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Abstract

A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of
insect-like wings in hovering flight. The approach allows accurate estimation of aerody-
namic forces from geometry and kinematic information alone and provides for the first time
quantitative information on the relative contribution of induced and profile drag associated
with lift production for insect-like wings in hover. The main adaptation to the existing lifting
line theory is the use of an equivalent angle of attack, which enables capture of the steady
non-linear aerodynamics at high angles of attack. A simple methodology to include non-
ideal induced effects due to wake periodicity and effective actuator disc area within the lift-
ing line theory is included in the model. Low Reynolds number effects as well as the edge
velocity correction required to account for different wing planform shapes are incorporated
through appropriate modification of the wing section lift curve slope. The model has been
successfully validated against measurements from revolving wing experiments and high
order computational fluid dynamics simulations. Model predicted mean lift to weight ratio
results have an average error of 4% compared to values from computational fluid dynamics
for eight different insect cases. Application of an unmodified linear lifting line approach
leads on average to a 60% overestimation in the mean lift force required for weight support,
with most of the discrepancy due to use of linear aerodynamics. It is shown that on average
for the eight insects considered, the induced drag contributes 22% of the total drag based
on the mean cycle values and 29% of the total drag based on the mid half-stroke values.

Introduction

The classical lifting line theory (LLT), developed by Prandtl a century ago provided the first sat-
isfactory analytical treatment for the evaluation of the aerodynamics of a finite wing [1-6]. The
LLT laid the foundation for understanding the aerodynamics of flight, and is still widely used
today to provide accurate predictions of the lift and induced drag for 3d wings [6]. The solu-
tions delivered by the LLT are closed form and they are many orders of magnitude faster to
evaluate compared to higher order computational methods; they are also able to provide deep
insight into how different wing parameters affect the aerodynamic performance [6].
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The physical foundation of the LLT is based on Prandtl's hypothesis that the lift of a finite
wing is reduced compared to the lift of an infinite wing due to the change of the local flow
direction induced by the free vortices in the wake. The Kutta-Joukowski theorem can then be
applied at each wing section, which is assumed to behave as a 2d wing at a modified angle of
attack referred to as the effective angle of attack. This concept led Prandtl to his well-known lin-
ear equation governing the circulation on a finite lifting surface, which will be formally intro-
duced later in this work in section ‘LLT fundamental equations’. Because the obtained
governing equation is of an integro-differential type, there exists no unique mathematical pro-
cedure to solve it, and throughout the past century different mathematical methods have been
proposed to handle the problem [7]. The most well-known solution methodology is that pre-
sented by Glauert [8] who provided a solution in the form of an infinite Fourier sine series with
the series coefficients obtained from the collocation method.

Whilst the LLT is usually used for the aerodynamic modelling of high aspect ratio, planar,
fixed wings in steady flows, the long reach of Prandtl's insight is demonstrated through the var-
ious adaptations presented over the years that have enabled much broader applicability of his
original model [9]. With few adaptations, the LLT has been successfully used to predict the
aerodynamics of a wide variety of lifting surfaces under a wide variety of flow conditions. Jones
[10] proposed a simple correction for the LLT which he showed could bring the lifting line
result into close agreement with the lifting surface result over an extended range of wing aspect
ratio, hence improving accuracy of the LLT for low aspect ratio wings. Phillips and Snyder [9]
extended the lifting line formulation so that it can be used for non-planar wings with arbitrary
camber, sweep and dihedral. Sclavounos [11] developed an unsteady lifting line treatment for
wings of large aspect ratio undergoing time-harmonic oscillations where he showed in the
zero-frequency limit that it reduces to the Prandtl's lifting line theory, whilst for high frequen-
cies it tends to the two-dimensional strip theory. Mehrle [12] extended Multhopp's quadrature
method to the calculation of the circulation of cyclic periodic lifting systems, e.g. for wings
operating in swirling flow. Anderson et al. [13,14] proposed a numerical iterative lifting line
treatment that uses look-up tables of the sectional lift as a function of effective angle of attack
for the use within flight conditions such as spins and high angles of attack manoeuvres.

The LLT has also been adopted for the evaluation of the aerodynamics of wings prescribing
rotary and flapping motions. Conlisk [15] discussed the implementation of the LLT for rotary
wings in hover, and highlighted the importance of accounting for the effect of the linear veloc-
ity variation along the blade on the bound circulation distribution. Leishman (see chapter 14 in
[16]) provided a generic formulation of the LLT for rotary wing motions; whereas, Johnson
(see chapter 10 in [17]) discussed the importance of adopting corrections to the LLT to handle
specific rotary wing aerodynamic phenomenon such as wake periodicity.

Lifting line formulations very similar to that of fixed wings have been used in [18,19] for the
mathematical modelling of the avian flight power curve. Philips et al. [20] presented a LLT for
forward flapping flight in which some unsteady flow effects were accounted for through the
use of a 3d model of the vortex wake to evaluate the unsteadiness to a first order. For a review
of lifting line models for flapping wings in forward flight, the reader is referred to [21].

For hovering flapping flight, two significant contributions have been presented. The first is
by Sane [22] who proposed a semi-empirical lifting line blade model for hovering insects to
investigate the mean induced flow over their bodies. However, the model relies on experimen-
tal data; hence, measurements are still required as inputs to the calculation. The second contri-
bution is by Ansari et al. [23] who reviewed the use of lifting line blade theory based on the
Glauert solution [8] in the context of insect-like flapping wings: a general description of the
model was provided and some results for the variation of the mean lift with flapping frequency
and wing shape were presented. However, their model relies on a linear aerodynamic
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representation which would significantly over-estimate the lift and induced drag at high angles
of attack where insects are known to operate. Additionally, other relevant aerodynamic phe-
nomena such as wake periodicity are not included.

Within the last two decades, there has been an increased interest in studying insect flight,
particularly in hover. Most of the studies in this field have been either experimental or numeri-
cal with relatively few analytical contributions. The most widely used analytical class of models
for the prediction of hovering insects aerodynamics are the so-called quasi-steady models such
as those developed in [24-27]. These models assume equivalence of the instantaneous aerody-
namic forces on a flapping wing with the forces generated on the same wing moving steadily at
the same instantaneous velocity and angle of attack [28]. However, most of the available mod-
els as in [24-26] relied on experimental data to define the flapping translational force coeffi-
cients which are the primary contributor to the generated forces. Thus the applicability of such
models is limited to a few test cases for which experimental data are available [29].

The aim of the present work is to provide a convenient theoretical treatment for evaluating
the aerodynamics of insect-like wings in the translational phase of the flapping cycle. This
work builds on the foundation laid by the authors in their previous contributions [29,30]
which establishes a compact transparent treatment for the quasi-steady aerodynamics of hov-
ering. The contribution of the present work lies in the novel reformulation of the LLT for appli-
cation to estimating the translational forces for hovering wings and the subsequent insight that
this brings to the flow physics. In particular, the modelling approach allows unique insight into
the relative contribution of induced and profile drag for flapping wings; something that is cur-
rently missing in the available literature. Whilst the present contribution only considers quasi-
steady effects, there is a logical path to include rotational and added mass effects as model
extensions in the future that would enable capturing aerodynamic time history effects.

Method
Basic assumptions

The lifting line theory assumes a fluid that is incompressible and inviscid. Compressibility
effects are negligible for application areas of interest. With regard to viscous effects, recent
experimental measurements [31] have demonstrated that insect-like flapping wing aerody-
namics depends weakly on Reynolds number, and numerical studies [32] demonstrated that
the flows are well modelled by the inviscid Euler equations. Nevertheless, and following the
general practice within the LLT, the Reynolds number effect is taken into account in the two
dimensional properties of the wing section represented through the section lift curve slope.

The wing is assumed to be an infinitesimally thin and un-cambered rigid flat plate with zero
spanwise twist and zero sweep. Wing twist about a spanwise axis can be included as an alter-
ation to the wing geometric angle of attack.

The lifting line theory is valid as long as the Kutta condition is satisfied, and in general this
will be the case if there is an absence of classical wing stall [6]. For the current problem, the for-
mation of a leading-edge vortex (LEV) on the wing top surface prevents classical wing stall
[33,34,29]. The LEV is stable in the sense that it does not shed as the wing motion progresses,
and allows the flow over the upper surface of the wing to separate at the leading edge but subse-
quently reattach upstream of the trailing edge [34]. The Kutta condition is therefore established
at the trailing edge at angles of attack beyond which classical stall would occur for wings where
no LEV is present [34,33,29].

Other secondary aerodynamic effects from wing pronation and supination as well as the
wing-wing interactions (clap-and-fling) are not included in the current model. Thus the
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current modelling treatment is consistent with the well known ‘revolving wing’ concept
[31,35-39] which captures the quasi-steady aerodynamics between stroke reversals.

LLT fundamental equations

The wing is modelled as a bound vortex of strength I'(r) at the aerodynamic centre. The goal is
to determine I'(r) as a function of the wing geometric properties. The Kutta-Joukowski theo-
rem is used to obtain the lift per unit span [8,16]:

1
dL(r) = pV (T (r)dr = 5 p(V (1) c(r)drCpay (2 — (1)), (1)
where p is the air density, V(r) is the sectional flow speed along the wing length, r is wing radial
position measured from the wing root, c is the chord, G54 is the 2d-aerofoil lift curve slope, ay is
the wing geometric angle of attack and ¢; is the induced angle of attack. Thus I'(r)is obtained as:

L) = 5er)Coas (V)2 — (), @)

where w(r) is the induced downwash velocity distribution along the wing length determined by
[4,8]:

R

_ 1 (dr dr
=5 G)

—R

where 7 is the wing station at which the downwash is calculated, and r is the location of vortices
responsible for the downwash.

Eq 2 represents Prandtl's fundamental lifting line equation. In order to apply it to insect-like
wings in hover, we rewrite it as:

F(r) = 5 e) Gy (V)7 = (1), (4

The above equation represents the basis for the developed lifting line theory for hovering
wings which, in the present work, will be referred to as LLT},,. Three main adaptations are
introduced in Eq 4. These correct for (1) non-linear aerodynamics of the lift curve, (2) non-
ideal induced downwash effects, and (3) planform effects on the 2d lift curve slope. Each of
these adaptations is now considered in detail.

Adapting the LLT for non-linear aerodynamics

The primary adaptation we make to the classical LLT is the introduction of the concept equiva-
lent angle of attack to account for non-linearity in the wing lift curve. This equivalent angle,
0Oy, is defined as the geometric angle of attack within the linear aerodynamic representation that
will provide the same lift coefficient of the 3d wing within a non-linear aerodynamic representa-
tion. The original LLT formulation assumes a linear lift curve for the wing; i.e. the 3d wing lift
coefficient, Cy, is proportional to the geometric angle of attack:

C, oc 0. (5)
However, for an insect-like wing in hover, the lift coefficient increases to a maximum at a

geometric angle of attack of 45 degrees and then decreases back to zero at a 90 degrees angle of
attack. Previous studies [25,26,29,40,41] have shown that this behaviour can be adequately
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represented by the trigonometric relationship:

C, o sina,cosa,. (6)

Experiments on revolving and flapping wings [31,35-38,40] show that despite its simplicity
the function sin o, cos a, provides an excellent representation of the variation of the measured
steady lift coefficient with geometric angle of attack. The physical foundation of the sin o, cos
0, variation is based on the assumption that pressure forces dominate over skin friction forces
for this type of flow, and the magnitude of the normal force coefficient is proportional to sin
ayg; for more details on the physical foundations of Eq 6, the reader is referred to references
[40,29,35]. By comparison of Eqs 5 and 6, we derive an equivalent angle of attack expression as:

/xeq = C(xgag7 (7)

where

C, = sinacosx, /o, (8)

g

Fig 1 shows the correction term, G, and the equivalent angle of attack, a,,, variations

against the geometric angle attack. The maximum lift coefficient at a 45 degrees geometric
angle of attack is achieved with a 29 degrees equivalent geometric angle of attack within the
linear aerodynamics representation. At small angles of attack (a; < 15°), the equivalent angle
of attack is almost equal to the geometric angle of attack meaning that the LLT},,, converges
to the original LLT at low angles of attack. On the other hand, at very high angles of attack
(ag — 90°) the equivalent angle of attack reduces back towards zero as required by basic geo-
metric considerations.

By applying the above adaptation within the LLT expressions, the quasi-steady non-linear
lift curve behaviour essential to the insect-like flapping wing problem is well captured. An
important aspect of this proposed technique is that no alterations to the fundamental LLT
equations are required, and the underlying physics of the LLT is well preserved. Whilst the con-
cept of the equivalent angle of attack is quite simple and appears as an obvious approach to
handle the problem, it has to our knowledge not been attempted before either within the con-
text of hovering insect-like wing problem or within any other non-linear aerodynamic treat-
ment of a lifting surface. The equivalent angle of attack approach has some similarity with
other techniques for implementing nonlinear aerodynamics for post stall applications such as

2) 1 T T v T T b) 30 v v T v v
0.8} 1
0.6} 1%
o4l 13 '
0.2F i
0 ‘ . . . - 0 . : . - :

0 15 30 60 75 90 0 15 30 60 75 90

45 45
Og(deg) Og(deg)

Fig 1. The equivalent angle of attack concept. Variation of (a) the correction term, and (b) the equivalent angle attack against the geometric angle of
attack.

doi:10.1371/journal.pone.0134972.g001
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‘decambering approach’, for example described in [42], however these approaches typically
require an iterative solution procedure. The present method does not require iteration because
there is a single continuous function (Eq 6) that defines the overall lift coefficient variation of
the wing as a function of angle of attack up to 90 degrees that can be easily inverted. This allows
the original nonlinear problem to be transformed into an equivalent linear LLT problem. For
more general cases with complex post stall aerodynamics and more arbitrary lifting surface
arrangement no such convenience is available and it is necessary to iterate a solution.

The proposed adaptation has some similarities with the well known Prandtl-Glauert com-
pressibility transformation [14] which allows solution of compressible flow problems using
incompressible-flow calculation methods. The proposed LLT transformation allows solution of
non-linear aerodynamic problems using linear aerodynamic calculation methods by applying
linear aerodynamic methodologies to non-linear aerodynamic cases. We believe the proposed
technique also opens the door for solution of other 3d lifting surface problems with non-linear
aerodynamic behaviour.

Adapting the LLT for non-ideal induced downwash effects

The second adaptation applied here is to account for non-ideal but physical effects that influ-
ence the downwash magnitude of the wing, including wake periodicity and effective flapping
disk area. These effects are absent for fixed wings but must be considered for flapping wings
[16,30,43,44]. To provide a simple modelling procedure for these effects, consider the actuator
disk theory expression for the induced velocity magnitude in hover:

L
w=k,, 9
5. 9)

where k;,, 4 is the well known k-factor to account for the non-uniformity in the downwash and
is already accounted for in the lifting line formulation. However, there are other effects associ-
ated with flapping flight which are directly related to the downwash and need to be included in
the lifting line formulation. These effects can be best explained through their effect on the effec-
tive disk area, S4. For flapping flight, the disk area, S; 4, is defined as [44]:

S, =20k, (10)

d flap
where ¢ is the amplitude of the flapping stroke angle and R is the wing length from root to tip;
however, to obtain an expression for Sy .5 a further modification is required as:

Siy = 20K (11)

The correction of R to R.saccounts for the aerodynamic phenomena of wing tip losses due
to discreteness and periodicity in the wake [16,17,44,45]. By quantifying the flow structure
around a hovering model fruit fly wing using digital particle image velocimetry, Birch et al.
[46] showed that experimental circulation falls to zero at around 85% of R. Sane [22] discussed
this loss of lift near the tip and attributed it to tip losses due to wake periodicity.

Now, by simple factorisation [16], the downwash expression (Eq 9) can be written as:

Kinay | BTN v e —— V5% 12
w = 2psdef 2an2 2¢/TE md per ﬂup 2 TL'RQ’ ( )
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where,
1 R
kper = L= 5 (13)
B Ref
b3
kﬂap == % (14)

Therefore, the overall downwash magnitude is increased due to the additional factor k,,
kfiap compared to the case with no assumed wake periodicity effects and with the wing sweep-
ing the whole circular disk area, i.e. R = R,rand 2¢ = 7. Thus, from this simple momentum the-
ory analysis, it can be seen that in the presence of these additional non-ideal effects a flapping
wing has an overall induced velocity increased by the factor k., kpap. We now develop the
effective downwash definition in Eq 4 to account for these effects:

R

_ Kyerkop J dr _dr
4n

—R

(15)

W'ff(r) drv—r’

In a previous contribution by the authors [30], numerical evaluations of the k., and the
kpap parameters were presented for eight insect species. It was found that the value of k., is
clustered around 1.1; therefore without losing generality, this value will be used throughout
this study. On the other hand, the value of kg, varies considerably between different insects
according to their flapping angle amplitude and thus insect specific values must be used.

Correcting the 2d aerofoil lift curve slope

The final amendment to the LLT presented here is based on a well known correction to the 2d
aerofoil lift curve slope originally proposed by Jones and usually referred to as the Jones edge-

velocity correction [10,47,48]. Jones incorporated his correction into the 2d aerofoil lift curve

slope leading to the concept of the effective 2d lift curve slope [48]:

Cla.?d
Clx,Zd,ef = E ) (16)

where E is the Jones correction evaluated as the ratio of the wing semi-perimeter to the wing
length. Thus, the effective lift curve slope is a characteristic of the wing planform as well as the
wing section [48]. This correction is most pronounced for wings with low aspect ratios, and as
discussed in the introduction Jones showed that by applying his correction the LLT becomes
more capable of capturing low aspect ratio effects.

Following Ellington [49], we define the wing chord distribution through a beta function
representation, which provides a compact analytical description of the wing planform based
on the wing length, the mean chord and the non-dimensional radial location of the wing cen-
tre of area:

’
ith 7 =— 17
with 7 7’ (17)
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Fig 2. The edge correction. Variation of the Jones edge correction, E, for different combinations of wing
aspect ratio and area centroid location. The wing planform is represented through the beta formulation (Eqs
17 and 18) for 7, values from 0.4 to 0.6 which is representative of the range found in nature. In this illustration,
the wing is symmetric about the mid-chord.

doi:10.1371/journal.pone.0134972.9002

where the parameters are chosen as:

p=" (7”?(;_ ;;) = 1),q N ) ?lrl) 7, = 0.929(7,)"™, (18)
and 7, and 7, are the non-dimensional radii of first and second moments of area respectively.
Insect wings typically have aspect ratios ranging from 2.5 to 6 [49,50], thus for the low aspect
ratio cases the Jones correction is relevant. Fig 2 shows the variation of the Jones correction,
E, for different combinations of the wing aspect ratio (AR = R/¢) and non-dimensional area
centroid location (7).

The remaining unknown in Eq 16 is the 2d aerofoil lift curve slope, Cy,24. For a flat plate at
typical insect Reynolds numbers, experimental evidence suggests that Gy, 4 is slightly less than
the theoretical value of 277 and takes a value of 0.09 deg'1 =5.16 rad™! [51-53]; thus this value
will be used in this work.

Solution methodology

Having introduced the essential adaptations to the LLT, we now solve Eq 4 using the well-
known Glauert method [8,23]. First, the wing spanwise location is substituted with [8,47]:

r = —Rcosb, (19)

where 0 is a generic parameter used to define position along the wing. Given the symmetry of
the problem, only one side of the wing is considered and thus 6 varies from 0 to 7/2. The circu-
lation, I'(r), is then expressed as a sine Fourier series as [8,47]:

I'(r)= 4RV(r)i a,sinmf, (20)

m=1

where, for a hovering wing, the velocity along the wing length is given by the linear variation:

V(r) = ¢r = —¢Rcos) = —V,, cos0. (21)

tip
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Substituting Eq 20 into Eq 15 and performing integration using the Glauert integrals [54,23]
leads to an expression for the effective downwash as a function of the radial position:

0 0
wy(r) = kperkﬂalepZ< costisinm —+ amcosm0>. (22)

The a,,, coefficients in the above equation can be obtained using the well-known Glauert
approach by equating Eqs 4 and 20 leading to:

HsSina cosa, sinflcost) = Z a,sinficostsinm6 + .k, ﬂapz a, sinfcosm0 + ma, cosfsinm0), (23)

m=1 m=1

c(r) CIou?d‘ef

SR (24)

Ky =

In the above expressions, only the odd terms of m are considered due to problem symmetry.
The series is then truncated to a finite series and the a, coefficients are obtained by solving the
set of simultaneous linear equations obtained from satisfying Eq 23 at a convenient number of
wing stations equal to the number of terms in the series. Finally, the lift and induced drag forces
can be obtained from:

L=2|pV(r)I'(r)dr, (25)

D, = 2| pw,(r)['(r)dr. (26)

0

Thus, the lift and induced drag coefficients are obtained as:

2L

C == 27
- p trp (2RC) ( )
2D,
Co, = o - (28)
pV2 #2(2Rc)

tlp

Note that in the above equations, the lift and induced drag forces are non-dimensionalised
using the dynamic pressure at the wing radius of the second moment of wing area.

Results and Discussion
Comparison with revolving wing experimental measurements

The revolving wing experiment is a well-known measurement technique employed for insect
wing aerodynamic characterisation [31,35-40]. The wing is rotated in the fashion of a simple
propeller blade to simulate a continuous down (or up) stroke that excludes the effects that
occur at stroke reversal such as wing flipping and wing-wing interactions [37]. In this section,
the developed LLT},,, is compared to available experimental measurements from revolving
wing experiments. Because there are no measurements available for induced drag, only lift
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Table 1. Morphological parameters of revolving wings.

Wing AR t, t,(Eq 18)
Hawkmoth [35] 2.83 0.511 0.44
Pigeon [37] 3.21 0.512 0.443
Hummingbird [39] 4.06 0.499 0.43

doi:10.1371/journal.pone.0134972.1001

coefficient data will be compared here. Although revolving wing experiments have been con-
ducted for different species, the wings used in each case are in close morphological similarity.
Thus, the available data does not allow a full validation of the LLT},,, against a wide range of
planforms. In what follows we compare the LLT},, to three sets of available experimental data
for an insect, a bird and a hummingbird.

Usherwood and Ellington [35] provided steady lift coefficient measurements against the
geometric angle of attack using a hawkmoth model wing. Later, Usherwood [37] provided sim-
ilar measurements for pigeon wings at higher Reynolds number. Recently, Kruyt et al. [39] pro-
vided measurements for hummingbird wings. Note that the hummingbird case is based on
measuring a real wing; thus, wing compliance is not fully controlled especially at very high
angles of attack [39] and thus the geometric angle of attack has significant uncertainty. Never-
theless, this test case remains useful for comparison against the developed LLTy,, especially in
the normal operation range of angles of attack (i.e a, < 45°). The morphological parameters of
these three wings are provided in Table 1; these parameters were used as inputs within the
LLT},, to calculate the lift coefficient variation with the geometric angle of attack and results
are compared in Fig 3. Within the calculation of the three cases, the value of k., was set to 1.1
whereas by definition the kg, for a revolving wing is unity.

The results shown in Fig 3 show a good agreement with the experimental measurements in
both form and amplitude for the three cases considered. Note that the shape of variation of the
lift coefficient with angle of attack is a consequence of the proposed definition of the equivalent
angle of attack (see Fig 1b). Of more relevance is the good agreement in the amplitudes of the
lift coefficient over the whole first quadrant of angle of attack.

Now the LLTy,, is used to evaluate the maximum lift coefficient amplitude (C;, at o, = 45°)
for revolving wings within a range of aspect ratios and chord distributions similar to real insect

b)C:}

16r
0 rY o ® o ‘.o
1.2 I o ° ° .\
o8} L . . £ ' i \
0.4 A ° ° o ° .l.
0 45 90 0 45 900 45 90
Og (deg) Og(deg) Og(deg)

|— LLT,,* Experimental data]

Fig 3. Comparison of lift results with revolving wing experimental measurements. Lift coefficient variation with geometric angle of attack; results
evaluated using the LLT},, are compared to available experimental measurements for (a) hawkmoth, experimental data digitised from Fig 6B of [35], (b)
pigeon, experimental data digitised from Fig 3A of [37] and (c) hummingbird, experimental data digitised from Fig 6A of [39]; for this case, experimental data
beyond 45° are affected by the wing compliance [39].

doi:10.1371/journal.pone.0134972.9003
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Fig 4. Revolving wing maximum lift coefficient variation. Contours of lift coefficient amplitude against
wing aspect ratio and wing area centroid location. The range of values for the aspect ratio and area centroid
location were chosen to represent realistic limits for insect wings. In this illustration the value of k,, is set to
1.1 whereas Ky, is unity.

doi:10.1371/journal.pone.0134972.9g004

wings, Fig 4. As expected, the value of the maximum lift coefficient increases as the aspect ratio
increases; however, this result must be considered with some caution as an increase in the wing
aspect ratio also reduces the chord with respect to the LEV size [55]. Thus, the lift coefficient
amplitude increase will stop at some critical point (whose prediction is beyond the capability of
the current model) when the LEV size to chord ratio approaches the vortex attachment limit
and abrupt stall occurs. Another important result from Fig 4 is that the maximum lift coeffi-
cient value decreases as the wing area centroid is shifted towards the tip, despite the fact that
having more area towards the tip produces a greater lift force, everything else being equal.
Thus, whilst a higher lift force is achieved by having more area towards the tip, a higher lift
coefficient is achieved in hovering flight by having more wing area towards the root.

Application of the LLT},, to insect wings in symmetric normal hovering
flight

In this section, the LLT},,, is verified against the computational fluid dynamics (CFD) results
from Sun and Du [56] that provide comprehensive simulations for a variety of wing shapes
operating at different conditions. In their simulations Sun and Du used a horizontal stroke
plane, symmetrical half-strokes and a sinusoidal-like variation of flapping angle, Fig 5. The
geometric angle of attack was prescribed such that it takes a constant value, ag,,i4> along a half-
stroke and then performs a smooth variation around stoke reversal similar to that shown in Fig
5. Because the flapping cycle half-strokes are symmetrical, only the variation within the down-
stroke is shown. Note that the symmetry of the half-strokes also implies that the net mean
forces due to rotational and added mass effects are zero [24,29,40,41,57], and only forces due to
wing translation contribute to the net mean force production. Table 2 shows the mass, wing
geometrical data and motion kinematic data of eight hovering insects that were collected by
Sun and Du [56] from the most relevant study of each insect.

The main output of Sun and Du simulations [56] are the calculated values of the mid half-
stroke geometric angle of attack, ag,,iq that would provide weight support (supplied in
Table 3). Here we use their ag,,,;4 values to calculate the mean lift force. Table 4 presents the
mean lift to weight ratio obtained from the current lifting line theory for the different levels of
adaptation employed. The purpose of showing the results for different adaptations is to
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Fig 5. Flapping angle and angle of attack variations in time. Kinematics variation similar to those
employed by Sun and Du CFD simulations. Owing to the symmetry of half-strokes, only the down-stroke

period is shown. TDC is the cycle top dead centre, BDC is the cycle bottom dead centre and Mid denotes the
mid half-stroke.

doi:10.1371/journal.pone.0134972.g005
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demonstrate the transparency of the current framework and provide a deeper insight into how
these adaptations affect the solution, thus providing more fundamental understanding of the
physics of the problem. For example, results are most sensitive to the inclusion of E for wings
of lower aspect ratios such as for the hawkmoth case. Also, the kg, value becomes a significant
effect when the flapping stroke angle is relatively low as in the hoverfly case; whereas for a case
such as the ladybird where the wings scan all the possible area, this effect is negligible. How-
ever, the most significant adaption is the inclusion of the non-linear lift curve, which accounts

Table 2. Simulation input data: mass, wing geometry and kinematic parameters for eight hovering insects. Insects ordered by increasing angle of
attack.

Insect mass (mg) R (mm) ¢ (mm) r, f (Hz) ¢dmax (deg)
Honey bee (HB) 101.9 9.8 3.08 0.5 197 65.5
Dronefly (DF) 68.4 11.4 3.19 0.48 157 54.5
Bumble bee (BB) 175 13.2 4.02 0.49 155 58
Hoverfly (HF) 27.3 9.3 22 0.52 160 45
Cranefly (CF) 11.4 12.7 2.38 0.56 45.5 61.5
Hawkmoth (HM) 1648 51.9 18.26 0.46 26.3 60.5
Ladybird (LB) 34.4 11.2 3.23 0.47 54 88.5
Fruit fly (FF) 0.72 2.02 0.67 0.55 254 75

doi:10.1371/journal.pone.0134972.1002
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Table 3. Summary of the main aerodynamic results from Sun and Du CFD simulations.

Insect
ag;mid (deg)
L/W
P/mass (W.kg™")

HB
25
1
41

doi:10.1371/journal.pone.0134972.t003

DF BB HF CF HM LB FF
26 28 29 30 32 43 44
1 1 1 1 1 1 1
32 42 27 16 33 28 30

for more than half of the overestimation in the average mean lift to weight ratio. This correc-
tion is most significant for the ladybird and the fruit fly, which have higher operating ag,,,; val-
ues and thus non-linear effects are more pronounced.

It can be seen from the results shown in Table 4 that without including any of the adapta-
tions, the original LLT will always overestimate the lift produced with an average error of +60%
for the eight insects. On the other hand, by applying the proposed adaptations, the developed
LLTh, formulation is able to predict the mean lift to weight ratio with an average error of 4%
compared to the higher order CFD simulations, Fig 6a.

The mean lift to weight ratios obtained from the current model confirm that it is not neces-
sary to account for unsteadiness due to the Wagner effect (indeed, most insect wing aerody-
namics predictive models have neglected the Wagner effect, but see models of [57-59]). Sane
[34] has tackled this point comprehensively, and using the available experimental evidence he
has discussed the lack of influence of the Wagner effect compared to other unsteady effects
such as rotational and added mass effects. Nevertheless, Taha et al. [57] showed that incorpo-
rating unsteady treatments allows better capture of the force time history near stroke reversals.
Thus including an unsteady treatment for the quasi-steady models of rotational effects may
improve their predictive capabilities for asymmetrical half-strokes where rotational effects can
be used for control and manoeuvrability [35,57].

The total drag comprises the induced drag and profile drag containing the effects of skin
friction and pressure drag of the wings. Experiments on insect-like wings in simulated hovering
flight showed that the skin friction component is negligible, especially at the relatively higher
Reynolds numbers (0(10%) or higher) [31,35-37]. This is consistent with the prevalence of
pressure forces over viscous forces at high angles of attack where most insects operate [34].
Thus, with the assumption of zero tangential friction forces, the total drag coefficient can be

Table 4. Mean lift to weight ratio calculated from the LLT,,, for different adaptations.

Insect

HB
DF
BB
HF
CF
HM
LB
FF
Average t s.d.

Linear aero
kper €xcluded
ksiap €xcluded

E excluded

1.53
1.72
1.54
1.44
1.71
1.44
1.64
1.72

1.6+0.12

doi:10.1371/journal.pone.0134972.1004

Nonlinear aero Nonlinear aero Nonlinear aero Nonlinear aero
kper €xcluded Kper included kper included Kper included
kfiap excluded ksiap €xcluded ksiap included Kkfiap included
E excluded E excluded E excluded E included
1.34 1.29 1.20 1.11
1.48 1.43 1.29 1.20
1.30 1.25 1.14 1.05
1.20 1.16 1.01 0.96
1.40 1.36 1.27 1.22
1.16 1.11 1.02 0.92
1.09 1.05 1.04 0.96
1.07 1.02 0.98 0.90
1.26 £0.15 1.21£0.15 1.12+0.12 1.04 £0.12
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Fig 6. Lift and aerodynamic power evaluation. Comparison of the aerodynamic performance of eight hovering insects from the developed LLT,, against
CFD results from Sun & Du; (a) lift to weight ratio and (b) specific aerodynamic power.

doi:10.1371/journal.pone.0134972.9006

estimated for an infinitesimally thin flat plat wing using [29,35,38]:

Cp = Ctano, (29)

where C; is the wing lift coefficient which can be obtained from the developed LLT},,,. Note
that Eq 29 is based on the ‘normal resultant force’ model and for more details the reader is
referred to any of references [29], [35] or [40]. Despite its simplicity, Eq 29 has been shown to
provide effective estimates for the total drag for insect-like flight [25,29,35,40]. The specific
aerodynamic power expenditure for the eight insects based on Eq 29 is shown in Fig 6b, and a
good agreement is observed compared to the CFD results. This validates the appropriateness of
Eq 29 as a model for the total drag.

Predictions of the induced drag can be made directly from the developed LLT},,,, and
Table 5 provides explicit analytical results of the ratio of the induced drag to the total drag.
Both the mid half-stroke value as well as the mean flapping cycle value are provided for the
induced to total drag ratio in Table 5. In this demonstration we find it more convenient to cal-
culate the mid half-stroke geometric angle of attack, ag,,is that would provide weight support
based on the developed LLT},,. These o ,,iq values are then used to evaluate the aerodynamic
quantities in Table 5. Note that for the cases of the fruit fly and the ladybird operation at 45°
geometric angle of attack leads to a slightly sub-unity value of the weight support ratio for the
given kinematics and wing morphology parameters in Table 2. However, an alteration of the
¢max Value by a few degrees can correct for this if required.

Table 5. Aerodynamic characteristics calculated from the current LLT,,,. Insects re-ordered by increasing angle of attack obtained from the LLTy,.

Insect dg,mia (deg) L/w Ciliyma Co, g Cholugme g %2 e % . EE%
DF 20.5 1 0.89 0.12 0.33 2.67 2.52 0.35 0.24
HB 22 1 0.90 0.13 0.36 2.48 2.35 0.36 0.25
CF 22.5 1 1.07 0.14 0.44 2.41 2.50 0.31 0.22
BB 26 1 1.02 0.17 0.50 2.04 2.06 0.34 0.25
HF 31 1 1.19 0.22 0.72 1.66 1.82 0.31 0.24
HM 38 1 1.22 0.25 0.95 1.28 1.41 0.26 0.21
LB 45 0.961 1.47 0.26 1.47 1.00 1.21 0.17 0.14
FF 45 0.902 1.20 0.27 1.20 1.00 1.10 0.22 0.185

doi:10.1371/journal.pone.0134972.t005
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Fig 7. The induced drag contribution in insects hovering flight. Demonstration of (a) the ratio of the induced drag to total drag based on the LLT,,, and
(b) the ratio of the induced power to the total aerodynamic power based on Ellington's calculations.

doi:10.1371/journal.pone.0134972.g007

On average for the eight insects, the induced drag is shown to contribute 22% of the total
drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke val-
ues (Note that the mean cycle values are directly related to the assumed motion kinematic pro-
files, Fig 5). For insects operating with high mid half-stroke angles of attack (such as the
ladybird and the fruit fly) this ratio decreases below 20% for the mean cycle values which is
consistent with the expected prevalence of profile drag as the angle of attack increases.

The results in Table 5 show that the ratio of induced to profile component is overestimated
when employing Ellington's approach [45], Fig 7. Ellington analysed some hovering insects
including the ladybird, cranefly, hoverfly, dronefly, honey bee and bumble bee based on mea-
sured kinematics and low order methods for evaluating the aerodynamic power, Fig 7b. Based
on an average for the considered insects, the ratio of the induced power to the total aerody-
namic power was around 0.5. However, the induced power prediction in [45] was based on the
Rankine-Froude estimate multiplied by the induced power factor value which had an average
value around 1.15 for the considered insects, a value that was shown to be underestimating the
induced power factor of normal hovering flyers [30]. Furthermore, the profile power was evalu-
ated based on a low order expression of the profile drag coefﬁcient,CDPm = 7Re /%, an expres-

sion based on flow past a cylinder [60]. Whilst this expression was shown to be working at low
angles of attack, it becomes unreasonable at high angles of attack.

The obtained drag results confirm that for better aerodynamic efficiency, wings should
operate at lower geometric angles of attack. This can be confirmed from the two important

aerodynamic performance indices: glide number, C; / Cp, and the power factor C;'*/C,[31]
whose values generally decrease within the insects operation range as the mid half-stroke geo-
metric angle of attack increases. Whilst these indices are affected by other parameters and/or
variables such as those defining the wing morphology and kinematics, it is clear that the geo-
metric angle of attack value is the parameter that has the greatest influence. The values
obtained for these indices are consistent with those obtained from experimental measurements
of insect-like hovering wings [31], which are very low compared to fixed wing figures mainly
due to the much higher drag associated with the flapping mode of flight.

Conclusions

A novel lifting line formulation, LLT},,, has been proposed for the quasi-steady aerodynamic
evaluation of insect-like wings in hovering flight. The developed modelling capability provides
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a framework to adapt the original LLT for hovering flight and opens the door for simplified yet
accurate modelling of 3d lifting surfaces at different operating conditions. The fully theoretical
framework allows accurate estimation of the aerodynamics of insect-like wings from geometry
and kinematic information alone, as well as providing deeper understanding of the associated
aerodynamics in terms of the induced and profile drag associated with the lift production.

The main adaptation proposed is the introduction of the concept of the equivalent angle of
attack, which enables the linear aerodynamic LLT formulation to capture the steady non-linear
aerodynamics of wings at high angles of attack using a simple analytical correction term. Addi-
tionally, a simplified methodology to include a number of non-ideal induced effects within the
lifting line theory has been presented. These non-ideal effects are necessary to correctly repre-
sent the flapping wing physics, including wake periodicity effects due to discreteness in the
wake as well as the effective actuator disk area effect. Finally, low Reynolds number effects as
well as the well-known edge velocity correction that improves the LLT performance for various
wing planform shapes have been incorporated within the 2d lift curve slope value.

The developed LLTy,, has been validated against available measurements from revolving
wing experiments for hawkmoth, pigeon and hummingbird wings, and shows very good agree-
ment with respect to both the shape of variation of the lift coefficient with incidence as well as
the magnitude. Comparison of the results obtained from the LLT},,, and higher order CFD sim-
ulations shows that the developed methodology can be judged as a powerful predictive tool for
the preliminary evaluation of insect wing aerodynamic performance. The mean lift to weight
ratio results have an average error of 4% compared to available CFD results for eight insect
cases. The developed model has been used to assess the relative impact of the proposed adapta-
tions on the LLT for the investigated insects. Excluding these adaptations leads on average to a
60% over estimation in the mean lift force required for weight support, and that most of this
discrepancy is due to the non-linear lift curve effect. The developed model also provides
explicit evaluation of the induced drag component of insect wings. It is shown that on average
for the eight insects considered, the induced drag contributes 22% of the total drag based on
the mean cycle values and 29% of the total drag based on the mid half-stroke values.
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