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Abstract

Developed and tested for many years, a variety of tumor hypoxia detection methods have
been inconsistent in their ability to predict treatment outcomes or monitor treatment efficacy,
limiting their present prognostic capability. These variable results might stem from the fact
that these approaches are based on inherently wide-ranging global tumor oxygenation lev-
els based on uncertain influences of necrotic regions present in most solid tumors. Here, we
have developed a novel non-invasive and specific method for tumor vessel hypoxia detec-
tion, as hypoxemia (vascular hypoxia) has been implicated as a key driver of malignant pro-
gression, therapy resistance and metastasis. This method is based on high-frequency
ultrasound imaging of a-pimonidazole targeted-microbubbles to the exogenously adminis-
tered hypoxia marker pimonidazole. The degree of tumor vessel hypoxia was assessed in
three mouse models of mammary gland carcinoma (4T1, SCK and MMTV-Wnt-1) and
amassed up to 20% of the tumor vasculature. In the 4T1 mammary gland carcinoma model,
the signal strength of a-pimonidazole targeted-microbubbles was on average 8-fold fold
higher in tumors of pimonidazole-injected mice than in non-pimonidazole injected tumor
bearing mice or non-targeted microbubbles in pimonidazole-injected tumor bearing mice.
Overall, this provides proof of principle for generating and targeting artificial antigens able to
be ‘created’ on-demand under tumor specific microenvironmental conditions, providing
translational diagnostic, therapeutic and treatment planning potential in cancer and other
hypoxia-associated diseases or conditions.

Introduction

Although initially thought to be homogeneous, early proof of heterogeneous physiology in
tumor vessels were described with low oxygen tensions (<10 mmHg pO,) found in selected
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tumor blood vessels [1-5]. This low oxygen or hypoxic environment leads to stabilization of
the transcriptional regulating protein hypoxia inducible factor (HIF-1c), meditating down-
stream signaling of pro-angiogenic proteins and small molecules which have been implicated
in driving angiogenesis and malignant progression [6, 7]. In recent years, the hypoxic, perivas-
cular niche has been extensively studied and demonstrated to harbor cancer stem cells, as well
as generally promoting metastatic spread [8-11]. However, the majority of these investigations
have been largely in vitro or focused on genetically manipulated HIF-1 protein knockout
mouse models [6, 7] where the true details of hypoxia and cell type(s) involved are not well
documented.

In addition to hypoxia-related tumor progression, hypoxia-induced protection against stan-
dard cytotoxic therapies leading to suboptimal response and eventual tumor recurrence has
been well documented [12-14]. Mounting evidence suggests high-dose radiotherapy response
in solid tumors is mediated by indirect death resulting from direct radiation-induced tumor
endothelial cell death [15]. A low pO, environment protects cells from radiation-induced cell
death by reducing the oxygen fixation of DNA strand breaks. In the presence of Oy, free radi-
cals formed following ionizing radiation potentiate DNA damage resulting in cellular death
while hypoxic environments attenuate this effect [16]. Applying hypoxic radioprotection
dogma to the idea of vascular-damaging doses of radiation or other vascular-targeted therapies
is a field in large part unstudied. Despite compelling evidence demonstrating the impact of the
hypoxic tumor vessel niche on tumor progression, clinical techniques evaluating the oxygen-
ation level in tumor vessels or tumor endothelial cells themselves remains elusive, limiting the
ability to study the impact on therapeutic response.

The bioreductive compound pimonidazole is a substituted 2-nitroimidazole that is prefer-
entially reduced in viable hypoxic cells forming an artificial tumor target that can be detected
by flow cytometry and immunohistochemistry [17]. Irreversible reduction of pimonidazole
allows cells which are intermittently hypoxic to also be detected by the aforementioned tech-
niques, and thus reoxygenation is not a limiting factor. Unlike naturally occurring tumor-asso-
ciated antigens [18], hypoxia marker antigens are not susceptible to the inherent
heterogeneous tumor cell genetics or changes in protein expression and genetic drift during
disease progression or therapeutic intervention. These aspects coupled with the observation of
pimonidazole dependent complement cell lysis suggesting pimonidazole antigens exist on the
cell membrane led to the current investigation [19]. Therefore, in the present study, we tested
the utility of pimonidazole antigen-like targets formed in the luminal surface of tumor blood
vessels as a target for intravenously-injected molecular contrast agents that may avoid many of
the pitfalls that face traditional hypoxia imaging and quantification. We describe a novel hyp-
oxemia (vascular hypoxia) detection method based on high-frequency ultrasound imaging of
vascular restricted a-pimonidazole targeted-microbubbles, targeting the hypoxia marker pimo-
nidazole in mouse mammary gland carcinoma models.

Materials and Methods
Cell lines

Murine endothelial cells (2H11) and murine breast carcinoma cells (4T1 & SCK) were cultured
at 5% CO, and 37°C. Cell lines were maintained in the following media conditions: 2H11—
DMEM high glucose (4.5 g/L) + 10% FBS, 4T1—DMEM F-12 (Gibco) + 10% BCS, and SCK—
RPMII 1640 + 10% BCS. 2H11 cells were purchased from ATCC, 4T1 cells were obtained from
Dr. Michael Borrelli (UAMS) and SCK cells were obtained from Dr. Chang Song (U of Minn.)
[20, 21]. All cell lines were tested and negative for mycoplasma.
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Generating pimonidazole-targeting microbubbles

Commercially available microbubbles, on average 2.5 um in diameter with 1 x 10 streptavidin
biding sites, allow for molecular targeted imaging (FUJIFILM Visualsonics, Inc.) [1]. In brief,
streptavidin molecules coat a lipid shell containing a gas filled hollow core of perfluorobutane/
nitrogen (C4F;0/N,). Here, 20 pg of biotinylated anti-pimonidazole antibody [22] was incu-
bated for 15 minutes with streptavidin-coated microbubbles to create pimonidazole targeting
microbubbles, MBo.-pimo (stock concentration 2 x 10°/mL) (Fig 1A). Microbubbles are stable
up to 3 hours after preparation and have a clearance rate of 10-20 minutes in mice.

In vitro microbubble binding experiments

2H11 endothelial cells growing exponentially were plated in 6 —well culture plates at 3 x 10°
cells/well. Three washes with PBS were performed to remove serum prior to adding serum-free
media. One row of wells (3 wells) was incubated with 75 pg/mL pimonidazole (equivalent to
the in vivo dose regimen) in serum free media while the other row received serum free media
and no pimonidazole. Hypoxic conditions were generated 24 hours after sub-culturing in
6-wells plates. Hypoxia was induced by incubating cells for 2 hours at 37°C in an anaerobic
chamber (Forma Scientific Inc.) were a gas mix (5% CO,, 10% H,, 85% N,) produced oxygen
concentrations within the tissue culture dishes at or below 10 mmHg. This was confirmed with
flow cytometry by pimonidazole saturation of cells incubated under these conditions [23, 24].

Following hypoxia incubation with and without pimonidazole, 6-well plates were removed
from the anaerobic chamber and the following procedure followed. All wells were washed with
PBS (3X) followed by 1 mL of serum free media added with 10 uL of MBo-pimo. MBs were
allowed to incubate with cells for 5 minutes, after which a gentle wash with serum free media
and immediate phase-contrast imaging was performed on an Olympus IX71.

Murine mammary gland carcinoma models

Two murine mammary gland carcinomas models (4T1, SCK) were generated in 5-12 week old
female Balb/c and A] mice (Charles River Laboratories) as described previously [20, 25].
MMTV-Wnt-1-Tg mice develop spontaneous mammary gland tumors and were kindly pro-
vided by Dr. Rosalia Simmen (UAMS). Subcutaneously implanted tumors in the right rear
limb reached an approximate size of 200 mm?® in size by day 7, after which tumors underwent
contrast-enhanced ultrasound imaging (as described below) and were excised for further histo-
logical studies. All animal experiments were performed with the approval of the University of
Arkansas for Medical Sciences Animal Use and Care Committee (IACUC).

Immunofluorescence

Mice received intraperitoneal (i.p.) injections with 75 mg/kg pimonidazole 2 hours prior to
euthanasia and tissue collection, as described previously [20, 26]. Pimonidazole, a substituted
2-nitroimidazole (290.7 Da), is preferentially reduced in hypoxic viable cells and forms irrevers-
ible protein adducts, and has been optimized for detection with immunohistochemical and fluo-
rescence methods [20, 26]. Normal (kidney, liver, and spleen) and tumor tissues were harvested
and snap frozen in OCT for histological sectioning (5 um) and subsequent staining. Hypoxia
was detected by anti-pimonidazole antibody (mouse FITC-MAb 1:50, Hypoxyprobe, Inc.) and
tumor blood vessels were detected by primary antibody CD31 (rat anti-CD31 1:100, BD Phar-
mingen) and secondary antibody anti-rat Alexa 647 (1:100, Invitrogen Molecular Probes)
mounted in Vectashield mounting media with DAPI (Vector Labs, Inc.). Imaging was per-
formed using an Olympus IX71 fluorescent microscope workstation or Aperio Scanscope FL.
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Fig 1. Pimonidazole targeting microbubbles. (A) A graphic representation of the microbubbles and
conditions used. Left, unlabeled microbubbles (MB); middle, pimonidazole-targeting MB (MBa-pimo); and
right, MBa-pimo without pimonidazole present in the circulation. (B) MBa-pimo binds hypoxic 2H11
endothelial cells only in the presence of pimonidazole. MBa-pimo does not bind endothelial cells (left), unless
pimonidazole is added (middle). (right), MBa-pimo binding to the cell surface of hypoxic endothelial cells,
magnification 40X.

doi:10.1371/journal.pone.0135607.g001

2D High-frequency ultrasound imaging

Non-linear imaging of targeted, contrast-enhanced microbubbles within tumor tissue was per-
formed according to the manufacturer’s protocol (FUJIFILM Visualsonics, Inc.). Two hours
after intraperitoneal (i.p.) administration of 75 mg/kg pimonidazole (Hypoxyprobe, Inc), mice
were anesthetized with 1% isoflurane and placed on a heated platform for the duration of the
ultrasound imaging session. A 27G catheter was placed in the lateral tail vein and a 50 uL bolus
of microbubbles injected intravenously (i.v.) using a syringe pump. After 5 minutes, allowing
the microbubbles to circulate and bind, a programed data collection sequence was initiated and
captured using a MS250 transducer, 18 MHz (FUJIFILM Visualsonics, Inc.). The program
includes an initial data collection sequence during 25 seconds (designated ‘pre’), followed by a
destruction phase where 100% of the microbubbles within the transducer field are obliterated
by a high-mechanical index ultrasound pulse that eliminates both free and bound microbub-
bles, to complete with a 25 second data collection sequence of imaging after the burst (desig-
nated ‘post’). Comparisons were made between the steady state prior to and following the
microbubble burst sequence. The difference in signal between pre- and post-burst (differential
targeted expression, d.T .E.), represents the relative amount and location of microbubbles
bound to pimonidazole. Four experimental conditions were investigated in the 4T1 tumor
model: nontargeted-microbubbles which lack streptavidin moieties (MB) and pimonidazole-
targeting MB (MBoa-pimo) within the tumor and with circulating pimonidazole present,
tumoral MBa-pimo without pimonidazole present (Fig 1A), and MBa-pimo measured within
the muscle while circulating pimonidazole present (n = 3-11).

3D High-frequency ultrasound imaging, 3D modeling and animation

A modified manufacturer’s protocol was used to obtain 3D distribution of tumor vessel hypoxia.
Five minutes after i.v. injection of targeted-microbubbles with a 27G 0.5cc insulin syringe (Ter-
umo), 10 repetitive burst sequences were performed over the heart to destroy microbubbles in a
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highly concentrated region, until baseline contrast signal was observed. Following reduction of
circulating unbound targeted-microbubbles, 3D imaging was acquired according to the manu-
facturer’s protocol. At 0.152mm/slice, 110 slices were collected from the tumor pre- and post-
burst. Images were extracted and used for subsequent modeling and animation.

The unprocessed microbubble images collected with Visualsonics software were post-pro-
cessed using a MatLab subtraction algorithm to illustrate the absolute signal difference between
pre and post-burst. Deconvolved images were stacked with Image] software and used to create
a 3D model and video. Additionally, Huygens Essential v2.10 software (Scientific Volume
Imaging, B.V.) was used to further process deconvolved stacked images using maximum-inten-
sity projections of the image stacks for 3D image modeling.

Statistical Analysis

A one-way ANOVA with post-hoc Holm-Sidak’s multiple comparisons test was used for statis-
tical analysis of microbubble data.

Results and Discussion
Pimonidazole targeting microbubbles

When pimonidazole is reduced within or on the surface of hypoxic cells, it forms an artificial
tumor target [27] impervious to the tumor’s genetic origin or acquired mutations [19, 22],
allowing broad-spectrum application. Here we designed a novel strategy using vascular
restricted microbubbles to exploit this potential diagnostic and therapeutic target of vascular
hypoxia (Fig 1). Targeting an artificially created target, the pimonidazole-targeting MB (MBa-
pimo) can inherently act as its own control, i.e. in the absence of the target (Fig 1A). MBo.-
pimo can bind hypoxic endothelial cells in vitro incubated with pimonidazole, whereas the
absence of pimonidazole prevents MBa-pimo binding (Fig 1B and S1 Fig).

Vessel hypoxia detection

After demonstrating in vitro that MBo-pimo was specific to hypoxic endothelial cells incubated
with pimonidazole, quantification of the amount of vascular hypoxia in three different murine
mammary gland carcinoma models using immunohistochemical staining was performed, i.e.
4T1, SCK and MMTV-Wnt-1 (2). Whereas overall tumor hypoxia, as indicated by pimonidazole
positive staining ranged from 5%- 18% in these models, vascular hypoxia, as indicated by co-
localization of tumor vessels (CD31%) and hypoxia (pimonidazole™) amounted up to 20% of the
total stained vasculature in the 4T1 model (Fig 2F). These findings are similar to earlier reports
studying various malignant tissues and hypoxia subtypes [28]. In contrast, no vascular hypoxia
was detected in normal healthy tissues i.e. kidney, spleen and liver (Fig 2G, 2H and 2I); suggest-
ing cell surface pimonidazole targets are a promising hypoxia target in malignant tissues (S2 Fig).

High-frequency ultrasound imaging with pimonidazole-targeted
microbubbles

High-frequency ultrasound was used to image and quantify bound pimonidazole-targeted
microbubbles (MBa-pimo) in tumor and normal tissue (Fig 3).

By creating the artificial targets with injection of pimonidazole, the accumulation of MBa-
pimo contrast agent in tumor vessels was significantly enhanced with a nearly 8-fold higher dif-
ferential targeted expression (d.T.E.) (206.2 + 45.1 vs. 25.5 + 12.4 linear a.u., p < 0.05) than in
tumors not receiving pimonidazole. In normal healthy muscle tissue, the pre- and post- signal
was not significantly different resulting in a d.T.E. of essentially zero (-0.33 + 1.4 linear a.u.)
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Fig 2. Vascular hypoxia in murine breast carcinomas and normal tissue. Immunofluorescence analysis
of hypoxemia in 4T1 mammary gland carcinoma. (A), 4T1 tumor tissue is stained for tumor vessels (CD31;
red). (B) Tumor hypoxia (pimonidazole; green) is co-localized (white) in relation to microvasculature in 4T1
tumor tissue (C). Quantification of overall tumor vessels (D), hypoxia (E), and hypoxic tumor vessels (F) in
4T1, SCK and MMTV-Wnt-1 carcinomas. Immunofluorescence analysis of vasculature (CD31; red) and
hypoxia (pimonidazole; green) in non-diseased kidney (G), spleen (H) and liver (l) indicates a lack of global
and vessel hypoxia in normal tissue.

doi:10.1371/journal.pone.0135607.g002

despite the presence of circulating pimonidazole. Non-targeted-microbubbles (MB) accumu-
lated within the tumor similar to controls (MBo-pimo in mice lacking pimonidazole injection),
however with greater variance (33.3 + 13.2 linear a.u,, Fig 4C and 4D). Passive accumulation
and extravasation into the tumor might contribute to this, although this effect should be inher-
ent in the other conditions and would require inter-endothelial cell junctions much larger than
typically reported [29]. Relatedly, high interstitial fluid pressure, which is a well-documented
physiological feature of solid tumors [30-33], might affect contrast-enhanced ultrasound imag-
ing with microbubbles. The high intra-tumoral pressure can lead to reduced tumor blood flow
and thus, may influence microbubble imaging through dynamic changes in blood flow kinetics
[21]. Reduced or sluggish blood flow may also result in trapping or non-specific binding/elec-
trostatic interactions within tumor blood vessels. We were cognizant that other external factors
may also exacerbate the influence on physiology (i.e. anesthesia, body temperature) and con-
tribute to the amount of non-specific signal. Nonetheless, the signal generated in the tumor
from targeted microbubbles suggests a detectable level of hypoxic vasculature is present in
these models and may be translated into human cancer.

While this molecular imaging methodology allows for imaging of tumor vessel hypoxia in a
specific 2D plane, it also permits imaging of the whole tumor. By using specialized software
(Huygens essential software), a 3D representation of overall vessel hypoxia was generated (Fig
5B). This permits not only a read-out on the general hypoxic state of the tumor, but also
whether there is micro-regional hypoxia within the tumor, i.e. improved resolution over stan-
dard hypoxia imaging techniques. Prior to non-linear contrast-enhanced imaging, anatomical
visualization was obtained with the B-mode ultrasound (Fig 5A) followed by imaging of MBo-
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Fig 3. Schematic of anti-pimonidazole targeted-microbubbles (MBa-pimo) with ultrasound imaging
for detection of vascular hypoxia. (A) lllustration showing the differential distribution of MBa-pimo in well-
oxygenated tumor endothelium (red) compared to hypoxic tumor endothelium (blue) during imaging and
intervention by ultrasound. (B) Representative quantification graphic of MBa-pimo where the binding occurs
over a 5 minute window after IV injection followed by a data collection period of contrast signal, a single
ultrasound pulse to burst bound and free MBa-pimo, and a final data collection during the immediate
reperfusion window. Subsequently, the difference in signal from the steady state prior to microbubble burst
(‘pre’) and following burst (‘post’) can be calculated. This differential targeted expression (d.T.E.; linear, a.u.)
represents the relative amount of bound MBa-pimo and indirectly indicates the location and amount of
vascular hypoxia within the tumor (x-axis scale not linear).

doi:10.1371/journal.pone.0135607.g003

pimo in 3D. Following image collection, post-processed images reflect the d.T.E (Fig 5A). Sub-
sequently, the deconvolved images were stacked to build a maximum-intensity 3D model and
video (Fig 5B and S3 Fig). The ability to image whole tumor hypoxemia presents an attractive
method for longitudinal, clinically meaningful studies on its role in tumor progression and
therapeutic response. For example, hypoxia has attenuating anti-tumor effects on radiotherapy
and drug efficacy [12-14], and while these tempering effects have been reported for various
tumor and normal cell types [16], there is a paucity of investigations delineating the direct con-
sequences of hypoxia on radiation or drug efficacy in tumor endothelial cells, in vitro or in
vivo. Conversely, there is a substantial amount of literature identifying the vascular condition
in response to various treatment therapies. The detection of vascular hypoxia using contrast-
enhanced ultrasound as described within would permit a directed and non-invasively applied
strategy for pre-clinical and ultimately clinical settings focused on the status of the vasculature
before, during or after therapy.

Conclusions

Studies have shown that hypoxic vessels are associated with tumor angiogenesis, progression,
stem cell induction/protection, metastasis and possibly revascularization of recurrent tumors
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doi:10.1371/journal.pone.0135607.g004
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Fig 5. 3D modeling of MBa-pimo distribution in mammary gland carcinoma. A) Single slice images
taken from a 3D imaging sequence in B-mode (left). Single slice images taken from a 3D imaging sequence
depicting the differential targeted expression (d.T.E) (right). B) Three-dimensional contrast projection of 3D
stack image data from hypoxia targeted, MBa-pimo, contrast signal collected in a rear-limb 4T1 tumor.
Images (0.152mm/slice) generated using Visualsonics imaging system and post-processed using the
Huygens essential software.

doi:10.1371/journal.pone.0135607.g005

[4, 6-10, 34]. The realization that hypoxic microvasculature exists as early as the developmen-
tal stage [4, 5] and plays a key-role in tumor progression and treatment response, brings about
new possibilities for the role of hypoxia in cancer biology. Improved radiation delivery tech-
niques allow the potential for dose painting tumor areas found to harbor hypoxic tumor ves-
sels. In addition, creating a new target with an exogenously administered agent of high
specificity to the tumor vasculature and tumor microenvironment (e.g. hypoxia) presents a
unique and ideal platform for drug delivery to tumor and stromal cells via antibody directed
drug conjugates, targeted liposomes and other targeted drug-encapsulated technologies [27].
While some “non-specific” binding with non-targeted-microbubbles were noted in this
approach, further study and refinement of the microbubble imaging technique should provide
insight into the underlying variables involved and could potentially reveal further applications
of this imaging technique if correlated with tumor IFP or other diagnostic tumor physiology
[32, 33]. The data presented herein suggests tumor vessel hypoxia is a detectable physiological
phenomenon utilizing a new method of pimonidazole-targeted contrast-enhanced microbub-
bles confined to the microcirculation of a tissue. Segmenting subtypes of hypoxia with an imag-
ing technique that possess capillary level resolution, provides exciting new opportunities for
longitudinal studies investigating vascular hypoxia in tumor progression and therapeutic
response. The method described is based on generating artificial targets able to be ‘created’ on-
demand by injection or ingesting pimonidazole, an already clinical approved agent. Thus, this
method does not rely on heterogeneously or transiently expressed biomarkers of any kind, is
not affected by genetic variability or constrained to the tumor microenvironment; instead, it is
a snapshot of hypoxia occurring in and around vasculature in a variety of ischemic conditions.

Supporting Information

S1 Fig. Anti-pimonidazole antibody binds cell surface pimonidazole antigens in the pres-
ence of hypoxia. MBo-pimo does not bind endothelial cells without pimonidazole (left vs.
right panels), and hypoxic conditions (top vs. bottom panels).

(TIF)

S2 Fig. Evaluation of cell surface anti-pimonidazole antigens by flow cytometry. Pimonida-
zole adduct formation on the cell membrane is preferentially formed under hypoxic conditions.
Cells negative for 7-AAD, a fluorescent compound with a strong affinity for DNA were deemed
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viable and non-porous, thus preventing any significant degree of intracellular binding of anti-
pimonidazole antibody.
(TIF)

$3 Fig. 3D video of vascular hypoxia after off-site bursting all free microbubbles in circula-
tion: detection of anti-pimonidazole functionalized microbubbles. A 3D video was made
using a customized Matlab algorithm to subtract the free flowing microbubble signal in order
to display the relative amount and distribution of MBo.-pimo, or tumor vessel hypoxia. Repre-
sentative control (no pimonidazole) and pimonidazole-injected tumor bearing mice imaged
with MBa-pimo are shown. A static B-mode image from the central region of the tumor is
shown for orientation.
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