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Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology, and life expectancy of

3-5 years after diagnosis. The incidence rate in the United States is estimated as high as 15

per 100,000 persons per year. The disease is characterized by repeated injury to the alveo-

lar epithelium, resulting in inflammation and deregulated repair, leading to scarring of the

lung tissue, resulting in progressive dyspnea and hypoxemia. The disease has no cure,

although new drugs are in clinical trials and two agents have been approved for use by the

FDA. In the present paper we develop a mathematical model based on the interactions

among cells and proteins that are involved in the progression of the disease. The model

simulations are shown to be in agreement with available lung tissue data of human patients.

The model can be used to explore the efficacy of potential drugs.

Introduction
Idiopathic pulmonary fibrosis (IPF) is a disease in which scar tissue in the lung is deposited;
the deposition of the scar tissue is called fibrosis. As the disease progresses, alveolar-capillary
units are impacted, oxygen and carbon dioxide exchange is impaired, ultimately leading to
respiratory failure. IPF usually affects older people [1], but its etiology is unknown. IPF has no
cure yet, and life expectancy is 3-5 years after diagnosis [2]. IPF is characterized by repeated
injury to alveolar epithelium. The injury results in loss of alveolar epithelial cells (AECs) due to
increased apoptosis, epithelial to mesenchymal transition (EMT), and abnormal tissue repair
[3]. Oxidative stress is associated with the disregulation of the AECs [4, 5], and inflammation is
initiated by damaged AECs [6]. Fibrocytes, bone marrow mesenchymal progenitor cells circu-
lating in the blood, play a role in wound repair and are increased in lungs of patients with IPF.
However, fibrocyte numbers do not correlate with disease severity [7, 8].

Inflammation and injury activate AECs [9, 10, 11], and activated AECs secrete a number of
pro-inflammatory mediators including tumor necrotic factor alpha (TNF-α) [12, 13] and che-
moattractant monocyte chemotactic protein-1 (MCP-1) [7, 14, 15]. MCP-1 recruits circulating
monocytes from the blood into damaged lung tissue, where they differentiate into classically
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activated macrophages M1.In normal lung tissue (homeostasis), macrophages from blood
monocytes develop into alveolar macrophages (AM) [12, 16]. Alveolar macrophages are often
referred to as alternatively activated macrophages, or M2 macrophages. However M2 macro-
phages are heterogeneous, and in IPF there appears to be a shift from monocyte-derived M1
macrophages to pro-fibrotic M2 macrophages [17, 18]. These M2 macrophages are responsible
for the progression from inflammation to interstitial fibrosis [2, 18] by secreting platelet-
derived growth factor (PDGF) [19, 17], transforming growth factor-beta (TGF-β) [17], matrix
metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) [17], all of which
are involved in the regulation of tissue fibrosis. TGF-β is produced also by fibroblasts activated
by AEC [12, 20]. Both TGF-β and reactive oxygen species increase AEC apoptosis [20].

TNF-α is produced by the proinflammatory macrophages as well as by activated AEC, and
it induces polarization of M2 into M1 [21] which helps to resolve the fibrosis. This polarization
by TNF-α is resisted by IL-13 [22, 23, 24] which is produced by M2 macrophages and TH2
lymphocytes [25]. On the other hand, MMP28 [26] and other extracellular matrix (ECM) mol-
ecules (e.g. monomeric collagen type 1 interacting with CD204 on M1 [17]) activate polariza-
tion of M1 into M2 macrophages. TGF-β, along with AEC-derived basic fibroblast growth
factor (bFGF) increase the proliferation of interstitial fibroblasts [6, 20]. PDGF and TGF-β
transform fibroblasts into myofibroblasts [27, 28, 29, 30], which together with fibroblasts pro-
duce ECM. Imbalance between MMP and its inhibitor TIMP facilitates the accumulation of
ECM and the formation of fibrosis [31].

Fibrosis is a disease in which scar tissue develops in an organ resulting in loss of functional-
ity of the organ. Although this process evolves in nearly identical way in all organs, there may
be some aspects which are organ specific. Recently Hao et. al. [32] developed a mathematical
model of renal interstitial fibrosis and demonstrated that the model can be used to monitor the
effect of treatment by anti-fibrotic drugs that are currently being used, or undergoing clinical
trials, in non-renal fibrosis. The present paper is based on the model developed in [32] but in
addition in includes two features that are unique to pulmonary fibrosis. The first one is the fact
that in lung fibrosis we need to deal with two phenotypes of macrophages: monocyte-derived
inflammatory macrophages (M1) and anti-inflammatory alveolar macrophages (M2). The net-
work shown in Fig 1 is similar to the network in Fig 1 of [32], but in the present figure the mac-
rophages are divided into M1 and M2 phenotypes, and they play different roles in the fibrotic
process.

The second unique feature in lung fibrosis is the geometry of the lung which includes a very
large number of alveoli. This complex geometry is represented, in a simplified form, in Fig 2.
Our mathematical model of IPF is based on Fig 1 combined with ‘homogenization’method
associated with Fig 2.

The present paper develops for the first time a mathematical model of IPF. The model is
based on the experimental and clinical information referenced above, schematically summa-
rized in the network shown in Fig 1. The model is represented by a system of partial differential
equations. The model is validated by comparing the simulation results with patients data and
may be used to test the efficacy of potential drugs in stopping the patient’s growth of fibrosis.

Materials and Methods

Mathematical model
Table 1 lists all the variables of the model in units of g/cm3. For the purpose of mathematical
modeling we use a simple representation of the lung geometry, whose 2-dimensional projection
is shown in Fig 2. The tissue under consideration is a cube R with edge-size 1 cm. The cube is
partitioned by periodically arranged small cubes Tε with edge-size ε, and in each ε-cube there
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is a concentric cube Aε of edge-size (1 − θ)ε; the Aε represent the alveoli air space, and the
domains Tε/Aε represent the alveolar tissue. An alveolar diameter is approximately 140 μm
[33] and the thickness of the arterial wall which contains the capillaries, epithelial cells and
fibroblasts is 10 μm. We correspondingly take 1�y

y ¼ 6, i.e., θ = 1/7. The dimensions of a lung

are 12 × 31 × 41 cm3, and there are approximately 350 million alveoli in a lung. Hence ε is
extremely small.

Fig 1. Schematic network of cells and proteins in IPF.

doi:10.1371/journal.pone.0135097.g001
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We first write down all the differential equation in Tε/Aε, and then take ε! 0 to obtain the
homogenized system in the cube R. The variables that will be used in the model are given in
Table 1.

Equation for macrophage density. The equation for macrophage density in Tε/Aε (com-
ing from the blood) is given by

@M1

@t
� DMr2M1 ¼ �r � ðM1wPrPÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

chemotaxis

�dM1M1|fflfflfflffl{zfflfflfflffl}
apoptosis

þ lMT

Ta

KTa
þ Ta

M2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
M2!M1

�lM1M1|fflfflfflffl{zfflfflfflffl}
M1!M2

:

Fig 2. Lung geometry consists of a periodically arranged cubes with smaller cubes representing the air space of alveoli.

doi:10.1371/journal.pone.0135097.g002
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Macrophages are terminally differentiated cells; they do not proliferate. They differentiate from
monocytes that are circulating in the blood and are attracted by MCP-1 into the lung tissue.
Hence they satisfy the boundary condition

DM

@M1

@n
þ ~bðPÞðM0 �M1Þ ¼ 0 on @Tε:

where ~bðPÞ depends on MCP-1 concentration, P. HereM0 denotes the density of monoctyes in
the blood, i.e., the source ofM1 macrophages from the vascular system. We note that the above
Robin boundary condition arises from boundary homogenization of the vascular system, as

done, for example, in [34]. The term lMT
Ta

KTaþTa
M2 accounts for transformation fromM2 to M1

induced by TNF-α [21]. The term −r�(M1χPrP) is the chemotactic effect of MCP-1 on M1
macrophages; χP is the chemotactic coefficient. As noted in the Introduction, macrophages
from blood monocytes evolve into AM [12, 16] and, in IPF, there is a shift from AM to pro-
fibrotic M2 macrophages. There is also a polarization fromM1 to M2 induced by MMP28
[26], and by collagen type I via CD204 receptor on M1 [17]. The term λM1M1 represents polar-
ization fromM1 to M2 by the above processes and possibly other processes (e.g. [35]).

We want replace the boundary condition ofM1, by a spatial distribution f. If DMr2u = f in
Tε/Aε, @u@n ¼ 0 on @Aε, DM

@u
@n
¼ g on @Tε, then, by integration

R
Tε/Aε fdV =

R
@Tε

gdS. Hence

�f � volume of Tε=Aε ¼ �g � area of @Tε;

where �f and �g are the mean values of f and g. Since

volume of Tε=Aε ¼ ε3½1� ð1� yÞ3� ¼ gε2; area of @Tε ¼ 6ε2;

where γ = 127/343, and ε is small so that �f � f and �g � g, we can replace the boundary con-

dition ofM1 by the spatial distribution 6ε~bðPÞ=g ¼ bðPÞ. Hence, the equation for M1 density
in Tε/Aε is given by

@M1

@t
� DMr2M1 ¼ bðPÞðM0 �M1Þ � r � ðM1wPrPÞ � dM1M1

þ lMT

Ta

KTa
þ Ta

M2 � lM1M1;
ð1Þ

with zero boundary flux. We take bðPÞ ¼ b P
KPþP

, where β is a constant

Table 1. The variables of the model in units of g/cm3.

M1: density of M1 macrophages M2: density of M2 macrophages

E0: density of AEC E density of activated AEC

f: density of fibroblast m: density of myofibroblast

ρ: density of ECM P: concentration of MCP-1

G: concentration of PDGF Tβ: concentration of activated TGF-β

Q: concentration of MMPs Qr: concentration of TIMP

Tα concentration of TNF-α I13 concentration of IL-13

S scar density

doi:10.1371/journal.pone.0135097.t001
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The M2 macrophage density satisfies the equation

@M2

@t
� DMr2M2 ¼ lM1M1|fflffl{zfflffl}

M1!M2

�dM2M2|fflfflfflffl{zfflfflfflffl}
apoptosis

�lMT

Ta

KTa
þ Ta

M2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M2!M1

; ð2Þ

where the first and last terms on the right-hand side are complimentary to the correspond-
ing terms in Eq (1).

Equation for AEC density (E0 and E). The equation of the inactivated AEC density is
given by

dE0

dt
¼ AE0

1þ l1E0ID
KD þ E0ID|fflfflfflfflfflffl{zfflfflfflfflfflffl}

repair

0
BBB@

1
CCCA �dE0

E0 1þ dþ dE0T
Tb

KTb
þ Tb

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

apoptosis

�lE0E0ID|fflfflfflfflffl{zfflfflfflfflffl}
E0!E

: ð3Þ

In normal healthy, the production of E0 is represented by the term AE0
and the death rate is rep-

resented by dE0E0.
The equation for the activated AEC is

dE
dt

¼ lE0E0ID|fflfflffl{zfflfflffl}
activation

�lEMEID|fflfflfflfflffl{zfflfflfflfflffl}
EMT

�dEE|fflffl{zfflffl}
apoptosis

: ð4Þ

In homeostasis, ID = ;, δ = 0 and activated TGF-β concentration is very small. The injury to the
epithelium is expressed in two ways: (i) by activation of AEC, which is represented by term
λE0

E0ID, where D is the damaged region and ID = 1 on D and ID = 0 elsewhere, and (ii) by
increased apoptosis caused by oxidative stress [4, 5] (the term δ) and by TGF-β [20, 3]. In IPF,
the damaged epithelium is partially repaired by fibrocytes, and this is expressed by the term
l1E0ID

KDþE0ID
[7]. The second term of the right-hand side in Eq (4) accounts for EMT due to injury [3].

Equations for fibroblast density (f) and myofibroblast density (m). The fibroblasts and
myofibroblasts equations are given by:

@f
@t

� Dfr2f ¼ lEf E0|ffl{zffl}
source

þ lfE
Tb

KTb
þ Tb

þ I13
KI13

þ I13

 !
E

KE þ E
f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

production

�df f|ffl{zffl}
apoptosis

� lmfT

Tb

KTb
þ Tb

þ lmfG

G
KG þ G

 !
f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f!m

;

ð5Þ

@m
@t

� Dmr2m ¼ lmfT

Tb

KTb
þ Tb

þ lmfG

G
KG þ G

 !
f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f!m

�dmm|fflffl{zfflffl}
apoptosis

: ð6Þ

The first term on the right-hand side of Eq (5) is a source from E0-derived bFGF, which for
simplicity we take to be in the form λEfE0. As in [32], TGF-β and PDGF transform fibroblasts
into myofibroblasts [27, 28, 29, 30]. Furthermore, TGF-β and IL-13 [22, 23, 24], along with E-
derived bFGF, increase proliferation of fibroblasts [6, 32, 27]. For simplicity, we do not include
bFGF specifically in the model, but instead represent it by E. The production of fibroblasts in
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healthy normal tissue depends on the density of AECs in homeostasis, and is represented by
the term λEfE0 [6, 20].

Equation for ECM density (ρ) and scar (S). The ECM, produced by fibroblasts and myo-
fibroblasts [27, 28, 29, 30], is degraded by MMP [36], and TGF-β enhances the production of
ECM by myofibroblasts [27, 28, 29, 30]. The equation for the density of ECM is then given (as
in [32]) by:

@r
@t

¼ lrf f 1� r
r0

� �þ
þ lrm 1þ lrTb

Tb

KTb
þ Tb

 !
m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

production

�drr� drQQr|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
degradation

;

ð7Þ

where 1� r
r0

� �þ
¼ 1� r

r0
if ρ< ρ0, 1� r

r0

� �þ
¼ 0 if ρ� ρ0.

Excessive accumulation of ECM components (particularly collagen) associated with tissue
injury and inflammation, results in permanent scar formation [37]. Within each type of scar,
there is considerable heterogeneity: an imbalance between MMP and TIMP activity has been
implicated in the development of scar [31]. Thus a scar depends on production and deposition
of ECM and disruption of normal, healthy protein cross-linking. We define the scar simply by
the equation

S ¼ lSðr� r�Þþ; ð8Þ

where ρ� is the ECM density in homeostasis and λS is a constant, but this definition is a simpli-
fied characterization of a scar since it does not account for disruption in protein cross-linking.

Equation for MCP-1 (P). The MCP-1 equation is given by

@P
@t

� DPr2P ¼ lPEE|ffl{zffl}
production

�dPP � dPM
P

KP þ P
M1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

degradation

; ð9Þ

where λPE represents the growth rate by activated AEC following damage to the endothelium
[32, 7, 14, 15, 1]. The last term accounts for the internalization of MCP-1 by macrophage,
which may be limited due to the limited rate of receptor recycling.

Equations for concentrations of PDGF (G), MMP (Q), TIMP (Qr), TGF-β (Tβ), TNF-α
(Tα) and IL-13 (I13). As in [32], the following sets of diffusion equations hold for G,Q andQr:

@G
@t

� DGr2G ¼ lGMM2|fflfflffl{zfflfflffl}
production

�dGG|fflffl{zfflffl}
degradation

; ð10Þ

@Q
@t

� DQr2Q ¼ lQMM2|fflfflffl{zfflfflffl}
production

�dQQr
QrQ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

depletion

�dQQ|fflffl{zfflffl}
degradation

; ð11Þ

@Qr

@t
� DQr

r2Qr ¼ lQrM
M2|fflfflffl{zfflfflffl}

production

�dQrQ
QQr|fflfflfflfflfflffl{zfflfflfflfflfflffl}

depletion

�dQr
Qr|fflfflffl{zfflfflffl}

degradation

: ð12Þ

Note that in Eq (11), MMP is lost by binding with TIMP (second term).
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As in [32], TGF-β is produced and activated by M2 macrophages while enhanced by IL-13
[22, 23, 24]; in addition, TGF-β is produced and activated by fibroblasts and AEC [12, 20]:

@Tb

@t
� DTb

r2Tb ¼ lTbM
M2 1þ lTbI13

I13
I13 þ KI13

 !
þ lTbf f

E
E þ KE|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

production

�dTbTb|fflfflffl{zfflfflffl}
degradation

: ð13Þ

TNF-α is produced by M1 macrophages [21], and is also produced by AEC [12, 13]:

@Ta

@t
� DTa

r2Ta ¼ lTaMM1 þ lTaE
E|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

production

�dTa
Ta|fflfflffl{zfflfflffl}

degradation

�lMTa

Ta

KTa
þ Ta

M2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M2!M1

: ð14Þ

IL-13 is produced by M2 macrophages [22, 23], and follows the equation

@I13
@t

� DI13
r2I13 ¼ lI13

þ lI13M
M2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

production

�dI13 I13|fflfflfflffl{zfflfflfflffl}
degradation

: ð15Þ

Actually, IL-13 is also produced by TH2 cells [25]; for simplicity we do not include TH2 cells
in our model but accounts for their production of IL-13 by the term λI13.

The homogenized equations. On the boundary of Tε/Aε all the variables are assumed to
have zero flux. Hence, each of the Eqs (1)–(14), if written in the form

@X
@t

� DXr2X ¼ FXðXÞ in Tε=Aε; ð16Þ

takes, after homogenization [38] (Sec. 3.1 and p.31), the following form:

g
@X
@t

� DX
~r2X ¼ gFXðXÞ in the cube R; ð17Þ

where γ is the volume fraction of the tissue in each ε-cube, g ¼ 127
343
. Here ~r2 ¼P aij

@2

@xi@xj
,

where the coefficient aij are computed by

aij ¼
Z
y2T=A

dij þ
@wj
@xi

� �
dy:

where χi satisfies the equation

r2wi ¼ 0 in T n A; with
@wi
@n

þ ni ¼ 0 on the boundary of A;

here T ¼ Tε
ε
, A ¼ Aε

ε
, ni is the i-th component of the outward normal n, and χi is periodic in the

directions of the three axes xj (j = 1,2,3). Computing aij by finite element discretization, we find
(similarly to [32]) that aii = 0.11 (i = 1,2,3) and aij = 0 if i 6¼ j.

Boundary conditions
All variables are assumed to satisfy the zero flux boundary condition on @R, the boundary of
the cube R.
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Initial conditions
We assume initial homeostasis, that is, λE0

E0ID = 0, but with a small amount of inflammation,
represented by the term λPEE in Eq (9). We take this term to be 10−10 and compute the initial
values by solving the steady state equations.

In particular we find the initial values of Tα = 2.5 × 10−8, Tβ = 2.51 × 10−12 and I13 = 3.2 × 10−8

in units of gm/ml. Taking into account that only γ-fraction of the space is occupied by tissue, the
values 1

g Ta,
1
g I13 coincide with the concentration of Tα and I13 measured in the bronchial tubes of

healthy lung in [39], and 1
g Tb coincides with value of TGF-β as computed in [40].

We also compute that E0 = E� = 0.79 g/cm3, f = f� = 4.75 × 10−3 g/cm3, ρ = ρ� = 3.26 × 10−3

g/cm3 and I13 = 1.76 × 10−8 g/cm3 at t = 0.

Results

Numerical scheme
We briefly describe the technique used in the simulations, and for simplicity take R to be the
unit cube, i.e., R = [0, 1] × [0, 1] × [0, 1]. Consider the following general diffusion equation

@C
@t

� DCr2C ¼ FCðCÞ;

in R with zero flux on @R. Given three positive integers K1, K2, K3, let

xi ¼ i=K1; yj ¼ j=K2; zk ¼ k=K3; 0 	 i 	 K1; 0 	 j 	 K2; 0 	 k 	 K3:

Then we denote ci, j, k(t) the numerical approximation of C(xi, yj, zk, t), and get the following
ODE system by semi-discretization:

dci;j;kðtÞ
@t

¼ DCðK2
1 ½ciþ1;j;kðtÞ þ ci�1;j;kðtÞ � 2ci;j;kðtÞ� þ K2

2 ½ci;jþ1;kðtÞ þ ci;j�1;kðtÞ � 2ci;j;kðtÞ�
þK2

3 ½ci;j;k�1ðtÞ þ ci;j;kþ1ðtÞ � 2ci;j;kðtÞ�Þ þ FCðci;j;kðtÞÞ:
ð18Þ

The Runge-kutta method is employed to solve this ODE system. The above method is used to
solve the coupled system of equations of the complete model.

Model simulation and validation
In this section, we simulate the model (1)-(17). The parameter values are listed in Tables 2 and
3 and the initial values are taken as explained above. The numerical simulation were carried
out by finite difference scheme in spatial direction and Runge-Kutta method in time direction.

Fig 3 shows the dynamics of the average densities of cells and concentrations of cytokines
for 30 days.

Fig 4 shows histogram of cells and cytokines in disease vs. homeostasis. The simulation
results for MMP and TIMP shown in Fig 4 are in agreement with the experimental results,
reported in [41] for protein concentration human lung tissue with IPF (n = 16 human subjects)
and control (n = 6 human subjects). Indeed, although (in [41]) MMP 7 (for IPF) is nearly 4
times the level of MMP7 for control, all other MMPs (1,2,9,13) increased approximately twice
or just a little more than twice, while the relatively small concentration of MMP8 decreased to
25% of the control level. The simulation results for TIMP shows an increase of 20% in the pro-
tein concentration for IPF vs. control, which is the same as in human lung tissues reported in
[41] for TIMP-1,2,3. Levels of mRNA expression relate to levels of the translated proteins. The
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Table 2. Parameters’ description and value.

Parameter Description Value

DM dispersion coefficient of macrophages 8.64 × 10−7 cm2 day−1 [32]

DP diffusion coefficient of MCP-1 1.728 × 10−1 cm2 day−1 [32]

DG diffusion coefficient of PDGF 8.64 × 10−2 cm2 day−1 [32]

DQ diffusion coefficient of MMP 4.32 × 10−2 cm2 day−1 [32]

DQr
diffusion coefficient for TIMP 4.32 × 10−2 cm2 day−1 [32]

DTβ
diffusion coefficient forTGF-β 4.32 × 10−2 cm2 day−1 [32]

DTα
diffusion coefficient for TNF-α 1.29 × 10−2 cm2 day−1 [55]

Df dispersion coefficient offibroblasts 1.47 × 10−6 cm2 day−1 [32]

Dm dispersion coefficient of myofibroblasts 1.47 × 10−5 cm2 day−1 [32]

DI13 diffusion coefficient of IL-13 1.08 × 10−2 cm2 day−1 [40]

DTα
diffusion coefficient forTNF-α 1.29 × 10−2 cm2 day−1 [40]

λMT transition rate of M2 to M1 macrophages by TNF-α 5 × 10−3 day−1 [56]

λM1 polarization rate of M1 to M2 macrophages 9.02 × 10−6 day−1, estimated

λE0
AEC 0.25 day−1 estimated

λ1 repair rate of AEC 10−3 g/cm3 day−1 estimated

λEM EMT rate of AEC 1.65 × 10−3 day−1 estimated

λTβM production rate of TGF-β by macrophages 1.5 × 10−2 day−1 [32]

λTβf production rate of TGF-β by fibroblast 7.5 × 10−3 day−1 [32] & estimated

λGM production rate of PDGF by macrophages 2.4 × 10−5 day−1 [32]

λQM production rate of MMP by macrophages 3 × 10−4 day−1 [32]

λQrM production rate of TIMP by macrophages 6 × 10−5 day−1 [32]

λPE activation rate of MCP-1 due to AECs 1 × 10−8 day−1 [32]

λρf activation rate of ECM due to fibroblasts 3 × 10−3 day−1 [32]

λρm activation rate of ECM due to myofibroblasts 6 × 10−3 day−1 [32]

λρTβ
activation rate of ECM due to TGF-β 2 [32]

λEf activation rate of fibroblasts due to bFGF and TGF-β 2.5 × 10−1 day−1 [32] & estimated

λfE production rate of fibroblasts 5 × 10−4 day−1 [32] & estimated

λmfT activation rate of myofibroblasts due to TGF-β 0.12 day−1 [32]

λmfG activation rate of myofibroblasts due to PDGF 0.12 day−1 [32]

λTαM activation rate of TNF-α due tomacrophage 1.39 × 10−5 day−1 [57]

λTαE activation rate of TNF-α due tomacrophage 6.9 × 10−6 day−1 [57] & estimated

λI13 production rate of IL-13 by Th2 cells 2.12 × 10−7 g/ml day−1 [40]

λI13M production rate of IL-13 by macrophages 3.98 × 10−4 day−1 [40]

dM2
death rate of macrophages 0.015 day−1 [32]

dM1
death rate of macrophages 0.02 day−1 [56, 58]

dE death rate of AECs 1.65 × 10−2 day−1 [32]

dE0
death rate of AECs 1.65 × 10−2 day−1 [32]

dE0T death rate of AECs 1.65 × 10−3 day−1 [32]

δ increased death rate of AECs by injury 1 × 10−3 day−1, estimated

dρ degradation rate of ECM 0.37 day−1 [32]

dP degradation rate of MCP-1 1.73 day−1 [32]

dPM internalization rate of MCP-1 by M1 macrophages 2.08 × 10−4 day−1 [32]

dG degradation rate of PDGF 3.84 day−1 [32]

dQQr
binding rate of MMP to TIMP 4.98 × 108 cm3 g−1 day−1 [32]

dQrQ binding rate of TIMP to MMP 1.04 × 109 cm3 g−1 day−1 [32]

dQ degradation rate of MMP 4.32 day−1 [32]

dQr
degradation rate of TIMP 21.6 day−1 [32]

dρQ degradation rate of ECM due to MMP 2.59 × 107 cm3 g−1 day−1 [32]

dTβ
degradation rate of TGF-β 3.33 × 102 day−1 [32]

df death rate of fibroblasts 1.66 × 10−2 day−1 [32]

dm death rate of myofibroblasts 1.66 × 10−2 day−1 [32]

dTα
degradation rate of TNF-α 55.45 day−1 [59]

dI13 degradation rate of IL-13 12.47 day−1 [40]

doi:10.1371/journal.pone.0135097.t002
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Table 3. Parameters’ description and value.

Parameter Description Value

χP chemotacticsensitivity parameter by MCP-1 10 cm5 g−1 day−1 [32]

AE0 intrinsic AEC proliferation 8.27 × 10−3 g/cm3 day−1 [32]

KG PDGF saturation for activation of myofibroblasts 1.5 × 10−8 gcm−3 [32]

KTβ
TGF-β saturation for apoptosis of AECs 1 × 10−10 gcm−3 [32]

KP MCP-1 saturation for influx of macrophages 5 × 10−9 gcm−3 [32]

KTα
TNF-α saturation 5 × 10−7 gcm−3 [40]

KI13 IL-13 saturation 2 × 10−7 g/cm3 [40]

KE AEC saturation 0.1 g/cm3, estimated

ρ0 ECM saturation 10−2 gcm−3 [32]

ρ* ECM density in health 3.26 × 10−3 gcm−3 estimated

E* TEC density in health 0.799 gcm−3 estimated

f* fibroblast density in health 4.75 × 10−3 gcm−3 estimated

M0 source/influx of macrophagesfrom blood 5 × 10−5 gcm−3 [32]

β influx rate of macrophages into interstitium 0.2 cm−1 [32]

doi:10.1371/journal.pone.0135097.t003

Fig 3. The dynamics of the average concentrations of cells and cytokines in units of gm/cm3 from homeostasis at day 0 to day 30. ID =
0.3 × 0.3 × 0.3 cm3.

doi:10.1371/journal.pone.0135097.g003
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mRNA of TGF-β reported in [42] (which can also be deduced from [43]) shows increase by at
least twice in IPF vs. control; this increase is the same for the TGF-β protein shown in Fig 4.
However, we cannot make too much out of this comparison since TGF-β has to be activated
post transcriptionally to be biologically active [20]. The mRNA expressions of TNF-α and
PDGF reported in [43] show increased levels in IPF patients, which is in qualitative agreement
with the increase in protein levels shown in Fig 4.

Figs 5 and 6 are simulations of the disease for a larger period of 300 days. We see that the
disease continue to grow but at slower rate.

Treatment studies
We can use the model to explore potential drugs. Such drugs could be, for instance, anti-TGF-
β, anti-PDGF, anti-IL-13 or anti-TNF-α. Fig 7 displays the effect of treatment for mild case of
IPF, namely ID = 0.3 × 0.3 and λE0

= 2.5 × 10−3 day−1, and Fig 8 displays the effect of treatment
for severe case of IPF, namely, ID = 0.5 × 0.5 and λE0

= 3 × 10−3 day−1

Anti TNF-α. To implement the effect of anti-TNF-α (TNF-α receptor that inactivates
TNF-α and thus blocks TNF-α activity [44]), we need to modify the model replacing λMT in
Eqs (1) (2) by λMT/(1 + B1) to represent the inhibition of the activity of TNF-α. We assume
that the drug is administered starting at day 100 from the beginning of the disease. The red
curve in Figs 7 and 8 show the effect of the drug on the ECM average concentration (with B1 =
1) over a period of 300 days. The corresponding scar has a similar curve and hence it is not

Fig 4. Comparison of cells and cytokines for IPF and healthy control at day 30 from the beginning of the disease (in fraction of healthy control).

doi:10.1371/journal.pone.0135097.g004
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given here. We see that the drug has no effect on reducing the ECM. This is in agreement with
clinical phase 2 trials with Etanercept reported in [44].

The effect of the drug is introduced gradually over a period of 20 days, that is, we actually
take θ(t)B1 instead of B1, where θ(t) increases linearly from 0 to 1 over a period of 20 days. The
same procedure is used in treatment of the subsequent drugs.

Anti-PDGF. We next consider anti-PDGF treatment, by Imatinib, an inhibitor of PDGFR
and thus a blocker of PDGF activity [45]. In our model this corresponds to replacing, in Eqs
(5) and (6), λmfG by λmfG/(1 + B2). The green curve in Figs 7 and 8 show the effect of the drug
on ECM for B2 = 1. We see that the drug does not confer significant benefit, which is in agree-
ment with phase 2 study with Imatinib.

Anti-IL-13. We next consider anti-IL-13, monoclonal antibody, a drug currently in early
phase clinical trials. Tralokinamab and lebrikizumab are two drugs delivering antibody that
blocks the action of IL-13. To implement their effect in our model we need to replace λTβI13 in
Eq (13) by λTβI13/(1 + B3). With the choice of B3 = 1, the blue curve in Figs 7 and 8 show no sig-
nificant benefits; this seems to suggest that a moderate level of dosing will not be effective.

Anti-TGF-β. We finally consider an anti-TGFβ drug, such as Pirfenidone [46] which was
recently approved in the United States. In our model we need to replace λTβM and λTβf by λTβM/
(1 + A) and λTβf/(1 + A), and Tβ by Tβ/(1 + B) in all terms where Tβ acts to promote fibrosis. In

Fig 5. The dynamics of the average concentrations of cells and cytokines in units of gm/cm3 from homeostasis at day 0 to day 300. ID =
0.3 × 0.3 × 0.3 cm3.

doi:10.1371/journal.pone.0135097.g005
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the previous examples we showed that the drug has no benfits even at the level B = 1. For the
present anti-TGF-β drug we demonstrate a clear benefit already with small A and B. Indeed,
the cyan curve in Figs 7 and 8 show the effect of the drug on ECM for A = B = 0.1. We see that
in terms of ECM, the drug could be effective in stopping, or even slowly decreasing fibrosis.

Discussion
IPF is a disease which exhibits, as in cutaneous wounds, both pro-inflammatory features when
the alveolar epithelium is damaged and AECs begin to secrete pro-inflammatory mediators,
and anti-inflammatory features associated with unsuccessful repair processes.

In this paper we developed for the first time a mathematical model for IPF. The model
includes many of the principal players of cells and cytokines associated with the disease. The
complex geometry of the lung alveoli is simplified by using the averaging method of homogeni-
zation, which provides a way to calculate the effective interactions among the cells and cyto-
kines. The simulations of the model agree with lung tissue data that are available from human
patients. The model can be used to explore the effect of drug treatment. Indeed, we used the
model to explore the treatment of IPF by anti-TNF-α, anti-PDGF, anti-IL-13 and anti-TGF-β.
We found that the first three drugs did not confer any benefits, while the last drug, pirfenidone,
could be effective in stopping, or even slowly decreasing fibrosis.

Fig 6. Comparison of cells and cytokines for IPF and healthy control at day 300 from the beginning of the disease (in fraction of healthy control).

doi:10.1371/journal.pone.0135097.g006
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Fig 7. Treatment studies for the mild case. ECM is in units of gm/cm3.

doi:10.1371/journal.pone.0135097.g007

Fig 8. Treatment studies for the severe case. ECM is in units of gm/cm3.

doi:10.1371/journal.pone.0135097.g008
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We can use the model to explore novel therapeutic approaches to the treatment of IPF. For
example, what will be the effect of combining two anti-fibrotic drugs? From Figs 5 and 7 we see
that anti-TGF-β is the most effective drug to slow the IPF progression (with A = B = 0.1) and
anti-IL-13 has only very mild benefits (with B3 = 1). However if we combine these two drugs
(at the same respective levels) we obtain significant improvement of over anti-TGF-β alone,
especially in the case of severe case of IPF, as seen in the bottom curves in Figs 5 and 7. We pro-
pose this result as an hypothesis that could be checked in clinical trials.

The present model should be viewed as a first step in the development a more comprehen-
sive study of IPF. Such a study should include altered DNA methylation [47, 48], epigenetic
and environmental factors [49], gene mutation (e.g. of surfactant protein [50]), polymorphism
(e.g. of IL-10 [51], IL-4 [52], Muc5B [53]), and telomerase mutations [54].
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