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Abstract
In recent years, recommender systems have become an effective method to process infor-

mation overload. However, recommendation technology still suffers from many problems.

One of the problems is shilling attacks-attackers inject spam user profiles to disturb the list

of recommendation items. There are two characteristics of all types of shilling attacks: 1)

Item abnormality: The rating of target items is always maximum or minimum; and 2) Attack

promptness: It takes only a very short period time to inject attack profiles. Some papers

have proposed item anomaly detection methods based on these two characteristics, but

their detection rate, false alarm rate, and universality need to be further improved. To solve

these problems, this paper proposes an item anomaly detection method based on dynamic

partitioning for time series. This method first dynamically partitions item-rating time series

based on important points. Then, we use chi square distribution (χ2) to detect abnormal

intervals. The experimental results on MovieLens 100K and 1M indicate that this approach

has a high detection rate and a low false alarm rate and is stable toward different attack

models and filler sizes.

Introduction
Recommendation systems are effective and widely used to solve information overload [1].
Although personalized recommendation technology has achieved huge progress in the cold
start problem, forecasting precision, diversity-accuracy dilemma, user experience and contex-
tual-based recommendations [2–6], it still suffers from many problems. Shilling attack, in
which attackers inject spam user profiles (user profile indicates the user’s rating set of all items)
to change the recommendation results, is one of the most serious problems [7–8]. For a collab-
orative filtering-based recommendation system without defense, the target item is able to top
the recommendation list with spam users’ efforts representing only one percent of the list [9].
The injection of spam users’ ratings in e-commerce systems seriously disturbs the system rec-
ommendation ranking, and then misguides users from obtaining what they really want.
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Consequently, the injection will result in a decline of user satisfaction. Shilling attacks are
divided into two categories: push attacks and nuke attacks. Push attacks make the target items
easier to be recommended. Nuke attacks make the target items harder to be recommended.

Traditional detection methods of shilling attacks are based mainly on the features of user
profiles, such as RDMA and Degsim features [10]. From the machine learning perspective,
there are supervised and unsupervised detection algorithms [9–16]. These methods are primar-
ily focused on detecting spam users, which has a good result on some specific attack models,
but generality is not strong. Zhang et al. [17] and Gao et al. [18] proposed that the ultimate
goal of a shilling attack is to make a change in target items. Therefore, they proposed detection
methods for abnormal items, and hoped to solve the problem of shilling attack from the item’s
perspective. Focusing on attack promptness, Zhang et al. [17] proposed an item anomaly detec-
tion approach based on sample average and sample entropy in a time series., Gao et al. [18]
divided all items into different types according the features of items' lifecycle and rating num-
bers. Then, they used a fixed window to divide the time intervals and χ2 was utilized to detect
abnormal intervals. In their approach, the time interval is divided by a fixed time window;
therefore, the different time window sizes will directly influence the effectiveness of the detec-
tion. Additionally, the item’s own characteristic varies with time. The detection difficulty
increases as the adjacent window’s rating distribution becomes closer, which results from the
time window becoming larger. However, the false alarm rate increases as the adjacent windows
rating distribution differences become greater, which results from the time window becomes
smaller. The detection rate and false alarm rate of this method needs to be further improved.
To solve these problems, this paper proposes a dynamic partitioning method for item-rating
time series based on important points followed by identifying item abnormal time intervals
based on χ2.

The rest of the paper is organized as follows. Section 2 describes commonly used recom-
mendation algorithm, shilling attack models and detection algorithms. Section 3 introduces a
dynamic partition for item-rating time series method based on important points and its corre-
sponding detection method. Next, the experimental section describes how to select a suitable
parameter k value for the dynamic partition method and experimental results of abnormal
items detection under different attack models, attack sizes, and filler sizes using two MovieLens
datasets. Finally, the whole paper is summarized in Section 5.

RelatedWork

2.1 Shilling attacks
Recommender systems are tools to help users find a portion of useful information from the
Internet [19]. However many recommendation approaches are affected by shilling attacks. To
solve this problem, some researchers have conducted research on shilling attack models. In
their studies, they proposed a basic framework for attacks based on attack purpose, attack size,
and preliminary knowledge.

Fig 1 shows the general form of a shilling attack [20] where IS is a set of selected items based
on specific needs of the spam user, IF is a set of randomly selected filler items which the spam
user used to disguise himself, IF is a set of unrated items, and it is the attack target item.

There are four types of typical attack models.

Random attack model: Selected items are null and the filler items are selected randomly. The
ratings of filler items are decided by the overall distribution of ratings in the database.

Average attack model: The attack is the same as with the random attack. Selected items are null
and filler items are selected randomly. However, the rating of each filler item is decided by
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the normal distribution of each item’s own rating average. This attack is effective on user-
based collaborative filtering, but not on item-based collaborative filtering.
Burke et al. [21–22] extended the two types of basic attack models (random and average
attack model), additionally proposing the bandwagon attack and the segment attack.

Bandwagon attack model: The selected items are those frequently rated with high ratings.
Additionally, spam users also give high ratings to these items to make their own profile look
similar to ordinary users. The ratings of the filler items are decided by the overall distribu-
tion of ratings in the database. Due to the use of popular items, these profiles are similar to a
large number of users. However, this attack model is not very effective on item-based collab-
orative filtering systems.

Segment attack model: This attack model was proposed for attacking item-based collaborative
filtering. The selected items of a segment attack are carefully selected by spam users, being
rated with the maximum value, whereas filler items will be rated with the minimum value.

To achieve the attack objective, spam users inject a certain number of user profiles. The
strength of the attack event is generally measured by the attack size and filler size. Attack size
stands for the percentage of the number of attack user profiles in a recommender system. Filler
size stands for the ratio of the numbers of items in a spam user profile to the total items in the
recommender system, which describes the item-ratings sparsity degree.

The features of the models are listed in Table 1 [12], where rmax is the maximum value, and
rmin is the minimum value in the recommender system.

Fig 1. General form of a shilling attack.

doi:10.1371/journal.pone.0135155.g001

Table 1. Summary of features for four typical shilling attackmodels.

Attack Type Attack
Model

IS IF IΦ it

Random Push/nuke Not used Ratings assigned with normal distribution
around system mean

Determined by filler
size

rmax/
rmin

Average Push/nuke Not used Ratings assigned with normal distribution
around item mean

Determined by filler
size

rmax/
rmin

Bandwagon Push Widely popular items assigned rating rmax Ratings assigned with normal distribution
around system mean

Determined by filler
size

rmax

Segment Push Items chosen to define the segment
assigned rating rmax

Ratings assigned with rmin Determined by filler
size

rmax

doi:10.1371/journal.pone.0135155.t001
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2.2 Shilling attacks detection methods
Many researchers proposed detection methods for the attack model on collaborative filtering
algorithms from the users’ perspective. They promoted the development of anti-shilling attack
collaborative filtering technology. For example, Chirita et al. [10] proposed a shilling attack
detection method in which five attributes were utilized to recognize attack profiles, including
NPD (Number of Prediction-Differences), RDMA (Rating deviation from mean agreement),
DegSim (Degree of similarity with top neighbors), Standard Deviation in User’s Ratings and
Degree of Agreement with Other User. Burke et al. [11] improved the RDMA to WDMA
(Weighted Deviation fromMean Agreement) and WDA (Weighted Degree of Agreement).
Additionally, they proposed model-specific attributes to detect the attack profiles. This method
was effective for not only random attack detection and segment attack detection but also the
detection of small-scale attacks. Burke et al. [22] proposed a series of attributes for the intended
model and LengthVar (Length Variance) to improve the entire detection system. Burke et al.
[11] regarded shilling detection problem as a supervised classification issue and used generic
attributes to detect attacks. Different from the supervised detection method, the unsupervised
clustering method was used to discriminate genuine profiles and spam user profiles [1], such as
the PCA (Principal Component Analysis) and PLSA (Probabilistic Latent Semantic Analysis)
clustering techniques. However, these approaches are limited in obfuscated shilling attacks
detection [13]. Wu et al. [23] proposed a Semi-Supervised detector for hybrid shilling attack
detection. The method was robust against a hybrid shilling attack, and it improved the accuracy
of a recommender system based on collaborative-filtering. These detection methods were used
to detect spam users. The detection of spam users is based on a comparison between user pro-
files. It compares the departure degree of a user profile with other user profiles to determine
whether the user profile is a spam user profile. Under different attack models, both the selected
user profile features and the deviation between profile features change to obtain good results.
However, these detection methods have difficulty achieving good detection results for all of the
classical attack models.

With approaches different from those in previous research, Zhang et al. [17] and Gao et al.
[18] solved the problem from the items’ perspective. They proposed approaches to detect
abnormal item based on the features of item profiles. These methods provided a good approach
to solving the shilling attack problem. The method [17] needs to set an initial window size and
a parameter w (the ratio of fake ratings to the total ratings of target item during an attack
event) and used iterative procedures to find an optimal window. However, for a real recom-
mendation system, the parameter w is unknowable. An assumption for w affects the detection
rate. The detection rate of the approach [18] largely depends on the value of a time window.
First, the items are divided into four types:Fad items, fashion items, style items and scallop
items. Fad items are popular emerging products, but the rating number increases and declines
swiftly. Fashion items satisfy few customers at first. However, after some period of time, the rat-
ing number grows and declines slowly because these items are gradually accepted by more cus-
tomers. Style items are basic and typical products that exist for a very long time. Scallop items’
customers increase constantly over time, and most users will give them higher ratings. Then,
Gao compared a certain time interval-rating distribution with the rest of the ration distribution
of the whole item. The size of the time window is set according to the features of types. How-
ever, the item feature changed with time; when the items are initially launched, the feature may
behave like a fad type. After some period of time, they may be converted to a style type. In this
case, it will take a great deal of time to periodically divide the item types and calculate the time
window size.
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This paper also focuses on solving shilling attacks from the items’ perspective. To solve
those problems, this paper proposes a dynamic partitioning for time series method based on
important points followed by applying χ2 to find abnormal time intervals.

Abnormal Item Detection Approach Based on Time Series Dynamic
Partitioning
This section describes the steps of the item anomaly detecting approach. Piecewise Linear
Representation (PLR) is presented in Section 3.1. We propose an approach based on time series
because 1) the purpose of shilling attack is make the target item easier (push attack) or harder
(nuke attack) to be recommended. Spam users inject spam user profiles into system to achieve
this purpose. 2) Due to the restriction of attack costs, the spam user profiles are injected in a
short time and not continued throughout the life cycle of the item. When the item is attacked
the number of ratings significant increases. Thus, we can detect target items by using the rating
distribution, if the rating numbers of an item significant increase in a short time, we think this
item may have been attacked. In order to identify the target item we need find out the intervals
which contain spam ratings. We calculate the χ2 value to measure the similarity of different
time intervals, the intervals containing attacks with others have a low similarity. A good time
interval division method maximizes the difference of abnormal intervals with normal intervals.
Moreover, although there is some research using a fixed window size to divide the time series,
it is difficult to choose an optimal window size and the detection result is influenced by the
selected window size. In addition for different item types, the optimal window size is different.
Thus, we propose a dynamic item-rating time series partition method based on important
points in Section 3.2. This method divides item time series according its own features. Finally,
we propose an item anomaly detection method based on dynamic partition for time series.

The steps of the item anomaly detecting approach are shown as Fig 2.

Step 1: Obtain the item time series according to the rating time matrix.

Step 2: Utilize item rating time series to calculate item-rating time gaps.

Step 3: Set the value k (0<k�1), which will decide the termination condition of the searching
process for important points.

Step 4: Use the selected k and one distance measurement to find the important points.

Fig 2. The steps of the item anomaly detecting approach.

doi:10.1371/journal.pone.0135155.g002
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Step 5: Mapping the important points to the original item rating time series to divide the item
time intervals.

Step 6: Use the rating matrix to obtain a rating relative class for each interval and calculate χ2

value of each time interval. Judge whether the χ2 value exceeds the threshold. If it does,
mark the time intervals as abnormal intervals.

3.1 Method of time series piecewise linear representation
To describe the item-rating time series, this paper adopts PLR to represent the time series
approximately. PLR is able to compress and filter data [24]. The main problem of the piecewise
linear algorithm is to select the appropriate number of line segments and to choose appropriate
piecewise points.

To describe the method more clearly in this section, this paper makes several definitions.
Definition 1. IRTS (Item-ratings Time Series) is an element-ordered set that is composed

of the rating value and the rating time. IRTS = {x1 = (v1, t1), x2 = (v2, t2), . . ., xn = (vn, tn)}, sim-
ply denoted as IRTS = {x1, x2, . . ., xn}. Elements xi = (vi, ti) indicates that when the time equals
ti in the time series, the rating value is equal to vi, and rating time ti is strictly increasing (if i<j,
then ti<tj).

IRTS has two features: 1) the elements in the time series are small, generally from dozens to
hundreds, and 2) the time intervals are not equal, and may differ greatly.

In IRTS, the ratings are generally discrete values. For example, the ratings in MovieLens are
the integers from 1 to 5. Thus, if we use rating values to divide the intervals, it irregularity
divides the points. Therefore, this paper utilizes item-rating time gaps instead of rating values.

Definition 2. IRTGS (Item-ratings Time Gaps Series), IRTGS = {(Gap1,MidT1), . . .,
(Gapn,MidTn)}. The computational formulas for Gapx andMidTx are as follows,

Gapx ¼ txþ1 � tx ð1Þ

Mid Tx ¼
tx þ txþ1

2
ð2Þ

where tx refers to the rating time. Additionally, because of the huge difference between Gap
andMidT, the IRTGS of all items are normalized by Minimum-maximum standardized (3),

xi ¼
xi � xmin

xmax � xmin

ð3Þ

where xi refers to the value of the i-th element and xmin and xmax refer to the minimum and
maximum values of all elements, respectively.

Definition 3. ADNI, the average distance from non-important points to the two impor-
tant points of a time interval. The formula for ADNI is as (4),

ADNI ¼
XN

i¼1
S

N
ð4Þ

where N refers to the total non-important points in a time interval, S refers to the distance
from i-th non-important point in the time interval to the line of the two important points.
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3.2 Dynamic item-rating time series partition method based on important
points
In this method, heuristic rules are utilized to choose the significant time points from time series
to divide the time series into subsequences. The method does not restrict the segment number
and threshold, but it requires choosing appropriate piecewise points. The steps of the dynamic
partition method for item-rating time series are as follows:

Step 1: Given a sequence P, extract the first and the last data point p1 and pn as the two initial
important points.

Step 2: If there are points higher than the line from the first important point to the second one,
select the highest point from the line between the first important point and the second point
as the third important point. If there is no such point, select the point nearest to the line as
the third important point.

Step 3: Find the important points between the first important point to the third important
point and the third important point to the second important point.

Step 4: Repeat step 3, until two conditions are met. First, there is no data point higher than the
line that contains two adjacent important points. Second, the Gap of data points between
the two important points are less than k (0<k< = 1) times the sum of two important
points’.

The purpose of finding important points in this paper is to make rating points which are
close enough in terms of rating time series to be classified in the same divided interval.

The first condition in Step 4 is that all non-important points lie under the lines formed by
Gap values of two adjacent important points. The reason is that if this rule is broken when
there exists non-important points higher than the line, the Gap values of these points are larger
than one of the important points. Thus, if we use these points as important points, the points
in each time intervals rating feature (close or sparse) will be more similar than the current divi-
sion. Therefore, if we cannot meet this condition the iteration of the important points search
process will not stop.

The second conditions in step 4 is that the Gap values of all non-important points in the
same interval are less than k times the sum of two important points’. Stopping the algorithm
only according to the first condition may lead to early stop iterations while the actual item rating
time series changes in different situations, this paper proposes the second condition to make the
algorithm adaptive to different datasets and situations. According to the analysis of the Gap val-
ues of non-important points and important points in an interval formed by two adjacent impor-
tant points, parameter k can be manipulated to make a trade-off between the accuracy of the
detection algorithm and the number of iterations. We can also use another parameter as the ter-
mination conditions, as long as we use a heuristic dynamically adjusted method.

In this method, the distance between points must be obtained. Three distance measurement
methods were adopted: Euclidean distance method (ED), Perpendicular distance method (PD),
and Vertical distance method (VD).

• The ED measurement method calculates the sum of the Euclidean distance from P3(x3, y3) to
P1(x1, y1) and P2(x2, y2). The formula is as follows,

EDðp3; p1; p2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x3Þ2 þ ðy2 � y3Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x3Þ2 þ ðy1 � y3Þ2

q
ð5Þ

where P1, P2 and P3 are three two-dimensional points, and (xi, yi) refers to the coordinate of
Pi (i = 1, 2, 3).
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• The PD measurement method calculates the perpendicular distance from P3(x3, y3) to the
line between P1(x1, y1) and P2(x2, y2). Pc(xc, yc) is the point that P3 intersects point with a per-
pendicular line. When y1 6¼y2 we can infer xc 6¼x3.The formula is as follows,

Slopeðp1; p2Þ ¼ s ¼ y2 � y1
x2 � x1

xc ¼
x3 þ ðsy3Þ þ ðsy2Þ � ðs2x2Þ

1þ s2

yc ¼ ðsxcÞ � ðsx2Þ þ y2

PDðp3; pcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc � x3Þ2 þ ðyc � y3Þ2

q

ð6Þ

where s refers to the slope of the line location P1 and P2.

• The VD measurement method calculates the distance from P3(x3, y3) to the line between
P1(x1, y1) and P2(x2, y2) using a line parallel to the y-axis that intersects at Pc(xc, yc). The for-
mula is as follows,

VDðp3; pcÞ ¼ jyc � y3j ¼ ðy1 þ ðy2 � y1Þ
xc � x1
x2 � x1

Þ � y3

����
���� ð7Þ

where P1, P2, P3 and Pc are the three two-dimensional points, (x1, y1) is the coordinate of P1,
(x2, y2) is the coordinate of P2, (x3, y3) is the coordinate of P3, and (xc, yc) is the coordinate of
Pc.

As an example, we select an item randomly fromMovieLens. The item’s IRTGS is shown in
Fig 3. The points in the red circle are very dense that indicates the item has been rated many

Fig 3. Rating time gaps series of an item in MovieLens.

doi:10.1371/journal.pone.0135155.g003
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times in a short time and it is significant difference with the rest of time intervals. Thus, we sup-
pose there is an abnormal event making the sudden change of the rating number, so we think
the points in the red circle most likely are spam ratings. This IRTGS was dynamically parti-
tioned; it determined that the points in the red circles in Fig 4 are the important points. These
important points can be directly mapped back to the points in the original IRTS, and then
IRTS uses these to divide them into time intervals.

3.3 Shilling attack detection method
For a rating-based recommender system, the ratings are discrete values, rather than consecu-
tive values. Therefore, it requires special handling. First, we gather the statistics of the rating
values within the time interval. Next, we use the rating relative class distribution to represent
the features of the time interval. All time intervals have the same number of features. Therefore,
a similarity measurement will be taken for comparison and to establish a threshold to identify
suspicious intervals. In this paper, chi square distribution (χ2) [18] is utilized to measure the
similarity of the rating class distribution in time intervals and then to identify the time intervals
that exceed a threshold. χ2 compares two or more sample rates and is able to obtain the rating
relative classes’ distribution similarity between the two time intervals via analyzing the correla-
tion of two classified variables. χ2 is a nonparametric test, and it decreases the reliance of algo-
rithms upon prior inputs; it just requires setting value α according to significance levels. The
equation for χ2 is shown as Formula (8),

w2 ¼
Xm
i¼1

Xr

j¼1

ðAij � EijÞ2
Eij

ð8Þ

wherem refers to the comparison intervals number (m equals 2), r refers to the quantity of rela-
tive classes, Aij refers to the quantity of the j-th relative class in the i-th time interval, Eij equals

Fig 4. All important points that meet the threshold.

doi:10.1371/journal.pone.0135155.g004
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Ri × Cj/N, Ri refers to the sum of all relative classes in the i-th time interval, Cj refers to the total
number of the j-th relative class in the two intervals, and N refers to the sum of all Cj.

According to the significance levels’ α, we obtain the related boundary value, namely a
threshold. Comparing χ2 of each time interval with the threshold, we obtain the abnormal
intervals that exceed the threshold. The significance levels and related boundary values are
shown in Table 2 [18].

Experiments

4.1 Experimental dataset
In the experiments, we use the commonly utilized MovieLens dataset [17, 18, 25, and 26].
MovieLens has been collected by GroupLens Research and made available from the GroupLens
web site (http://grouplens.org/datasets/movielens/). MovieLens is a recommender system and
a virtual community website; its main function is recommending movies according to users’
preferences. This function is accomplished utilizing a collaborative filtering technique. When a
new user enters MovieLens, they need to rate 15 movies, and the score range is from 1 to 5.
Along with detailed time information, labeling is another important application in MovieLens.
Users can add tags to a film, obtain movie information, and search for a film according to tags
added by other users. MovieLens consists of three different datasets sizes.

MovieLens 100K: This is the minimal MovieLens data set, including 100,000 ratings (1–5
marks) from 943 users on 1,682 movies. Each user has rated at least 20 movies.

MovieLens 1M: This is a medium-size MovieLens dataset. The dataset consists of 1,000,000 rat-
ings (1–5 marks) from 6,040 users on 3,900 movies.

MovieLens 10M: This is the largest MovieLens dataset, including 100,000 tags and 10,000,000
ratings (1–5 marks) from 71,567 users on 10,681 movies.

All of the datasets provide rating time and attributes of users and items.

4.2 Experimental procedures
In this research experiment, we used two datasets: 1) the sparse MovieLens 100k dataset
named Dataset-100K; and 2) a dense dataset, named Dataset-1M, including all of the items
with at least 500 ratings (618 items in total) from the MovieLens 1M dataset.

The experimental steps are shown as Fig 5.

Step 1: Conduct the detection experiments on the MovieLens 100k with k = 0.25. In the experi-
ment, we only attack the target item.

Step 2: Obtain Dataset20-100k according to the MovieLens 100k.

Step 3: Conduct the experiments on the Dataset20-100K with k = 0.25, k = 0.5 and k = 0.75,
respectively. In this part, we only attack the target item.

Table 2. Significance levels and related boundary values.

Significance levels 0.25 0.10 0.05 0.025 0.01 0.005

boundary values 5.385 7.779 9.488 11.143 13.277 14.860

doi:10.1371/journal.pone.0135155.t002
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Step 4: Conduct an experiment on the Dataset20-100K with different attack models, attack
sizes, and filler sizes. In the experiment k = 0.25.

Step 5: To facilitate comparison with others’ research, we select part of the data fromMovie-
Lens 1M to compose a new dataset named Dataset-1M. Here we only attack the target
items. The detection experiments on the Dataset-1M use k = 0.25.

4.3 Select k value of the dynamic partition for time series
The distance measurement was a critical step to find important points in the time series. To
verify the validity of ED, PD and VD (mentioned in section 3.2) toward the time series
dynamic partition, this paper conducts experiments on MovieLens 100K and MovieLens 1M.
In these experiments, we change the k value to calculate ADNI. The purpose is not only to test
whether the distance calculation method would group those unimportant points together but
also to keep a significant distance off the two important points of the time interval.

At the beginning, we conduct the experiments on all items. Then, we divide all items into
four types: fad items, fashion items, style items and scallop items [18].

Fig 5. Steps of the experiments.

doi:10.1371/journal.pone.0135155.g005
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The ADNIs of all items in Dataset-100k are shown as Fig 6. The x axis represents the k value
(0< k< 1), and the y axis represents ADNI.

In Figs 7–10 we show the ADNIs for the four item types (fad, fashion, style, and scallop) in
Dataset-100K. The x and y axes represent the same values as in Fig 6.

In the Dataset-1M, the same items were selected in the experiments of Zhang et al. [17]. We
use all items with at least 500 ratings (618 items in total) to conduct the experiments. There are
187 fashion items and 431 scallop items. The ADNIs of all items in the Dataset-1M are shown

Fig 6. ADNIs of all items in Dataset-100k.

doi:10.1371/journal.pone.0135155.g006

Fig 7. ADNIs of the fad items in Dataset-100k.

doi:10.1371/journal.pone.0135155.g007
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as Fig 11. The ADNIs of fashion items and scallop items in Dataset-1M are shown as Figs 12
and 13. The x and y axes represent the same values as in Fig 6.

The purpose of dynamic partition is to divide close rating times into one time interval and
to provide data for the next irregular time interval detection. However, the larger the k value,
the fewer the time intervals. Thus, the window size for each time interval is larger and the dif-
ference of points in one time intervals greater. This leads to an increase in the ADNI of each
time interval. The smaller the k value, there are more time intervals and it will lead to the

Fig 8. ADNIs of the fashion items in Dataset-100k.

doi:10.1371/journal.pone.0135155.g008

Fig 9. ADNIs of the style items in Dataset-100k.

doi:10.1371/journal.pone.0135155.g009
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detection time increase. The window size for each time interval is smaller and the difference of
the points in one time intervals is less. Thus, the ADNI of each time interval will decrease.
Therefore, the optimal k value should be set when the average distance changes from fast to
slow. The optimal k value meets two requirements: 1) generates the needed number of time
intervals, and 2) is able to combine close rating times into one time interval. Figs 6–10 show
that in a sparse dataset (such as Dataset-100k), the ADNI will not turn stable as k changes.

Fig 10. ADNIs of the scallop items in Dataset-100k.

doi:10.1371/journal.pone.0135155.g010

Fig 11. ADNIs of all items in Dataset-1M.

doi:10.1371/journal.pone.0135155.g011
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Thus, k is set to 0.25, 0.5, and 0.75, respectively, in the detection experiments on Dataset-100k.
Figs 11–13 show that in a dense dataset (such as Dataset-1M), when k equals 0.25, the three
ADNI curves of ED, PD, and VD will turn smooth. Consequently, if the dataset is dense, 0.25
is the optimal value for conducting these experiments.

Fig 12. ADNIs of the fashion items in Dataset-1M.

doi:10.1371/journal.pone.0135155.g012

Fig 13. ADNIs of the scallop items in Dataset-1M.

doi:10.1371/journal.pone.0135155.g013
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4.4 Abnormal items detection method based on time series dynamic
partition
Because the ratings are sparse in real recommendation systems, without loss of generality, we
conduct detection experiments on the Dataset-100k. First, we simulate attacks under different
attack models, attack sizes, and filler sizes on random selected items as well as dynamically par-
titioned time series for each item. Second, we use the metrics of the detection rate and the false
alarm rate [17–18] to evaluate the detection results. The detection rate (9) is defined as the
number of detected attacking events divided by the number of the total attacking events. Here,
a detected attacking event means that an abnormal time interval is detected. The false alarms
rate (10) refers to the number of normal intervals that are recognized as abnormal time inter-
vals, which we can calculate by dividing the number of false alarms by all normal intervals.

DetectionRate ¼ NumberOfDetectedAttackEvents
NumberOfTotalAttackEvents

ð9Þ

FalseAlarmRate ¼ NumberOfFalseAlarms
NumberOfNormalIntervals

ð10Þ

According to the features of shilling attack models, which are mentioned in Section 2.2, we
assume that the attack profiles are inserted in a relatively short period [17]. Additionally, the
detection method in this paper only considers the ratings on items since the change of attack
model and filler size have little effect on detection results. To validate this characteristic of this
method, we carry out a series of experiments under different attack models and filler size. The
filler size will equal one item or change from 1% to 10%. The attack size will change from 5 to
50 (which is approximately 0.5% to 5%), 1% to 10%, and 1% to 15%.

4.4.1 Detection on Dataset-100k. To show the detection results, we first show the experi-
ments under attack with one-item filler size. In these experiments, we inject ratings using five
(for push attacks) or one (for nuke attacks); the k value is set to 0.25. We randomly select
twenty target items. The attack sizes for each target item (attack size refers to the number of
attacks) varies from 5 to 50. We repeat these experiments twenty times for each attack size. We

Fig 14. Detection rates and false alarm rates for DataSet-100k when k = 0.25.

doi:10.1371/journal.pone.0135155.g014

Fig 15. Detection rates and false alarm rates for Dataset20-100k with k = 0.25.

doi:10.1371/journal.pone.0135155.g015
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set the average detection rate and false alarm rate of these experiments to the final detection
rate and false alarm rate.

In Fig 14, the y-axis represents the detection rate and the false alarm rate. The x-axis repre-
sents the number of attacks, which is also the number of injected spam users. Fig 14 shows that
when the number of attack profiles is 5 (attack size is approximately 0.05%) the detection rate
is less than 0.45 for push attack and 0.55 for nuke attack. However, when the number of attack
profiles is 10 (attack size is approximately 1%) the detection rate for both push attack and nuke
attack exceeds 70%, and the detection rate exceeds 80% when the number of attack profiles is
25 (attack size is approximately 3%). With an increase in the number of attack profiles, the
detection rate slightly fluctuates, but the overall trend is increasing. With the expansion of the
attack size, the false alarm rate creeps up modestly. In the detection experiments on nuke
attacks, the false alarm rates increases slightly, from 0.0547 to 0.0569. Additionally, in the push
attack detection experiments the false alarm rate increases slightly from 0.0548 to 0.0571.

4.4.2 Detection on Dataset-100k with at least 20 rating. Dataset-100k has 44% of items
with fewer than 20 ratings. To further evaluate the capability of the method we select the items
with at least 20 ratings fromMovieLens 100K (named Dataset20-100k) for the following exper-
iments. We conduct the dynamic partitioning separately for item-rating series and correspond-
ing shilling attack detection experiments when k = 0.25, k = 0.5, and k = 0.75. In the
experiments, we randomly select twenty target items. For each target item, the rating was 5 (for
push attacks) or 1 (for nuke attacks), and the attack sizes vary from 1% to 10%. For each attack
size, we repeat the experiments twenty times. The final detection rate and false alarm rate are
set according to the average values of the experiments.

Fig 15 shows that when k is 0.25 and the attack size is 1%, the detection rate is nearly 80%
for push attacks and is greater than 85% for nuke attacks. When the attack size is not less than
3%, the detection rates on push attacks and nuke attacks are both greater than 90%. Although
the attack size exceeds 4%, the detection rates on push attacks and nuke attacks are greater
than 95%. With the attack size increase, the false alarm rate increases slightly. For push attacks,
the false alarm rates increase from 0.0564 to 0.06. For nuke attacks, the false alarm rates
increase from 0.0562 to 0.0602. Fig 16 shows that when k is 0.5 and the attack size is 1%, the
detection rate for the push attack is less than 60% and for the nuke attack is less than 75%.
When the attack size is 3% the detection rate for the push attack is less than 90% and for the
nuke attack it is more than 90%. When the attack size is not less than 4% the detection rates for

Fig 16. Detection rates and false alarm rates for Dataset20-100k with k = 0.5.

doi:10.1371/journal.pone.0135155.g016

Fig 17. Detection rates and false alarm rates for Dataset20-100k with k = 0.75.

doi:10.1371/journal.pone.0135155.g017
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both the push attack and the nuke attack are more than 90%. However in most cases, the detec-
tion rates in Fig 16 are less than those in Fig 15. Like Fig 15, the false alarm rate in Fig 16
increases slightly with the increase in attack size. For the push attack, the false alarm rates
increase from 0.0469 to 0.0521. For the nuke attack, the false alarm rates increase from 0.0468

Table 3. Detection rates and false alarm rates for four typical shilling attacks.

Attack type Attack
size

Filler
size

Detection rate False alarm rate

Rand
attack

Avg
attack

Band
attack

Seg
attack

Rand
attack

Avg
attack

Band
attack

Seg
attack

Push Attack 1% 1% 0.7346 0.7386 0.7341 0.7705 0.0564 0.0565 0.0564 0.0571

3% 0.7727 0.7614 0.7886 0.7341 0.0563 0.0566 0.0565 0.0580

7% 0.7591 0.7545 0.7591 0.7000 0.0565 0.0571 0.0565 0.0599

10% 0.7591 0.7682 0.8023 0.7636 0.0566 0.0576 0.0564 0.0608

3% 1% 0.9545 0.9318 0.9432 0.9364 0.0571 0.0575 0.0574 0.0587

3% 0.9259 0.9500 0.9386 0.9477 0.0574 0.0583 0.0575 0.0615

7% 0.9432 0.9409 0.9318 0.9545 0.0573 0.0586 0.0576 0.0653

10% 0.9409 0.9295 0.9364 0.9386 0.0575 0.0581 0.0574 0.0678

7% 1% 0.9773 0.9795 0.9591 0.9727 0.0591 0.0601 0.0598 0.0621

3% 0.9568 0.9705 0.9659 0.9591 0.0591 0.0607 0.0596 0.0673

7% 0.9705 0.9636 0.9636 0.9818 0.0589 0.0592 0.0585 0.0734

10% 0.9795 0.9659 0.9727 0.9614 0.0578 0.0586 0.0585 0.0764

10% 1% 0.9727 0.9682 0.9659 0.9773 0.0607 0.0619 0.0617 0.0646

3% 0.9773 0.9705 0.9841 0.9841 0.0606 0.0617 0.0615 0.0703

7% 0.9727 0.9682 0.9909 0.9750 0.0591 0.0598 0.0603 0.0776

10% 0.9841 0.9818 0.9568 0.9727 0.0587 0.0584 0.0598 0.0820

15% 1% 0.9727 0.9705 0.9659 0.9818 0.0628 0.0635 0.0639 0.0678

3% 0.9864 0.9864 0.9795 0.9841 0.0621 0.0639 0.0630 0.0766

7% 0.9750 0.9818 0.9886 0.9841 0.0601 0.0596 0.0622 0.0841

10% 0.9886 0.9705 0.9841 0.9773 0.0597 0.0573 0.0622 0.0907

1% 1% 0.8457 0.8614 0.8423 0.8636 0.0564 0.0563 0.0564 0.0570

3% 0.8582 0.8705 0.8326 0.8614 0.0562 0.0566 0.0564 0.0580

7% 0.8298 0.8523 0.8614 0.8773 0.0566 0.0569 0.0564 0.0596

10% 0.8376 0.8682 0.8457 0.8795 0.0567 0.0572 0.0563 0.0607

3% 1% 0.9364 0.9568 0.9318 0.9727 0.0571 0.0573 0.0574 0.0588

3% 0.9273 0.9750 0.9409 0.9659 0.0574 0.0583 0.0575 0.0615

7% 0.9545 0.9636 0.9500 0.9500 0.0573 0.0580 0.0578 0.0646

10% 0.9500 0.9636 0.9273 0.9750 0.0575 0.0588 0.0575 0.0680

7% 1% 0.9727 0.9636 0.9682 0.9886 0.0589 0.0598 0.0598 0.0621

3% 0.9523 0.9818 0.9659 0.9727 0.0594 0.0603 0.0596 0.0672

7% 0.9545 0.9705 0.9795 0.9773 0.0586 0.0596 0.0594 0.0730

10% 0.9682 0.9682 0.9727 0.9841 0.0583 0.0583 0.0584 0.0761

10% 1% 0.9727 0.9841 0.9727 0.9864 0.0611 0.0617 0.0616 0.0645

3% 0.9727 0.9818 0.9750 0.9705 0.0607 0.0627 0.0616 0.0711

7% 0.9795 0.9841 0.9727 0.9886 0.0592 0.0600 0.0605 0.0775

10% 0.9682 0.9750 0.9773 0.9750 0.0584 0.0581 0.0598 0.0819

15% 1% 0.9659 0.9727 0.9727 0.9795 0.0624 0.0633 0.0636 0.0687

3% 0.9727 0.9841 0.9864 0.9682 0.0622 0.0636 0.0632 0.0759

7% 0.9818 0.9773 0.9795 0.9773 0.0600 0.0613 0.0618 0.0842

10% 0.9841 0.9727 0.9795 0.9841 0.0595 0.0589 0.0620 0.0913

doi:10.1371/journal.pone.0135155.t003
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to 0.0532. Fig 17 shows that when k is 0.75 and attack size is 1%, the detection for the push
attack is less than 40% and for the nuke attack is less than 60%. When the attack size is not less
than 4%, the detection rates for the nuke attack are more than 90%, but for the push attack the
detection rates are more than 90% when the attack size is not less than 8%. However, in most
cases, the detection rates in Fig 17 are less than Figs 15 and 16. For the push attack, the false
alarm rates increase from 0.037 to 0.0442. For the nuke attack, the false alarm rates increase
from 0.0373 to 0.0442. Figs 15–17 illustrate that with the increase of k, the detection rate and
false alarm rate are both reduced. Since with the k increase the number of time intervals is
decreased, the number of detected abnormal time intervals is reduced, and the detection rate
and false alarm rate are correspondingly decreased.

4.4.3 Detection for shilling attacks for different attack models. To evaluate the results of
the proposed method, changing the attack model or filler size has little effect on detection
results. We simulate four types of attack models on the items. The attack sizes were, respec-
tively, 1%, 3%, 7%, 10% and 15%, and the filler sizes were, respectively, 1%,3%,7% and 10%.
We conduct push attack and nuke attack experiments.

Table 3 presents the detection rate and false alarm rate results for the four types of attack
models. Where Rand attacks represent random attack, Avg attack is average attack, Band
attack refers to bandwagon attack, and Seg attack refers to segment attack. Table 3 shows that
detection rates increase when attack size increases and slightly fluctuates with the filler size
increase. The detection rates of nuke attacks are generally higher than those of push attacks.
When the attack size is 1% the detection rates for the push attack is more than 70% and for
the nuke attack they are more than 80% for the four attack types. When attack size is not less
than 3%, the detection rates for both nuke and push attacks are more than 90% for the four
kinds of attack. In addition, the best detection rate is nearly 99% for the four kinds of
attacks. For random attack types, the false alarm rates for the push attack increases from
0.0563 to 0.0628 and for the nuke attack increases from 0.0562 to 0.0624. Looking at the aver-
age attack type, the false alarm rates for the push attack increases from 0.0565 to 0.0639 and
for the nuke attack increases from 0.0563 to 0.0636. Now for the bandwagon attack type, the
false alarm rates for the push attack increase from 0.0564 to 0.0639 and for nuke attack
increase from 0.0563 to 0.0636. We see for the segment attack type that the false alarm rates
for push attack increase from 0.0571 to 0.0907 and for nuke attack increase from 0.057 to
0.0913. The false alarm rates of the segment attack are generally a little higher than those of
the other attack models, but the detection rates for the four attack models are slightly differ-
ent. Additionally, the experimental results show that the detection rates and false alarm rates
changed little with the changing of the filler size. Thus, the experimental results indicate that
with this approach, changing the attack model or filler size has little effect on detection
results.

4.4.4 Analysis of experimental results. The results in section 4.4.2 demonstrate that the
detection rate is greater than 90% when k is 0.25 and attack size is greater than 3%. The false
alarm rates fluctuate within a range of 0.01, and the highest false alarm rate is less than 0.0666.
Therefore, the proposed method has higher detection rates and lower false alarm rates.

The experimental results in section 4.4.3 indicate that changing the attack model or filler
size has little effect on detection results. The experimental results show that the proposed
method has high detection rates, low false alarm rates, and high stability. A possible reason for
high detection rates and low false alarm rates is the dynamic partition on time series for item
rating. A possible reason for the high stability is that in the detection of abnormal time intervals
of an item, only the ratings on the item are used; therefore, the changing of the attack model or
filler size has little effect on detection results.
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4.5 Comparison of related work
Many detection approaches [25–27] achieved good results in detecting spam users; however,
the purpose of our proposed method is different from these approaches. This method is used
for the detection of abnormal items. Therefore, these works will not be compared. Only two
methods [17–18] were compared for abnormal items detecting.

To compare with the experimental results of Zhang et al. [17] and Gao et al. [18], we con-
duct the experiment using the Dataset-1M. The experimental results are shown as Fig 18.

For push attacks: Fig 18a shows that the detection rates of our method (dynamic window)
are relatively stable when the number of attacks increases and when number of attacks more
than 200 the detection rate is greater than 0.8. The detection rates of Gao (fixed window) fluc-
tuant when the number of attacks increases and the maximum less than 0.9. When the number
of attacks is greater than 200, the detection rate is less than 0.6. When the number of attacks is
20, the detection rate of sample entropy (Zhang's method) is 0.7 less than our method's (our
method is 0.77), but the detection rates of the sample entropy increase significantly when the
number of attacks increase. However, the detection rates of the sample average (Zhang's
method) decreases significantly when the number of attacks increases. When the number of
attacks is more than 200, the detection rate of the sample average is less than 0.5.

For nuke attacks: Fig 18b shows that the detection rates of our method (dynamic window)
are relatively stable when the number of attacks increase and when number of attacks are more
than 200 the detection rate is greater than 0.9. In most cases, the detection rates of our method
are more than 0.9. When number of attacks is 20, the detection rate of sample entropy is 0.42
and when number of attacks is less than 80, the detection rates of sample entropy are less than
our method's. When number of attacks is more than 120, the detection rates of sample average
are less than our method's. The detection rate of sample entropy is less than o.6 when the num-
ber of attacks is 200. In most cases, the detection rates of the fixed window are more than our

Fig 18. Detection rates and false alarm rates on the Dataset-1M dataset ((a), (b), (c) and (d)). Dynamic
window refers to the detection results of our method, fixed windows represents the detection results of Gao's
method, sample average and sample entropy refer to the detection results of Zhang's method, (a) detection
rate for push attacks, (b) detection rate for nuke attacks, (c) false alarm rate for push attacks, (d) false alarm
rate for nuke attacks.

doi:10.1371/journal.pone.0135155.g018
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method's. However, when the number of attacks is more than 180, our method's detection
rates are more than Gao's.

Fig 18c and 18d show that the false alarm rates of the three methods are small. On the other
hand, the false alarm rates of our method are slightly higher than the other two methods. For
push attacks: the false alarm rates of our method are about 0.099 while those of Zhang's method
are less than 0.03 and those of Gao's method are less than 0.04. For nuke attacks: the false
alarm rates of our method are about 0.1 while those of Zhang's method are less than 0.04 and
those of Gao's method are less than 0.04.

Conclusions and Future Work
This paper proposes a dynamic partition approach for item-rating time series based on impor-
tant points. The approach first finds the important points in IRTGS to partition the time inter-
vals. It then calculates χ2 for each time interval and marks the time intervals abnormal if χ2

exceeds a threshold. When detecting an item, only the ratings of the item will be used in the
proposed approach; therefore, the changing of the attack model or filler size has little effect on
the detection results. To evaluate the proposed approach, experiments were conducted using
different attack models, attack sizes, and filler sizes. The experimental results show that the
approach has a high detection rate, a low false alarm rate, and high stability.

Compared to other methods, the false alarm rate of the detection method this paper pro-
poses is slightly higher. The false alarm rates of this method are higher than those of others
that may because the approach does not find an ideal value for significance level and relative
threshold, and that will lead to more normal time intervals are misjudged as abnormal inter-
vals. In the future work, we will try to reduce the false alarm rate. Besides the detection
approach was focused on abnormal items. Next, the proposed method will be incorporated
into classical shilling attack algorithms to detect spam users because both the detection
approach of spam users and of abnormal items are the two most important aspects of research-
ing shilling attacks.
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