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Abstract

In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures,
so the pore types and PSDs (pore size distributions) play a major role in the shale oil occur-
rence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of
marine shale have been well studied; however, research on lacustrine shale is rare, espe-
cially for shale in the oil generation window, although lacustrine shale is deposited widely
around the world. To investigate the relationship between nanometer-scale pores and oil
occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin,
NE China were analyzed. Analyses of these samples included geochemical measurements,
SEM (scanning electron microscope) observations, low pressure CO, and N, adsorption,
and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore
types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter
pores, and dissolution pores, and these pores are dominated by mesopores and micropores;
(2) There is no apparent correlation between pore volumes and clay content, however, a
weak negative correlation is present between total pore volume and carbonate content; (3)
Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0%
and the pore volume is positively correlated with the TOC (total organic carbon) content. The
statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters
larger than 40 nm. However, more research is needed to determine whether this minimum
pore diameter for oil occurrence in lacustrine shale is widely applicable.

Introduction

The growing demand for energy has resulted in continuously increasing consumption of con-
ventional oil and gas resources and has driven a new wave of exploration for oil and gas. In
addition to exploration for conventional petroleum, unconventional oil and gas are now
attracting more attention. In particular, the ‘shale gas revolution’ in North America has trig-
gered a worldwide upsurge in shale gas exploration. More recently, an emphasis has been
placed on shale oil exploration and development, stimulated by decreases in natural gas prices.
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A good understanding of the shale reservoir, especially the shale oil storage mechanism, is
of great importance to shale oil exploration and development, which necessitates the determi-
nation of pore type, size, and PSD. However, it is difficult to characterize the PSD of shale
using conventional experimental and analytical methods, probably due to influencing factors,
such as the small size of shale pores (nanometer-scale), wide range of pore sizes, maturity,
TOC, and mineral contents, etc.

Recently, many researchers studied pore types and sizes of gas producing shales, using FIB--
SEM (focused ion beam-scanning electron microscope), FE-SEM (field emission scanning elec-
tron microscope), CT scanning (micron and nanometer scale), gas adsorption (low pressure
CO, and N, adsorption), and high pressure mercury injection methods. Some progress has
been made toward understanding the controlling factors of gas content, shale microstructure,
and gas flow mechanisms in marine shale [1-12]. However, as the shale oil/tight oil exploration
work started fairly recently, international papers on the reservoir features of marine shales in
the oil generation stage are quite limited [13-15], let alone the lacustrine shale. Two aspects of
the difference between shale oil and shale gas are presented: (1) As molecular radius of oil is
much larger than that of gas, which makes it quite difficult for oil to flow, the reservoir space in
shale that is favorable to the accumulation of gas may not be necessarily effective for oil; (2)
The microscopic pore structure of shale in the oil generation stage is different from gas shale,
probably affected by the diagenesis and hydrocarbon generation processes.

In this article, 10 lacustrine shale core samples covering three maturity stages (immature,

Ro < 0.5%; low-mature, 0.5% < Ro < 0.7%; mature, 0.7% < Ro < 1.3%) were analyzed to exam-
ine the pore shapes, types, PSDs, volumes, and their potential influence factors; which include
TOC contents, maturities, and mineral compositions; by using the Rock-eval pyrolysis, XRD,
SEM, and pore size distribution measurement techniques. Finally, the relationship between the
pore diameter and the shale oil enrichment was investigated using a statistical method.

Samples and Methods
2.1 Samples

Lacustrine shale core samples taken from the first member of the Cretaceous Qingshankou
Formation (K,qn'), in Suihua sag and Qijia Gulong sag in the north part of the Songliao Basin,
NE China (Fig 1), were provided by the Daqing Oilfield, along with permission to use the sam-
ples for this publication. Shale of K,qn' was deposited in a semi-deep lake during a global sea
level rise [16] and is contemporaneous with a global Cenomanian/Turonian anoxic event
[17,18]. Formations deposited during this event contain major oil-prone source rocks, which
reach oil shale quality in their lower part (1% member; K,qn'). The stratigraphic structure of
Songliao Basin has been well studied [19,20].

2.2 Methods

2.2.1 Geochemical and mineral analyses. TOC content was measured using the LECO
C$230 apparatus, and combustion was performed using oxygen gas at temperatures between
350°C and 520°C. Rock-Eval analysis was performed on ~100 mg of crushed shale samples
using a Rock-Eval 6. Free oil or volatile hydrocarbon content, expressed as mg HC/g rock (S;),
the residual hydrocarbon generation potential, expressed as mg HC/g rock (S,), the temperature
of maximum pyrolysis yield (Ty,.y), and the quantity of pyrolyzate, expressed as mg HC/g rock
generated from kerogen during gradual heating in a helium stream are normalized to TOC to
give the hydrogen index (HI; mg HC/g TOC). The pyrolysis stage (under an N, environment)
involved heating the sample at an initial iso-temperature of 300°C for 3 min to release the free
hydrocarbons in the samples, followed by increasing the temperature to 650°C at a rate of 25°C/
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Fig 1. Geologic map of Songliao Basin, with well locations (red dots), sampling depths, and geographic coordinates indicated.

doi:10.1371/journal.pone.0135252.g001

min to release the potential hydrocarbon, through thermal cracking. Random vitrinite reflec-
tance (Ro%) measurement was performed on polished sections of the shale blocks using a Leitz
MPV-3 photometer microscope, and the observation points are more than 20.

Shale samples were analyzed for mineral composition by XRD analysis, using a Panalytical
X’Pert PRO Diffractometer with a Cu Ka radiation (40 kV, 30 mA) and scanning speed of 20
20 per minute. Crushed samples (80-100 mesh) were mixed with ethanol, hand ground in a
mortar and pestle, and then ‘smear-mounted’ on glass slides for analysis. Prior to separation of
the clay fraction (<2 um), the samples were treated by adding 15% acetic acid solution to
remove the soluble carbonates, in order to analyze the clay species. The excess acid was subse-
quently removed by multiple rinses with deionized water. The <2 pm clay fraction suspended
on the top of the column was finally separated from the stabilized aqueous suspension using
Stoke's Law. Oriented <2 pm clay fraction specimens were prepared by smearing the paste
onto a glass slide, which minimizes size fractionation of the clay particles. For each sample,
three X-ray analyses were performed: the first run after air-drying, the second run after ethyl-
ene—glycol solvation for 4 h at 80°C, and the third run after ethylene-glycol solvation for 2.5 h
at 550°C. The clay mineral types were identified based on their characteristics in the X-ray dif-
fraction patterns from the three XRD runs, following standard procedures as described in the
Oil and Gas Industry Standard of the People's Republic of China [21].
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2.2.2 SEM. In the SEM experiment, 10 g samples were cut and polished to create fresh flat
surfaces; which can then be fixed to a copper sample stage with latex, naturally dried for 72
hours, and the surface coated with a 2 nm thick galvanized gold film to enhance electric con-
ductivity. After preparation, the samples were observed under VEGA/LMU scanning electron
microscope from TESCAN Company. In the FE-SEM experiment, shale blocks weighing ~2-3
g were selected and packed with epoxy resin in order to guarantee the integrity of the crumbly
shale samples. A 5 to 10 kV high-energy argon ion beam from a JEOL IB-09010 argon ion pol-
ishing instrument (made in Japan) was used to bombard the sample surface, which removed of
the atoms of the bombarded surface layer by layer, generating a smooth and flat ion etched sur-
face. After polishing, a 10 nm thick carbon film was sprayed on the ion etched surface to
enhance the conductivity, which improved the image quality. After sample preparation, a high
resolution field emission scanning electron microscope (HITACHI-S5500) was used to take
electron images of the microscopic pores on the etched surfaces.

2.2.3 Low pressure N, and CO, adsorption. Approximately 10 g of deoiled, dehydrated
powders (less than 3 mm in size) were put into the sample tube, which was connected with a
Quantachrome Nova 4200e apparatus. Each sample was degassed at 100°C for 8 h in a vacuum
chamber prior to analysis to remove any residual volatile material. Then, the relevant experi-
ment adsorbate (N, or CO,) was injected into the sample tube. N, adsorption isotherms were
performed at 77 K with 20 points in a range of 0.01 < P/Py < 0.985 with an equilibrium time
of 120 s. A 30-point desorption isotherm was also performed from 0.2 < P/P, < 0.985. Due to
the wide range of relative pressures, this technique can be used to examine the micropores (<2
nm), mesopores (2-50 nm), and macropores (>50 nm). The surface area was calculated within
a relative pressure range of 0.05-0.20 by the multi-point BET equation [22], pore volume and
pore size distributions were calculated by the BJH (Barrett-Joyner-Halenda) method, using the
adsorption branch of the N, isotherms. This classical pore size model is based on the Kelvin
equation assuming a cylindrical pore and corrected for multilayer adsorption [23].

Carbon dioxide adsorption isotherms were collected within a relative pressure range of
107°-3.0 x 10~% in an ice/water bath (273.15 K) with an equilibrium time of 90 s for each point.
The PSDs up to 1.4 nm were determined from CO, isotherms using the DFT (density func-
tional theory) method, which can provide a more accurate approach to pore size analysis
[24,25]. Micropore volume and surface area were calculated using the Dubinin-Radushkevich
(D-R) equation [26,27].

2.2.4 High pressure mercury injection method. First, the shale core samples were
crushed to ~ 3 mm and deoiled, and then the samples were dehydrated at 110°C for 2 hours.
After the pretreatment, the powders were put into a dilatometer with a volume of ~1 cm?; this
work must be carried out in the glove-box under a nitrogen atmosphere to prevent the samples
from being contaminated by the re-absorption of water vapor. Then, the dilatometer with sam-
ples was transferred to a porosimeter for vacuum degassing treatment under low pressure, after
which liquid mercury was injected for pore detection under high pressure (~200 Mpa) by using
a porosimeter (PoreMaster GT 60). Specific surface area and pore volume were calculated
using the Young-Duper equation.

Results
3.1 Geochemical characteristics and mineralogical compositions

The geochemical experimental results show that the samples have high TOC contents (see
Table 1), with a minimum TOC content of 1.73 wt.%, a maximum of 4.21 wt.%, and an average
of 2.72 wt.%. The hydrogen index (HI) ranges from 209 to 934 mg HC/g TOC; and the matu-
rity of organic matter ranges from 0.43 to 1.28% (VR), spanning over three stages, which
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Table 1. Geological and geochemical parameters of studied samples.

Sample Well Depth Ro TOC Tmax S; S, HI S4/TOCx100
Number (m) (%) (wt.%) (°C) (mg HC/g rock) (mg HC/g rock) (mg HC/g TOC) (mg HC/g TOC)

S-1 Sheng1 512 0.43 4.21 441 0.13 33.7 800 3.09

S-2 Gub72 2279 0.57 1.99 446 1.61 18.58 934 80.9

S-3 Jin88 1985 0.9 1.73 444 1.28 11.06 639 73.99

S-4 Jin88 1989 0.9 4.14 447 2.54 37.57 907 61.35

S-5 Jin88 1995 0.91 2.99 445 1.72 24.06 805 57.53

S-6 Jin88 2009 0.95 2.77 427 3.73 5.79 209 134.66

S-7 Ying15 2157 1.2 2.36 431 3.39 6.89 292 143.64

S-8 Ying15 2174 1.23 2.81 441 2.88 8.15 290 102.49

S-9 Ying15 2188 1.25 2.1 436 3.91 7.1 338 186.19

S-10 Ying15 2215 1.28 2.13 440 2.43 6.49 305 114.08

doi:10.1371/journal.pone.0135252.t001

include immature, low maturity, and mature. The XRD analysis results show that the samples
studied have a relatively high clay content, ranging from 59.6 to 65.9 wt.%. The clay content is
dominated by a mixed-layer of illite and smectite (I/S), followed by quartz (17.2 to 25.0 wt.%),
feldspar (7.6 to 13.6 wt.%), pyrite (0 to 4 wt.%), calcite (0.5 to 4.8 wt.%), and minor amounts of
dolomite. The content of the illite and smectite mixed-layer is between 65% and 84%, ~75.7%
on average; the content of illite is 9%-16%, ~11.3% on average; and kaolinite and chlorite only
account for a small proportion (Table 2).

3.2 Pore Types

According to the positions of the pores and the contact relations between the pores and miner-
als, pores types were identified in the studied samples. The pore types identified include inter-
matrix pores, intergranular pores, organic matter pores, dissolution pores, and interlayer frac-
tures (Fig 2). Inter-matrix pores are a common pore type in shale; they occur in clay mineral
flakes, clay aggregates, cement crystals and large debris particles, and their widths can ranges
from 0.5 to 4.0 um (Fig 2A). Intergranular pores are often present as framboidal pyrite inter-
granular pores (Fig 2B). Organic matter pores mainly refer to those inside the organic

Table 2. XRD analysis data of studied samples.

Sample Number Minerals(wt.%) Clay components (%)

Quartz Feldspar Calcite Dolomite Pyrite Clay /s | K C
S-1 21.0 8.9 1.2 / 3.5 65.4 74 16 4 6
S-2 25.0 8.7 4.8 / 1.9 59.6 65 10 4 21
S-3 20.2 11.2 1.9 / 4.0 62.7 81 10 3 6
S-4 17.2 7.7 2.1 7.9 3.9 61.2 77 12 3 8
S-5 21.4 8.1 3.8 / 2.6 64.1 84 9 2 5
S-6 21.1 10.9 2.1 / 0.0 65.9 77 12 4 7
S-7 22.8 11.8 1.1 / 42 60.1 76 10 3 11
S-8 22.3 13.6 0.5 / 1.8 61.8 79 10 2 9
S-9 20.7 11.7 2.0 / 2.7 62.9 74 13 3 10
S-10 24.3 7.6 29 / 2.8 62.4 70 11 5 14

Note: I-lllite, K-Kaolinite, C-Chlorite, I/S- lllite/Smectite mixed layer.

doi:10.1371/journal.pone.0135252.1002
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Fig 2. Pore and fracture characteristics of the studied samples. (A) Inter-matrix pores in sample S-2; (B)
Intergranular pores in sample S-3; (C) Organic matter pores in sample S-5; (D) Dissolution pores in sample S-
9; (E): Clay interlayer fractures in sample S-8; (F) Well-developed clay interlayer fractures in sample S-5; (G)
Interlayer fractures between the calcite and clay layers in sample S-1.

doi:10.1371/journal.pone.0135252.9002
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glomerate or the residual pores left after hydrocarbon generation. There are disputes over
whether organic matter pores occurred or not in shale in the oil generation stage. Curits et al.
(2012) reported that organic matter pores were not well developed in the oil generation stage,
and even though organic matter pores formed, the effect of dissolution and compaction might
lead to pore collapse due to poor particle support [13,14]. However, Reed et al. (2014) observed
nano-scale organic matter pores in the Barnett shale in the oil generation stage, which were
interpreted to be kerogen organic pores rather than pyrolysis asphalt organic pores [15].
Organic matter pores of 20-50 nm in size are also observed in the studied shale in the oil gener-
ation window (Fig 2C). Dissolution pores mainly form due to the enlargement of previously
existing inter-matrix pores, by dissolution of carbonate, phosphate, or aluminosilicate minerals
(Fig 2D). In addition, interlayer fractures are also well developed in the lacustrine shale; these
include two types of fractures, i.e., the fractures between clay mineral interlayers (Fig 2E and
2F), and the fractures between calcite and clay mineral interlayers (Fig 2G).

3.3 Pore characteristics

Pore characteristics of shale can be investigated using fluid invasion and X-ray methods. Fluid
invasion methods often include high pressure mercury injection and low pressure N, and CO,
adsorption [28,29]. X-ray methods include small angle X-ray scattering (SAXS), small angle
neutron scattering (SANS), and ultra-small angle neutron scattering (USANS) [3,4,30]. The X-
ray scattering method is more widely used in coal and material researches [6]. It is difficult to
effectively describe the pores by only one method, due to the presence of various shale pore
types (organic and inorganic), very small pore throats (nano-scale), and a wide range of pore
size (micron to nanometer scale). In this study, the CO, adsorption isotherm is used to esti-
mate micropore (0-2 nm) volume and PSD by using the D-R equation and the DFT method,
respectively. The N, adsorption isotherm at low relative pressure (<0.3) is used to estimate the
micropore (<2 nm) PSD and volume in minerals; the high relative pressure (0.3-0.98) iso-
therm is used to estimate the mesopore (2-50 nm) PSD and volume using the BJH method;
and the macropore (>50 nm) volume and PSD is estimated using the high pressure mercury
intrusion data.

3.3.1 Adsorption isotherms. Pore parameters and adsorption isotherms from the above
mentioned three experiments are shown in Table 3 and Figs 3-5. CO, adsorption is coupled
with the N, adsorption analysis to examine the micropore size because the analytical tempera-
ture of N, adsorption is too low (77.3 K) for the nitrogen molecules to access the micropores.
The CO,-SA in the 10 samples ranges from 3.52 to 40.25 m*/g, with a mean value of 11.98 m*/
g; and the N,-SA ranges from 0.39 to 30.99 m*/g, with an average of 5.17 m*/g (Table 3), which
is lower than that of the CO,-SA. The surface area derived from N, adsorption might be under-
estimated due to the activated diffusion and molecular sieving phenomenon [27,31,32]. The
CO, adsorption amount at a P/P, value of ~0.03 varies from 0.0134 to 0.1265 m mol/g for dif-
ferent samples, and CO, adsorption isotherms manifest as type I, which is indicative of micro-
porous solids (Fig 3). The isotherms for the samples with maturity 0.5% < Ro < 1.0% (Fig 3A)
show a linear curve, indicating a high micropore volume (Table 3) and a relatively larger pore
diameter; however, CO, isotherms of other samples (Fig 3B) exhibit a convex-upward curve,
suggesting the coexistence of micropores and mesopores.

The isotherms of N, adsorption and desorption at the temperature of liquid nitrogen
(-196°C) are shown in Fig 4. According to the [IUPAC classification, the N, adsorption iso-
therms belong to type IV [33], due to the presence of obvious hysteresis loops in all samples,
and adsorption amounts ranging from 0.0388 to 0.9781 m mol/g for different samples for a P/
P, value of approximately 0.980 (Fig 4). The hysteresis loop is closed in most shale samples
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Table 3. Pore volumes and surface areas of lacustrine shale samples.

Sample number TOC
wt.%
S-1 4.21
S-2 1.99
S-3 1.73
S-4 414
S-5 2.99
S-6 2.77
S-7 2.36
S-8 2.81
S-9 2.10
S-10 2.13

CO,-SA

m?/g
40.25
5.40
16.80
7.96
7.85
14.97
6.59
9.02
3.52
7.43

CO,-PV N,-SA N>-PVg 3 N>-PVg g5 N>-PVg o8 Hg-PVsq Hg-PV,
cm®/g m?/g cm’/g cm®/g cm®/g cm®/g cm’/g
0.013 30.99 0.0149 0.0251 0.0339 0.0031 0.0269
0.002 1.49 0.0007 0.0021 0.0042 0.0012 0.0054
0.006 1.31 0.0007 0.0016 0.0027 0.0004 0.0047
0.003 0.39 0.0002 0.0006 0.0015 0.0019 0.0115
0.003 0.44 0.0002 0.0007 0.0017 0.0023 0.0054
0.005 0.39 0.0002 0.0006 0.0013 0.0025 0.0056
0.002 5.00 0.0025 0.0070 0.0148 0.0048 0.0128
0.003 5.14 0.0027 0.0078 0.0173 0.0021 0.0127
0.001 3.26 0.0016 0.0048 0.0119 0.0028 0.0129
0.002 3.32 0.0016 0.0049 0.0137 0.0011 0.0066

Note, SA- surface area; N,-PV, 3—pore volume derived from N, adsorption isotherm at P/Py <0.3; Hg-PVso—volume of pores with diameter higher than
50 nm, derived from high pressure mercury intrusion experiment.

doi:10.1371/journal.pone.0135252.t003

with only a few samples having open hysteresis loops (S-1, S-2, and S-3). The “forced closure”
of the desorption branch at P/P0 ~ 0.45 is interpreted to be the result of the Tensile Strength
Effect, which is probably caused by the instability of a hemispherical meniscus during desorp-
tion in pores with critical diameters of approximately 4 nm [34]. The presence of hysteresis
indicates that evaporation from pores is a different process from condensation within the pores
and that capillary condensation occurs within the mesopores [35]. The lack of closure of the
hysteresis loop below a relative pressure of 0.45 is interpreted to be caused by swelling or
adsorption of nitrogen in the micropores [35], which has also been observed in coal and marine
shale [6,7,36].

The shape of the hysteresis loop was complex for the studied samples (Fig 4), which is prob-
ably the result of the presence of a combination of several typical pore types (Fig 2). Close
examination of the hysteresis loops shows two types, type H2 (S-1, S-3, and S-6 -S-10) and
type H3 (S-2, S-4, and S-5) (Fig 4). The type H2 loop is interpreted to most probably be caused
by the difference between the condensation and evaporation processes, both occurring in pores
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Fig 3. Carbon dioxide adsorption isotherms (273.15 K) for the studied samples.

doi:10.1371/journal.pone.0135252.9003
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with narrow necks and wide bodies like ink-bottle pores. The type H3 hysteresis occurs in
aggregates of plate-like particles, which have slit-shaped pores. The recognition of type H3 hys-
teresis loops must be done with caution because it is very susceptible to error [37]. This caution
was echoed by Clarkson et al. (2012), who studied tight gas sandstones using USANS/SANS
and gas adsorption analysis and found that the assumption of slit-shape pores inferred from
the hysteresis loop shape was not consistent with the SANS scattering results[3]. However, slit-
shaped pores have been observed in shale, such as the intraplatelet pores within plate-like clay
aggregates [38], which is consistent with the development of clay mineral interlayer fractures
observed under SEM (Fig 2E and 2F).

Hg intrusion curves for the 10 samples are observed to be of two types. Samples S-4, S-5, S-
6, and S-7 comprise one type, which exhibits a sharp increase in the lower pressure section, fol-
lowed by a plateau, and finally a slow raise in the higher pressure condition (Fig 5). Sample S-4
is the exception to the last stage, as it shows a very quick increase in the very high pressure
stage, which might be caused by the artificial fracture. The inconsistency of pore size
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Fig 5. Hg intrusion volumes of the studied samples.

doi:10.1371/journal.pone.0135252.9005
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distributions (< 50 nm) for N, and Hg analyses also points to the artificial fracture of Sample
S-4 (Fig 6 S-4). Samples S-1, S-2, S-3, S-8, S-9, and S-10 comprise a second type, in which the
Hg intrusion curves increase slowly with increasing pressure (Fig 5).

3.3.2 Pore size distribution (PSD). The PSDs of the studied samples, which combine the
results of N, and CO, adsorption and Hg intrusion analyses, are shown in Fig 6. The micropore
size derived from the CO, adsorption isotherm of S-1 (Ro < 0.5%) is similar to shales with
maturity Ro > 1.0% (Fig 6, right column), which might be due to the sample’s lower compac-
tion and diagenesis effects. Since shale oil usually occurs in the oil generation stage, the pore
characteristics of immature shale will not be discussed further in this paper. For shales with an
Ro value between 0.5% and 1.0% (Fig 6, left column), the micropores are 0.45-1.0 nm in diam-
eter, most of which are 0.8-1.0 nm. For shales with maturity Ro > 1.0%, their micropores are
0.3-1.0 nm in diameter, among which most are 0.45-0.7 nm in diameter, followed by pores of
0.8-1.0 nm in diameter (Fig 6 S-7, 6 S-8, 6 S-9, and 6 S-10).

Most of the PSDs derived from N, adsorption isotherms show a main peak at ~2 nm (Fig
6). For samples with a maturity lower than 1.0% (Ro), pore diameters range from 1 to ~ 40 nm
(Fig 6 S-2,6 S-3, 6 S-4, 6 S-5, and 6 S-6), with the exception of sample S-1, for which the pore
diameter is smaller than ~10 nm (Fig 6 S-1). However, the pores in the high maturity
(Ro > 1.0%) shales are relatively larger, with diameter that can reach as high as ~70 nm (Fig 6
S-7,65-8,6 S-9, and 6 S-10).

The incremental intrusion plots using Hg intrusion show pore volumes in the meso- and
macropore range, and indicate that the macropores are not well-developed in all the studied
samples (Fig 6). However, samples S-1, S-5, and S-6 still show some macropores with diameters
~70 nm, 300 nm, and 150 nm, respectively (Fig 6 S-1, S-5, and S-6). It is worth noting that
most samples exhibit plentiful pores with diameters smaller than 10 nm, and most of those
indicated by Hg intrusion are artificial enlarged due to the very high pressure, which can also
be proven by the inconsistency between the PSDs derived from N, adsorption isotherms and
those derived from Hg intrusion (Fig 6).

Although previous studies indicated that the PSD curves from CO, and N, adsorption and
mercury intrusion capillary pressure showed good correlations [4,5,25], when in theory, CO,
and N, adsorption and mercury intrusion analyses should not yield similar results, except for a
sample with very similar pore bodies and pore throats, which is impossible in shale. On the
other hand, the different pretreatment methods also have some influence on the measured
results (Wang, 2015, private communication). Therefore, the process of combining PSDs of
shale pores from different measurement methods is still a challenge, though we have achieved
preliminary results in this study (Fig 6).

Discussion
4.1 Controlling factors of pore development

The experimental results show that the pore volumes obtained by using different testing meth-
ods have different relationships to maturities (Fig 7). The mesopore volume for samples with
maturity Ro > 1.0% is obviously higher than for samples with maturity of <1.0% (excluding
sample 1, Fig 7A). However, there is no apparent relationship between micropore and macro-
pore volume and maturity (Fig 7A). The relative contribution of mesopore volume decreases
first and then increases as the maturity increasing (Fig 7B); while relative contributions of
micropore and macropore volume increase first and then decrease with increasing maturity
(Fig 7B). All of the kinds of pores might not be well-developed in shale in the pre-oil generation
stage (Ro < 1.0%); however, mesopores are well-developed in shale with Ro > 1.0%.

PLOS ONE | DOI:10.1371/journal.pone.0135252 August 18,2015 10/18



@’PLOS ’ ONE

Nanometer Pore Characteristics of Lacustrine Shale

0.0064

0.004+

0.0024

dV/d(w) (cm®/g/nm)

0.000-+
0

0.0204
0.0184
0.0164
0.0144
0.0124
0.0104
0.0084

0.0064

dV/d(w) (cm®/g/nm)

0.004+

0.0024

0.0204
0.0184
0.0164
0.0144
0.0124
0.0104
0.008+
0.006+

dV/d(w) (cm®/g/nm)

0.004+
0.002+

—y—
—

—

__.Jf..pq-—ﬁ“m
0.000+
0

0.5%<Ro<1.0%

1 100 1
Pore size diameter, w(nm)

oc0t0,

00005

00010,

00005,

v
o000

o0 oto0

000 10000

oo 000

—e—CO,
=N,
H

2

10 100

T
1000

o
10000

Pore size diameter, w(nm)

o0,
o00s] '
o00e] |

0.0
o0,
* 0002

oonosf | o001
\ 0000
oonozf } T
|
oonorf |
|

/¥
e S—

e CO,
=N,
—a—Hg

0.0

0.0104

0.008+

0.006+

0.004+

dVv/d(w) (cm*/g/nm)

0.002+

0.0204

0.0154

0.0104

dV/d(w) (cm®/g/nm)

0.005+

S-6

00005,
00004
00003

00002
00005,

00001
o000

1 0.0000}
oonosf| T

oonca] |
oanorf |
oonool £

T
10 100 1000
Pore size diameter, w(nm)

e
10000

T —,
o0 000

e CO,
=N,
A Hg

.
o.ooo—M FUUPER
0.1

10 100
Pore size diameter, w(nm

00010,

00005
000020,
00001s]
oooot0]
0.0000s]

000001

T
1000 10000

)

g 10600

10 100
Pore size diameter, w(nm)

T .
1000 10000

Ro< 0.5% and Ro>1.0%

S-1
0.054 0.0025{ .
0.0020{ ““
A
0.04
€
<
S 0.034
g o Taboo
2 0.029
35
S | e CO,
° | N
0.01 - y =N,
[—A—Hg |
0.00 T *‘ : s
0.1 1 10 100 1000 10000
Pore size diameter, w(nm)
0.010q
S-7
0.0084 T
—_ |
£
< 0.006- 4
L2
o | | /
00000k bttt sttt tane
£ I 7
S 0.004+ ﬂ
o =
3 i co,
0.0024 ® o
00 %y =N,
" —a
IR :
0.0004——#a—rror r -
0.1 1 10 100 1000 10000
Pore size diameter, w(nm)
0.0104
S8,
0.008- ‘T oo 1
\T oo 1
B i o 00010 A
< 0.006- | A
o
£
A
S 0.0044
T
2
3
0.0024
0.000+
0.1 1 10 10 1000 10000
Pore size diameter, w(nm)
0.006+
S-9
oouzs
0.0054 ? coum)
|
4 oo N
T 0.004 v oooto] 1
£ | £y
> EN
A LU
£ 0.003 g oo itk
z
T 0.002
> ——CO,
o
0.0014 =N,
s H
0.000+
0.1 10 100 1000 10000
Pore size diameter, w(nm)
0.010q
0.008
€
£ 0.0064
ey
B
g I R R
3 00041
ke
B e CO,
e
0.0024 —=N,
S Hg
0.000+4 T T .
0.1 1 10 100 1000 10000

Pore size diameter, w(nm)

Fig 6. Combination of PSDs from CO, (DFT model), N, adsorption (BJH model), and Hg intrusion
(Young-Duper equation) experiments for the studied samples.

doi:10.1371/journal.pone.0135252.g006

PLOS ONE | DOI:10.1371/journal.pone.0135252 August 18,2015

11/18



@’PLOS ‘ ONE

Nanometer Pore Characteristics of Lacustrine Shale

0.0254 1004
A m Micropore B ®  Micropore
o e Mesopore 904 o e Mesopore
0020_RO<0'5A 0.5%<Ro<1.0% A Macropore 80 R°<0'5f’ 0.5%<Ro<1.0% A Macropore
’ ° : ' Ro>1.0% = ‘—: ' Ro>1.0% °
—_— —_—
) " i £ 707 " ;e e
"£0.015- : : ° S 60 : .i®
) i i 3 i i
GE) i Y ° £ 50+ PN L] i
5 ! . S m ! [ ] 1
50.010 ! ! ° O 40 ! !
s : : 2 K N
5 i . i £ 301 i 4 A
o i i o) ° i A
0.005 : " ., & 20 L, o ° i "o,
al® = = ''m A ! o' "
I m A A | L 10 1 | A L
A T 8 e o Lo, A A i A
OOOC T } T f T T T 4 T T T T 1 0 T + T T T T T 4 T T T T 1
S-1 S-2 S-3 S84 S-5 S-6 S-7 S-8 S-9 S-10 S-1 S-2 S8-3 S84 S-5 S-6 S-7 S-8 S-9 S-10
Sample number Sample number

Fig 7. (A) Relationship between pore volumes and organic matter maturities; (B) Relationship between relative contributions of pore volume and organic
matter maturities. Micropore volume = CO»-PV + N»-PV( 3 - No>-PV( 4; Mesopore volume = No-PV gg - No-PV 3; Macropore volume = Hg-P V.

doi:10.1371/journal.pone.0135252.9007

According to previous studies, the TOC content is often in positive correlation with total
porosity; this positive correlation also exists between the TOC content and micropore or meso-
pore volumes [4,29,39,40]. However, Mastalerz et al. (2013) stated that there was no obvious
positive or negative relationship between the TOC content and total porosity (their Fig. 11)[7].
In this paper, our observations show that there is a positive relationship between TOC values
and pore volumes when the maturity, Ro, was >1.0% (Fig 8).
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Fig 8. Relationship between TOC contents and pore volumes for the studied samples.

doi:10.1371/journal.pone.0135252.g008
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The relationship between pore volumes and TOC contents for samples with Ro > 1.0%
shows that the pore volume of mesopores increases with increasing TOC contents (samples
7-10 in Fig 8); however, micropore and mesopore volumes show no apparent correlation with
TOC contents (Fig 8). For shale samples with Ro < 1.0%, pore volumes have no apparent rela-
tionship with TOC contents either (Fig 8). Micropore volumes have no apparent correlation
with TOC values, probably due to the organic matter pores being less developed. This less
developed state can be ascribed to two reasons; the first is the lower expulsion efficiency of oil
from shale resulting in the plugging of organic matter pores by residual hydrocarbons; and the
second is that organic matter pores are not the primary pores for shale in the pre-oil generation
stage (Ro < 1.0%). All these observations suggest that organic matter pores, mainly mesopores,
are well-developed in the post-oil generation stage, probably due to the high expulsion effi-
ciency and oil cracking. Although shale samples with Ro < 1.0% have also entered the oil win-

dow, organic matter pores are not well-developed.

Mineral compositions and contents are other factors that may affect porosity and compli-
cate the understanding of porosity evolution. Previous studies show that organic matter and
clay minerals (dominantly illite) jointly contribute to the micropore volume in shale [5, 41-
43]. Total porosity will increase with higher clay and/or quartz content and will decrease with
higher carbonate content. However, due to the strong effect of maturity on total porosity, the
influence of changes in mineralogical composition is often masked [7]. In this study, the exper-
imental results show that the pore volume is not correlated with clay content (Fig 9A), which is
probably due to the very small difference in clay content among these samples (from ~60 to 66
wt.%). The experimental results also show that there is a weak negative relationship between

total pore volume and carbonate contents (Fig 9B).

4.2 Space of oil occurrence

In the past, researchers mainly focused on the features of storage space in shale reservoirs, with
little research done on the relationship of storage space to shale oil enrichment. This is partly
because the state of shale oil occurrence in pores is complex, making it difficult to observe and
describe. For instance, oil adsorbed to organic matter or minerals has no distinct phase from
the free oil in pores; and sample preparation before FIB-SEM analysis could also affect the
quantity and position of shale oil occurrence. There are some methods to measure the space of
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Fig 9. Relationship between pore volumes and mineral contents of the studied samples.
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oil/gas occurrence in fine-grained rocks. For example, Zou et al. (2011) estimated the critical
pore radii (minimum radius) for tight gas and oil reservoirs in the Ordos Basin of China,
which might be 40 nm and 54 nm, respectively, which is equal to the thickness of the irreduc-
ible water film plus the molecule diameter of methane or oil [44]. Therefore, only when pore
radii are larger than the above values, can oil and gas flow in shale. Compared to tight sand, the
oil-rock interaction in shale is much more complex, making the thickness of adsorbed oil film/
bound oil film more difficult to estimate. Some scholars proposed a molecular dynamic method
to simulate the adsorption and interaction between gas/oil and mineral texture [45-47]. But
only simplified oil molecules and rock textures can be adopted in simulation because the oil
molecules (e.g. the physical properties of crude oil) and the rock textures are very complex,
which inhibiting a wide application of the obtained results. Other scholars directly observed oil
occurrence in tight sand under E-SEM (environment scanning electron microscope) [48,49];
however, whether oil enrichment in shale can be observed under electron microscope or not is
still a question. Apart from the theoretical consideration mentioned above, there are a few
other methods, which may help determine the main range of pore size for oil storage, such as
numerical simulation, observation under a microscope (E-SEM), and correlation between the
oil content and pore volume.

In this article, we use a statistic method to infer the possible pores sizes or minimum diame-
ter of pores for oil accumulation in shale. Commonly, there should be a linear relationship
between the oil content and the pore volume if the pore is completely filled with oil or highly
saturated with oil. Due to the very small pores in shale and relatively larger molecular diameter
of oil, not all the pores are effectively filled with oil. Therefore, if oil was stored in pores with
diameters higher than a special value, a positive linear relationship between the oil content and
the volume of pores with diameter higher than the special value would be present (Fig 10).
Based on the above assumed conditions, low pressure CO, and N, adsorption, and Hg intrusion
experimental data, pore volumes for different pore sizes can be obtained, along with the correla-
tion coefficients (R) of the oil contents (S;) and the pore volumes (Table 4). The statistical
results show that the correlation coefficients gradually increase with increasing D, (the mini-
mum diameter of pores that might be effective for oil charging); and when D_ reaches 40 nm,
the correlation coefficient (r*) reaches its highest value (r* is 0.534, Sig. F is 0.025, and P-values
are lower than 0.05; Table 4). These results suggest the shale oil accumulation space has a signifi-
cant positive relationship with the pores (diameter > 40 nm), and shale oil might accumulate in
pores bigger in size than this critical value (40 nm), which account for 22% of the total pores.
However, all the correlation coefficients (r?) are lower than 0.55, which quite possibly indicates
pore diameter is not the sole parameter that has influence on shale oil occurrence; the viscosity,
temperature, and pressure might also affect oil accumulation. This study’s conclusion is based
on only 9 samples; therefore, the minimum diameter of pores for shale oil storage needs to be
investigated further in more detail, using both theoretical calculations and observation under a
microscope, and other potential influence factors should also be considered in future studies.

Conclusions

1. The pore types developed in lacustrine shale include inter-matrix pores, intergranular
pores, organic pores, dissolution pores, and interlayer fractures (e.g. clay mineral interlayers
or calcite and clay mineral interlayers). Most pores are mesopores or micropores and are
less than 50 nm in diameter.

2. Nano-scaled pores are well-developed in shale with Ro > 1.0%, and are positively correlated
with TOC contents. However, when the organic matter maturity is <1.0%, pores are poorly
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Table 4. The relationship of shale oil content (S;) and pore volumes for different pore sizes which are derived from CO, adsorption, N, adsorption,
and Hg intrusion analyses.

Sample number

S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10

Oil content

S; (mg HC/g rock)
1.61
1.28
2.54
1.72
3.73
3.39
2.88
3.91
2.43

Correlation coefficients (r?)

Sig. F

P-value (Intercept)
P-value (X Variable)
Average proportion (%)

0

0.71
0.88
0.62
0.68
0.87
2.01
2.1
1.48
1.59
0.249
0.172
0.172
0.056
100

2

0.47
0.24
0.32
0.37
0.36
1.71
1.67
1.31
1.31

0.281

0.142

0.142

0.007
64

Volume (100 x cm®) of pores with diameter > D, (nm), D, =

10

0.31
0.13
0.27
0.32
0.32
1.18
1.07
0.93
0.92

0.342

0.098

0.098

0.01
46

15

0.26
0.1
0.25
0.3
0.3
1.02
0.88
0.8
0.74
0.385
0.075
0.075
0.012
40

20

0.21
0.08
0.24
0.28
0.29
0.89
0.71
0.68
0.62
0.421
0.059
0.06
0.014
35

25

0.18
0.07
0.22
0.27
0.28
0.75
0.55
0.55
0.45
0.475
0.04
0.04
0.02
30

30

0.16
0.06
0.21
0.26
0.27
0.67
0.44
0.46
0.34
0.514
0.03
0.03
0.025
27

35

0.15
0.05
0.2
0.25
0.26
0.6
0.36
0.4
0.26
0.533
0.026
0.026
0.027
24

40

0.14
0.05
0.2
0.24
0.26
0.56
0.31
0.36
0.21
0.534
0.025
0.025
0.027
22

50

0.12
0.04
0.19
0.23
0.25
0.48
0.21
0.28
0.11
0.48
0.039
0.039
0.02
19

Note: the unit of S, is mg HC/g TOC; D, is the assumed minimum diameter of pores in which oil can be stored; r? is the correlation coefficient of the linear
fitting equation for pore volumes and S; values; and average proportion is the average ratio of pore volumes (diameter > d,) to the total pore volume for

the studied samples.

doi:10.1371/journal.pone.0135252.1004
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developed, and the pore volume is not correlated with maturity or TOC content. In addi-
tion, the degree of development of the pores shows no obvious relationship with clay and
carbonate contents.

3. Statistics on S; contents and pore volumes with different pore sizes show that shale oil
mainly exists in pores with diameter larger than 40 nm.
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