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Abstract
The typical behavior of optimal solutions to portfolio optimization problems with absolute

deviation and expected shortfall models using replica analysis was pioneeringly estimated

by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an

approximate derivation method for finding the optimal portfolio with respect to a given return

set. In this study, an approximation algorithm based on belief propagation for the portfolio

optimization problem is presented using the Bethe free energy formalism, and the consis-

tency of the numerical experimental results of the proposed algorithm with those of replica

analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the

optimal solutions with the absolute deviation model and with the mean-variance model have

the same typical behavior, is verified using replica analysis and the belief propagation

algorithm.

Introduction
Portfolio optimization is one of the most fundamental frameworks of risk diversification man-
agement. Its theory was introduced by Markowitz in 1959 and is one of the most important
areas being actively investigated in financial engineering [1–3]. In their theoretical research,
Ciliberti and Mézard assessed the typical behavior of optimal solutions to portfolio optimiza-
tion problems, in particular those described by the absolute deviation and expected shortfall
models, using replica analysis, one of the most powerful approaches in disordered systems.
With this approach, they showed that the phase transitions of these optimal solutions were
nontrivial [1]. However, they did not develop an effective algorithm for finding the optimal
portfolio with respect to a fixed return set. This requires a rapid algorithm for resolving the
optimal portfolio problem with respect to a large enough in-sample set.

As a first step in such a research direction, we propose an algorithm based on belief propa-
gation, which is well-known as one of the most prominent algorithms in probabilistic infer-
ence, to resolve the microscopic averages of the optimal solution in a feasible amount of time
for a fixed return set. We also confirm whether the numerical experimental results of our novel
algorithm are consistent with the ones of replica analysis. Furthermore, the conjecture of
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Konno and Yamazaki, that if the return at each period is independently and identically drawn
from the normal probability distribution [2], the optimal portfolio of the mean-variance model
is consistent with that of the absolute deviation model, is supported using replica analysis and
belief propagation.

Model Setting and Proposed Algorithm
Let us define the model setting for our discussion. A portfolio of N assets and the return at
period μ are represented by w = {w1, w2, � � �, wN}

T 2 RN and xμ = {x1μ, x2μ, � � �, xNμ}T 2 RN,
respectively, where wk is the position of asset k, and we assume for simplicity that the mean of
the return of asset k in period μ, xkμ, is zero. The notation T indicates matrix transposition.
Given a return set for p periods as reference, the problem is to minimize the following cost
function (i.e., Hamiltonian) for the portfolio:

HðwÞ ¼
Xp

m¼1

R
wTxmffiffiffiffi

N
p

� �
; ð1Þ

where R(u) represents a cost function, such as u2

2
in the mean-variance model and juj in the

absolute deviation model, respectively. Furthermore, since the budget is assumed to be finite,
the following global constraint is set:

XN
k¼1

wk ¼ N: ð2Þ

One of our aims is to develop an effective general algorithm for solving this problem; in par-
ticular, our aim is an algorithm that works for all cost functions R(u) and all probability distri-
butions of the returns.

As a basis for the proposed algorithm, following examples in statistical mechanics, we set
the joint probability of portfolio w used in Eq (1) using finite inverse absolute temperature β as
follows:

PðwÞ / P0ðwÞ exp ½�bHðwÞ�

/
Yp
m¼1

P0ðwÞg wTxmffiffiffiffi
N

p
� �� �

P1�p
0 ðwÞ; ð3Þ

where g(u) = e−βR(u) is the likelihood function and prior probability P0ðwÞ /
exp ~m

PN
k¼1 wk � N

� �	 

for sufficiently large N [4, 5]. Notice that the partition function of this

posterior probability

Z ¼
X
w

Yp
m¼1

P0ðwÞg wTxmffiffiffiffi
N

p
� �� �

P1�p
0 ðwÞ; ð4Þ

is implicitly ignored in this analysis because intuitively it is possible to evaluate the first- and
second-order moments of portfolio wk approximately without the partition function by the fol-
lowing procedure. An arbitrary test probability of portfolio is defined as follows:

QðwÞ /
Yp
m¼1

bmðwÞ
YN
k¼1

b1�p
k ðwkÞ; ð5Þ
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where the reducibility condition on beliefs bk(wk) and bμ(w),

bkðwkÞ ¼
X
wnwk

bmðwÞ; ð6Þ

must hold and w\wk denotes a subset of w from which wk is excluded. The Kullback-Liebler
divergence (KLD)

KLðQjPÞ ¼
X
w

QðwÞ log QðwÞ
PðwÞ ð7Þ

provides a useful guideline for deriving the belief propagation algorithm. However, since it is
too complicated to directly assess KLD except in specific graphical models, we here approxi-
mate the Bethe free energy denoted as follows:

FBethe ¼
Xp

m¼1

X
w

bmðwÞlog bmðwÞ

P0ðwÞg wTxmffiffiffiffi
N

p
� �

0
BBB@

1
CCCA

þð1� pÞ
XN
k¼1

X
wk

bkðwkÞlog
bkðwkÞ
P0kðwkÞ

� �
;

ð8Þ

where P0kðwkÞ / e ~mwk is used. The purpose of this step is to derive the optimal portfolio using
the beliefs bk(wk) and bμ(w) that minimize the Bethe free energy under the reducibility condi-

tion of Eq (6). By adding the term
Pp

m¼1

PN
k¼1

P
wk
lkmðwkÞ

P
wnwk

bmðwÞ � bkðwkÞ
h i

to the

right-hand side of Eq (8), it is possible to minimize the Bethe free energy with respect to the
beliefs to obtain

bkðwkÞ / P0kðwkÞ exp
1

1� p

Xp

m¼1

lkmðwkÞ
" #

; ð9Þ

bmðwÞ / P0 wð Þg wTxmffiffiffiffi
N

p
� �

exp �
XN
k¼1

lkmðwkÞ
" #

: ð10Þ

Furthermore, for simplicity, we set

~lkmðwkÞ ¼ 1

1� p

Xp

m¼1

lkmðwkÞ þ lkmðwkÞ; ð11Þ

as novel auxiliary functions, and then bk(wk) and bμ(w) can be rewritten using 1
1�p

Pp
m¼1 lkmðwkÞ

¼ Pp
m¼1

~lkmðwkÞ and lkmðwkÞ ¼ �P
nðwmÞ

~lknðwkÞ as

bkðwkÞ / P0kðwkÞ exp ½
Xp

m¼1

~lkmðwkÞ�; ð12Þ

bmðwÞ / P0ðwÞg wTxmffiffiffiffi
N

p
� �

exp
XN
k¼1

X
nð6¼mÞ

~lknðwkÞ
" #

: ð13Þ
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Moreover, applying the cumulant generating functions

�kðykÞ ¼ log
X
wk

bkðwkÞewkyk ; ð14Þ

�mðyÞ ¼ log
X
w

bmðwÞewTy; ð15Þ

the first and second moments of wk have the compact formsmwk ¼ @�kðykÞ
@yk

¼ @�mðyÞ
@yk

and wwk ¼
@2�kðykÞ

@y2
k

¼ @2�mðyÞ
@y2

k
at θ = {θ1, � � �, θN}T ! 0. This allows us to disregard the calculation of the parti-

tion function. Then, our proposed algorithm for sufficiently large N comprises the following:

mwk ¼ wwkðhwk þ ~mÞ; ð16Þ

hwk ¼
1ffiffiffiffi
N

p
Xp

m¼1

xkmmum þ ~wwkmwk; ð17Þ

~wwk ¼
1

N

Xp

m¼1

x2kmwum; ð18Þ

wwk ¼
1

~wwk

; ð19Þ

mum ¼
@

@hum

log
Z 1

�1
Dz gðz

ffiffiffiffiffiffi
~wum

q
þ humÞ; ð20Þ

hum ¼
1ffiffiffiffi
N

p
XN
k¼1

xkmmwk � ~wummum; ð21Þ

~wum ¼
1

N

XN
k¼1

x2kmwwk; ð22Þ

wum ¼ � @2

@h2
um

log
Z 1

�1
Dzgðz

ffiffiffiffiffiffi
~wum

q
þ humÞ; ð23Þ

where Dz ¼ dzffiffiffiffi
2p

p e�
z2
2 is used. Note that if ~lkmðwkÞ is redefined as ~lkmðwkÞ ¼ � gkm

2
w2

k þ ~hkmwk,

then ~wwk ¼
Pp

m¼1 gkm and hwk ¼
Pp

m¼1
~hkm[4–7]. In addition, ~wwkmwk and ~wummum describe the

Onsager reaction terms in the literature of spin glass theory (respectively [8, 9]).
Four points should be noticed here. First, the calculation of this procedure is reduced from

O(N3) to O(N2). For instance, in the case of the mean-variance model, although we are required
to calculate the inverse matrix of the correlation matrix of return set XXT 2MN×N, where
return matrix X = {x1, � � �, xp} 2MN×p, in order to assess the optimal solution rigorously, it is
well-known that this calculation is O(N3). Moreover, fortunately it is found that in the case of
the mean-variance model, this algorithm derives the exact optimal solution (see appendix A
for details). Second, only Eqs (20) and (23) are dependent on the likelihood function g(u) =
e−βR(u), and the variables of index u are the only model dependent ones. Furthermore, ~m is
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determined by Eqs (2) and (16). Third, the randomness of return is not assumed to be sampled
from specific distributions. Because it is plausible that the assumption on the Bethe free energy
approximation works correctly if the return at each period is asymptotically not correlated
with other returns. Lastly, we expect that in the limit as β!1, the estimate of the portfolio of
asset k,mwk, asymptotically corresponds to the optimal portfolio with respect to the given
return set.

Numerical Experimental Results
In order to confirm the effectiveness of our method, the numerical experimental results of the
proposed algorithm and those of the replica analysis for the case of the Markowitz model are
shown in Figs 1 and 2, where xkμ are independently and identically drawn from the normal dis-
tribution with mean and variance 0 and 1, respectively. The numerical experimental result of
belief propagation is assessed from 102 samples of the number of assets N = 500 and is denoted
by error bars and the result of replica analysis is denoted by a solid line. Both findings indicate
that the two approaches are consistent with each other.

Fig 1. The reference ratio α = p/N (horizontal axis) versus the quenched overlap parameter q (vertical axis). The numerical experimental results from
the proposed algorithm (error bars) are assessed from 102 experiments usingN = 500 assets. Comparing with the results of replica analysis (solid line), the
effectiveness of proposed algorithm is verified.

doi:10.1371/journal.pone.0134968.g001
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With regard to the conjecture of Konno and Yamazaki, the variables in Eqs (20) and (23), in
the case of the mean-variance model

mum ¼ � b
1þ b~wum

hum; ð24Þ

wum ¼
b

1þ b~wum

ð25Þ

and the absolute deviation model

mum ¼ b tanh bhum þ
1
2
log

H b
ffiffiffiffiffiffi
~wum

p þ humffiffiffiffiffi
~wum

p
� �

H b
ffiffiffiffiffiffi
~wum

p � humffiffiffiffiffi
~wum

p
� �

0
BB@

1
CCA; ð26Þ

wum ¼ � @mum

@hum

; ð27Þ

Fig 2. The reference ratio α (horizontal axis) versus one degree of the cost functionε (vertical axis). This result also indicates that the approximation
approach based on probabilistic inference works correctly.

doi:10.1371/journal.pone.0134968.g002
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are assessed exactly usingHðuÞ ¼ R1
u
Dz. Because HðuÞ ’ ffiffiffiffiffiffi

2p
p

u
� ��1

e�
u2
2 in the case of u� 1,

mum ’ � hum
~wum

and wum ’ 1
~wum

are estimated; that is, this finding indicates that the conjecture of

Konno and Yamazaki is valid in part in the sense of the belief propagation approach. See
appendices for details.

Summary
In conclusion, we have discussed an effective algorithm for finding the optimal solution of the
portfolio optimization problem with respect to an arbitrary cost function according to Ciliberti
and Mézard [1]. With loss of generality, applying the likelihood function g(u) defined by the
cost function R(u) dependent on the risk diversification problem, we proposed a novel approxi-
mation derivation method based on one of the most powerful estimation methods in probabi-
listic inference. In addition, since two types of Onsager reaction terms are derived in Eqs (17)
and (21), our algorithm provides the Thouless, Anderson, and Palmer approach rather than
the mean-field approximation in the literature of spin glass theory. One advantage of our algo-
rithm is that it rapidly converges by excluding the effect of self-response. In order to confirm
the effectiveness of the proposed approach, we have described the case of the mean-variance
model. Furthermore, we have shown that the conjecture of Konno and Yamazaki is supported
by employing both approaches developed in cross-disciplinary research involving statistical
mechanics and information sciences. In future work, we will assess the properties of R(u) and
the randomness of return that make solving the portfolio optimization problem using belief
propagation possible.

Appendix

A. Proof of Exactness
We here confirm the exactness of the proposed belief propagation algorithm for the case of the
Markowitz model. Our discussion is restricted to α> 1 for simplicity. From Eqs (21), (24), and

(25), we obtainmu ¼ � bffiffiffi
N

p XTmw, wheremu = {mu1,� � �,mup}
T 2 Rp andmw = {mw1,� � �,mwN}

T

2 RN. Furthermore, ~me ¼ � 1ffiffiffi
N

p Xmu follows immediately from Eqs (16), (17), and (19), where

e = {1, � � �, 1}T 2 RN. Thus, substitutingmw ¼ N ~m bXXTð Þ�1
e into the constraint N = eT mw

gives the exact optimal solutionmw ¼ NðXXTÞ�1e

eTðXXTÞ�1e
.

B. Replica Analysis
According to Ciliberti and Mézard, replica symmetry solution of the portfolio optimization
problem, where xkμ is independently and identically distributed with N(0,1), is derived as the
following extremum:

�bf ¼ lim
N!1

1

N
½ logZ�q

¼ Extrq;w
q� 1

2w
þ 1

2
log w

�

þa
Z 1

�1
Dy log

Z 1

�1
Dzgðz ffiffiffi

w
p þ y

ffiffiffi
q

p Þg;

ð28Þ

where Z ¼ P
w P0ðwÞQp

m¼1 g
wTxmffiffiffi

N
p

� 
is the partition function and the notation [� � �]q denotes

the quenched average over the return set. Moreover, the quenched overlap parameters become
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qab ¼ 1
N

PN
k¼1 wkawkb ¼ wþ q if a = b and q otherwise by employing replica indices a,

b = 1, 2, � � �, n and the assumption of replica symmetry. Furthermore, for large N and p, α = p/
N* O(1) remains finite and plays an important role as a control parameter with respect to

phase transition phenomena. If gðuÞ ¼ e�
b
2u

2
, then q ¼ 1� 1

a

� ��1
and χ = (β(α − 1))−1 can be

exactly calculated in the case α> 1 and q!1, and χ!1 otherwise. This analytical finding
is also verified in by the following. It is well known that the eigenvalue distribution of the corre-
lation matrix C = 1

N
XXT in the limit of N!1 is asymptotically close to the Marčhenko-Pastur

law rðlÞ ¼ ½1� a�þdðlÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½l�l��þ½lþ�l�þ

p
2pl with l� ¼ 1� ffiffiffi

a
pð Þ2 and [u]+ = max{u,0} [10].

Therefore, q ¼ h 1
l2
ih1li�2 and one degree of the cost function ε ¼ limN!1

1
N
½HðwÞ�q ¼ 1

2
h1li�1

are obtained straightforwardly using hf ðlÞi ¼ R1
�1 dlrðlÞf ðlÞ. Applying Marčhencko-Pastur

law, that h1li ¼ lþþl�
4

ffiffiffiffiffiffiffiffi
lþl�

p � 1
2
¼ 1

a�1
and h 1

l2
i ¼

ffiffiffiffiffiffiffiffi
lþl�

p
2p � p

2
1
2

1
l�
� 1

lþ

� � 2

¼ a
ða�1Þ3 if α> 1 and

approach infinity otherwise follows directly. This is consistent with the findings of replica anal-
ysis [5].

In general, the order parameters are derived as follows:

w ¼ �
ffiffiffi
q

p
aZ

; ð29Þ

q ¼ 1þ aw2d; ð30Þ

Z ¼
Z 1

�1
Dyy

Z 1

�1
Dzg 0ðz ffiffiffi

w
p þ y

ffiffiffi
q

p ÞZ 1

�1
Dzgðz ffiffiffi

w
p þ y

ffiffiffi
q

p Þ

0
BBBBB@

1
CCCCCA; ð31Þ

d ¼
Z 1

�1
Dy

Z 1

�1
Dzg 0ðz ffiffiffi

w
p þ y

ffiffiffi
q

p ÞZ 1

�1
Dzgðz ffiffiffi

w
p þ y

ffiffiffi
q

p Þ

0
BBBBB@

1
CCCCCA

2

: ð32Þ

From Eqs (29) and (30),

q ¼ 1� 1

a
d
Z2

� � �1

ð33Þ

is obtained. In the limit of sufficiently large β of g(u) = e−βjuj, if we assess Z ’ �
ffiffi
q

p
w and d ’ q

w2

asymptotically, then the conjecture of Konno and Yamazaki is confirmed as correct in the
sense of replica analysis.

C. The Conjecture of Konno and Yamazaki
This conjecture is related to the assessment of an annealed system in the context of spin glass
theory. If the return at period μ, xμ, is independently and identically drawn from N(0, S),

where S 2MN×N is variance-covariance matrix and w is fixed, the novel variable z ¼ wTxmffiffiffi
N

p is

distributed as N(0, s2(w)) with s2ðwÞ ¼ 1
N
wT

P
w 2 R. With respect to fixed w, employing one
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degree of the cost function of the annealed optimization problem

εðwÞ ¼ 1
N

Pp
m¼1 R

wTxmffiffiffi
N

p
� h i

q
¼ a

R1
�1 DuR usðwÞð Þ, which becomes εMVðwÞ ¼ a

2
s2ðwÞ in the

case of the mean-variance model and εADðwÞ ¼ 2affiffiffiffi
2p

p j sðwÞ j in the absolute deviation model.

This implies that the optimal portfolios of the annealed situations of the two models are consis-
tent with each other. Note that one degree of the cost function in the case of the annealed port-

folio problem with the expected shortfall model, εESðwÞ ¼ min v�0 a vgþ H v
sðwÞ

� n o
with γ>

0 can also be assessed. If sðwÞ 	 1ffiffiffiffi
2p

p
g
, then this optimal solution is identical to those of the pre-

vious mentioned models. This finding, that is, arg min wTe¼NεMVðwÞ ¼ arg min wTe¼NεADðwÞ,
is one part of the contributions reported by Konno and Yamazaki.

However, they optimistically assumed wMV = wAD with respect to a given return set X with-
out any mathematical proof, using

wMV ¼ arg min
wTe¼N

1

2N

Xp

m¼1

XN
i¼1

XN
k¼1

wiwkximxkm; ð34Þ

wAD ¼ arg min
wTe¼N

Xp

m¼1

1ffiffiffiffi
N

p
XN
k¼1

wkxkm

�����
�����: ð35Þ

As explained above, arg min wTe¼NεMVðwÞ ¼ arg min wTe¼NεADðwÞ with respect to the
annealed optimization problem strictly holds; however, wMV = wAD is not always satisfied. For
example, in the simple case of N = p = 2 for the two returns x1 = {a, c}T and x2 = {b, d}T, their
assumption wMV = wAD does not hold, except under specific special situations.

Although this is apparently contradictory to these obtained findings from both approaches,
it is necessary to recognize that the relation wMV = wAD with a fixed return set is equivalent to

the sufficient condition qMV = qAD, where qMV ¼ limN!1
1
N

wT
MVwMV

	 

q
and qAD ¼

lim N!1
1
N
½wT

ADwAD�q are quenched averages of overlap parameters. Moreover, although wMV

= wAD does not hold in general, it is expected that the inner product
wT
MVwAD

jwMV jjwAD j is approximately

1 because 1
N

P
m>vxkmxjv ! 0 in the case of sufficiently large N.
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