 72 to 96 hours
after immunization) and dissemination in the entire lymphoid network. Interestingly, the pro-
liferation during the time period from 72 to 96 hours is slower than during the first phase of T
cell priming, showing that the time of cell division is faster in the early phase, as previously
observed also for CD8+ T cells [40].

Furthermore, the estimated parameters showed that naive T cells have a negligible probabil-
ity to enter in division at late time points such as 96 hours after immunization, and their num-
ber decreases exponentially with a mortality rate greater than 0.5.

This phenomenon could be due to the lack of OVA- pulsed antigen presenting cells at this
time point, that leads to an increased mortality of naive T cells in the absence of an appropriate
stimulus. In fact, it was previously demonstrated that after nasal immunization with a fluores-
cent OVA plus CpG ODN 1826 antigen bearing, dendritic cells were detected in draining
lymph nodes only within 72 hours [28]. As a further consideration, we observe that T cell
migration from the draining lymph nodes to the blood is one of the most meaningful events in
the time period from 72 to 96 hours which activates dissemination in the network after
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immunization. With reference to the splitting parameters, the obtained values show that the
spleen represents the largest storage of CD4+ T cells. This result is in line with the conclusions
of [30] which developed a mathematical model indicating that the spleen represents the main
source of effector CD8+ T cells against viral infections and for T cell memory production.

By looking at the stochastic simulations shown in Fig 4, we observe the typical T cell dynam-
ics pathways, i.e, clonal expansion after antigen encounter and the subsequent contraction due
to the antigen clearance and cell apoptosis, leaving only a small pool of memory T cells. In par-
ticular, T cells in generation 1 in the draining lymph nodes only exhibit the decaying phase,
due to the combination of high death rate, high migration in the blood and lymphatic vessels
and low propensity to division of naive T cells.

In conclusion, these results provide a complete quantitative explanation of CD4+ T cells in
vivo pathways following nasal immunization, paving the way for future applications of this
model to other immune cells, infections or vaccination strategies. Finally, we highlight that
since the model is based on the general theory of branching processes, it can be applied in a
broader range of biological modeling problems where proliferation and dissemination in a net-
work are of interest. Specifically, the application of this model to the study of immune response
upon immunization is highly relevant to predict vaccine immunogenicity and for the rational
development of appropriate prime-boost vaccine strategies.
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