
RESEARCH ARTICLE

Regeneration Patterns of European Oak
Species (Quercus petraea (Matt.) Liebl.,
Quercus robur L.) in Dependence of
Environment and Neighborhood
Peter Annighöfer1*, Philip Beckschäfer2, Torsten Vor1, Christian Ammer1

1 Department Silviculture & Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1,
37077 Göttingen, Germany, 2 Chair of Forest Inventory & Remote Sensing, University of Göttingen,
Büsgenweg 5, 37077 Göttingen, Germany

* peter.annighoefer@forst.uni-goettingen.de

Abstract
Quercus robur L. (pedunculate oak) andQuercus petraea (Matt.) Liebl. (sessile oak) are

two European oak species of great economic and ecological importance. Even though both

oaks have wide ecological amplitudes of suitable growing conditions, forests dominated by

oaks often fail to regenerate naturally. The regeneration performance of both oak species is

assumed to be subject to a variety of variables that interact with one another in complex

ways. The novel approach of this research was to study the effect of many ecological vari-

ables on the regeneration performance of both oak species together and identify key vari-

ables and interactions for different development stages of the oak regeneration on a large

scale in the field. For this purpose, overstory and regeneration inventories were conducted

in oak dominated forests throughout southern Germany and paired with data on browsing,

soil, and light availability. The study was able to verify the assumption that the occurrence of

oak regeneration depends on a set of variables and their interactions. Specifically, combina-

tions of site and stand specific variables such as light availability, soil pH and iron content

on the one hand, and basal area and species composition of the overstory on the other

hand. Also browsing pressure was related to oak abundance. The results also show that the

importance of variables and their combinations differs among the development stages of

the regeneration. Light availability becomes more important during later development

stages, whereas the number of oaks in the overstory is important during early development

stages. We conclude that successful natural oak regeneration is more likely to be achieved

on sites with lower fertility and requires constantly controlling overstory density. Initially suffi-

cient mature oaks in the overstory should be ensured. In later stages, overstory density

should be reduced continuously to meet the increasing light demand of oak seedlings and

saplings.
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Introduction
The two native mid-successional European oak species Quercus robur L. and Quercus petraea
(Matt.) Liebl., commonly referred to as pedunculate oak and sessile oak, are among the most
frequent tree species in Central Europe [1,2]. Both species are not only of great ecological inter-
est–known for their importance as habitat and food source for a great variety of insects, mam-
mals, birds, fungi, lichens, and moss species [3–8]–but also of considerable economic value for
forest enterprises and the wood processing industry.

In Germany, oak species can be found on around 10% of the forested area, making oaks the
second most important deciduous tree species [9] after European beech (Fagus sylvatica L.).
Various German forest enterprises have the objective to increase the proportion of deciduous
species on managed forest land [10] to increase the resilience of the forests. Oaks play a key
role in this process, as their amplitude of suitable growing conditions is rather wide [11,12].
This is especially advantageous with regard to changing climatic and environmental conditions
[13].

Both oaks can be found on soils with different cation exchange capacity and nutrient supply,
from siliceous substrates to limestone soils [1,14] but show best growth on sites with moderate
growing conditions and nutrient supply, where they are, however, usually outcompeted by
European beech, without human intervention. Under natural conditions, oaks are therefore
often found on sites with somewhat more extreme water conditions. In the case of Q. robur
these can then be moist or wet and the species even survives flooding up to a certain extent
[15–17]. The soils on these sites are often base and nutrient rich loam or clay soils. Q. petraea is
then often rather found on well-drained shallow, stony and rocky, dry soils because the species
is more sensitive to high groundwater levels and stagnating wetness [14,18] but more tolerant
to drought [19]. Climatically, Q. robur has a wider amplitude than Q. petraea. While both spe-
cies are well adapted to an Atlantic, sub-Mediterranean climate with mild winters, only Q.
robur grows well under oceanic and continental climate conditions. Therefore, Q. robur is
found further to the east, north, and south than Q. petraea. In Bavaria, Q. robur grows up to an
elevation of 970 m a.s.l., where Q. petraea only reaches 715 m a.s.l. [1,14]. However, apart from
extreme site conditions, both oak species are often found side by side (sympatric) in many
regions of Central Europe (e.g. [14,20]); also in the study region both oaks grow sympatric and
were therefore studied together here. Common to both species is that they are rather light
demanding compared to other European tree species, and are therefore considered to be only
moderate shade tolerant [21].

One problem in cultivating oaks in Central Europe and North America is that oak forests
frequently fail to regenerate naturally [22–26]. In mast years, high acorn production often
results in high seedling densities (e.g. [27]) but of these only few [28], if any survive. Therefore,
artificial regeneration approaches, like planting and sowing, still are commonly applied
[21,29]. Modern silvicultural planning, however, favors natural regeneration of species, as it is
associated with lower costs and a vital and site adapted regeneration.

The regeneration of oak has been intensively studied [30] around the world, nevertheless,
reasons for the varying success of natural oak regeneration are still not well understood. The
theoretical background for this assumption is that the regeneration performance of oak seems
to be subject to a variety of variables: before germination, acorn predation seems to be of large
relevance for failing oak regeneration [31,32], later competition, insect pests (e.g. Tortrix viri-
dana L.), fungi (e.g.Microsphaera alphitoides Griffon and Maubl.), water supply, light avail-
ability, and browsing, are among the most important variables [33,34]. Natural and
silvicultural disturbances, are considered to promote the natural regeneration of oak [35,36].
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So far, variables affecting the regeneration of both oak species were mainly studied sepa-
rately at seedling stage and under controlled conditions [30]. However, in the forest many dif-
ferent variables interact with one another in complex ways. Specifically, knowledge of the
potential interaction between site fertility and shade tolerance might offer new options for the
silvicultural management of oak, e.g., it may not be necessary to open the canopy cover as fast
on rich sites. Therefore, this research project combined inventory data with data on environ-
mental and stand structural characteristics, aiming at identifying key variables influencing the
performance of different development stages of natural oak regeneration in situ. To our knowl-
edge, such a large-scale study considering a wide range of potentially influential factors has not
been conducted for oak in Central Europe. The research questions leading our work were:

Can general environmental and structural forest characteristics be identified that are favor-
able for the regeneration of both oaks on a large scale?

Do the forest conditions promoting oak seedlings and saplings differ among the different
development stages of the regeneration?

Methods

Study area
Three study areas were established in the Bavarian state forest enterprises Arnstein (49°58 N,
09°58 E), Ebrach (49°50 N, 10°29 E), and Kaisheim (48°46 N, 10°47 E) in southern Germany.
The permission to work in all three forest enterprises the area was granted by the Bavarian
State Forest Enterprise.

The altitude of the study areas ranges from around 300 m– 500 m a.s.l. The climate of the
region is considered to be humid temperate. The study areas have an average annual tempera-
ture of about 9°C, with close to 14.5°C during the growing season (April–September). The
annual precipitation ranges from 617 mm (Arnstein) over 709 mm (Ebrach) to 770 mm
(Kaisheim) of which 330 mm– 400 mm falls during the growing season.

The main bedrock in Arnstein is lower Keuper (mainly dolostone, shales or claystones, and
evaporites), partly Gipskeuper (gypsum Keuper) or lower Muschelkalk (shellbearing limestone;
mainly limestone, calcareous marls, and clayey marls). In Ebrach it is Sandsteinkeuper (sand-
stone Keuper) and Gipskeuper, and in Kaisheim it is Bunte Trümmermassen (mainly lime-
stone and clay minerals). Depending on the main bedrock, soils with differing nutrient supply
and water holding capacities have evolved.

Species composition, and horizontal and vertical stand structure varies slightly in the study
areas, due to site conditions and management history, but all chosen study sites were located in
forests which were comparable with one another. All stands were classified as oak stands
(� 70% oak basal area in the overstory on total stand level, according to forest management
plans). The stands in Arnstein and Ebrach had an average age of 160 years (min = 124,
max = 190), whereas those in Kaisheim were 120 years old (min = 94, max = 165) on average.
The overstory had a mean basal area (G) of 22 m2 ha-1 in Arnstein, 28 m2 ha-1 in Ebrach, and
30 m2 ha-1 in Kaisheim. The trees had a mean diameter at breast height (dbh) of 32 cm (23
cm– 40 cm), 33 cm (22 cm– 43 cm), 33 cm (27 cm– 41 cm) and a dominant height of 27.6 m,
29.8 m, and 30.5 m in Arnstein, Ebrach, and Kaisheim, respectively. All stands have been man-
aged to promote natural oak regeneration by canopy tree removal. The basal area reduction in
Arnstein was stronger than in both other study areas.

Sampling design
The three study areas (Arnstein, Ebrach, Kaisheim) cover a North–South gradient of oak distri-
bution in Bavaria. To select stands also representing a gradient of nutrient and water supply
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level, sites were qualitatively assigned to four site conditions (“NW”, “Nw”, “nW”, “nw”) in
advance, according to site classification maps or morphological soil classification maps.
Assigned site condition consisted of a combination of nutrient supply level (“N” or “n”) and
water supply level (“W” or “w”). Both characteristics were classified as being either “favorable”
(upper case letters) or “unfavorable” (lower case letters), relative to average values of the
region.

Within each study area and per site condition, the oldest and–among these–the four largest
oak stands were selected, which were in the silvicultural stage to be naturally regenerated. This
resulted in a total of 16 selected forest stands per study area. In each stand one transect plot
was established for data collection (48 plots in total). Each transect plot consisted of 10 subplots
and was oriented in the direction of the widest stand extent to cover the variability of occurring
forest conditions as good as possible. The subplots had a spacing of 50 m to one another. Sub-
plots straddling forest or skidding roads were placed next to the road to avoid effects related to
the roads. Each subplot consisted of three concentric circular sample areas: P1 = 10 m2 (radius
~ 1.78 m), P2 = 250 m2 (radius ~ 8.92 m), and P3 = 500 m2 (radius ~ 12.62 m).

Data collection
Regeneration and trees with dbh< 7 cm were recorded in P1, trees with 7 cm� dbh< 20 cm in
P2, and trees with dbh� 20 cm in P3. Since there was nearly no ground vegetation competing
with the tree regeneration in the understory, only woody species were measured and identified by
species. In P1 the browsing condition of all species was recorded and the oak species were assigned
to four development stages according to their height: 0< Oak1� 20 cm, 20 cm< Oak2� 50 cm,
50 cm< Oak3� 130 cm, and 130 cm< Oak4< dbh = 7 cm. Individuals assigned to the first
development stage (Oak1) were considered as seedlings. Individuals of the second development
stage (Oak2) were considered as young saplings that have reached browsing height. The third
development stage (Oak3) comprised saplings still in browsing range but by far established indi-
viduals. Finally, individuals of the fourth development stage (Oak4) were considered to be older
saplings out of browsing range and fully established.

Browsing condition only distinguished between browsed (browsed on side shoots, browsed
on main shoot, or both) and unbrowsed trees. From this, the percentage of browsed trees (br)
was calculated. All trees in P1 were considered part of the regeneration. In P2 dbh was mea-
sured aside of identifying the species. In P3 additionally the height of three most dominant
trees (h3) was measured. All trees recorded in P2 and P3 were considered trees of the
overstory.

To specify the four qualitative site conditions, soil samples were taken on the first and fifth
subplot of each transect (96 soil sampling locations) to determine the cation exchange capacity
(CEC), soil pH, and element content of the soil. Field capacity (fc) was determined by conduct-
ing centered measurements on each transect. Mineral soil was sampled in three depths, depth
I = 0 cm– 10 cm, depth II = 11 cm– 20 cm, and depth III = 21 cm– 40 cm using a “Pürckhauer”
driller. To determine the CEC, soil samples were air-dried, sieved (< 2 mm), and percolated
with unimolar NH4Cl [37]. Soil pH was measured, using a pH-meter (inoLab), and element
contents in mmol(+)�kg-1 (dry matter) of aluminium (Al3+), calcium (Ca2+), iron (Fe3+), potas-
sium (K+), magnesium (Mg2+), and sodium (Na+) were determined by flame photometry,
using a ICP-OES-spectrometer (Spectro). Soil pH and pH after percolation allowed calculating
the proton (H+) concentration. Field capacity (fc) was determined up to a depth of 100 cm
according to the methods of German site mapping system [38]. Thereby, fc is calculated in the
field by combining data on precipitation, exposition, soil depth and width, texture, compaction,
etc. of the different soil horizons.
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Light conditions below canopy were measured in the center of each subplot (n = 480) using a
Solariscope (Behling SOL300) which provides values for direct site factor (dsf), indirect site factor
(isf), total site factor (tsf), and openness (opn) by analyzing hemispherical photographs. Solariscope
readings were conducted in 1.5 m above the forest floor. Data was collected from 2011 – 2013.

Data analyses
The plot level data was analyzed separately for the total oak regeneration (OakT) and for the
oak regeneration in each of the four development stages (Oak1, Oak2, Oak3, Oak4).

To identify highly correlated variables (r� 0.8), we calculated Spearman's rank correlation
coefficient or Pearson’s r for linear correlation. Highly correlated variables were pH and H+

(r = -0.87, p< 0.0001), CEC and Ca+ (r = 0.96, p< 0.0001), and isf with dsf and tsf (r = 0.99,
p< 0.0001; r = 0.96, p< 0.0001). Hence, H+, Ca+, tsf, and dsf were excluded from the set of
variables used in the analyses (Table 1).

Group comparisons between the study areas of the number of oaks on the subplots were
conducted by applying the Kruskal-Wallis rank sum test. If tested significant, pairwise compar-
isons between groups were conducted using the Wilcoxon rank sum tests with Bonferroni
adjustment. Non-parametric tests were applied because the data was not normally distributed
(visual verification, Shapiro-Wilk test) and variance was not homogenous (Levene’s test).

A direct gradient analysis, Canonical Correspondence Analysis (CCA), was conducted to
reveal general vegetation patterns in dependence of all collected variables. A species by plot
matrix was compiled and analyzed. It was assumed that the important gradients were known
and measured, also species response to the variables was assumed to be non-monotonic or
unimodal. Significance of the constraints was tested using permutation tests. Significance was
tested for all terms separately and for the first 16 axes. CCA was applied using the R package
“vegan”, version 2.0–9 [39].

To reduce the number of explanatory variables used in the regression analysis, a Boruta
analysis was conducted beforehand, to identify variables relevant for oak regeneration (R pack-
age “Boruta”, version 2.1.0, [40]). Boruta is a wrapper algorithm built around the random forest
algorithm [41] implemented in the R package randomForest [42]. Random forest assesses the
importance of explanatory variables through an internal cross validation and Boruta extends
this approach by comparing each variable’s importance with that of a shadow variable, created
by a permutation of the variable’s values [40]. This results in a classification of variables into
relevant, tentative, and irrelevant variables. The classification was based on 10000 random for-
est runs. Variables were only considered as important if they had importance values above the
highest shadow values and were then ranked depending on the fraction of random forest runs
in which the variable was more important than the most important shadow variable. Separate
Boruta analyses were conducted for the four development stages of oak regeneration Oak1,
Oak2, Oak3, Oak4, and the total oak regeneration OakT. A maximum of the five most impor-
tant variables identified by the Boruta analysis was used in a linear regression analysis. To
apply the multiple regression, response variables were logarithmically transformed using x’ =
log (x + 1) to normalize the response variables and the Shapiro-Wilk test was performed to test
normality. All combinations of possible full models (containing all important predictor vari-
ables in varying order and their interactions) were reduced using the function “selMod” from
the R package “pgirmess”, version 1.5.9 [43]. Models with deltAICc< 3 were selected and com-
pared using the corrected AIC for finite sample sizes (AICc). Best models were further simpli-
fied to the minimal adequate model applying stepwise deletion (backward selection) of non-
significant variables and interactions [44]. Non-significant variables were removed according
to their p-values and models were compared using ANOVA with an F-test. If variable deletion
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caused a significant deviance increase, model simplification was reversed and the more com-
plex model was assumed to be valid.

All statistical analyses, fittings, graphs, and validation tests were processed using the free
software environment R [45].

Results

Inventory of forest structure, species, and regeneration
A total of 36383 individual trees was recorded of which 30014 belonged to the regeneration
and 6369 to the overstory.

Table 1. Variables used to explain the performance of oak regeneration. Species in the overstory and regeneration are distinguished by capital and
lower case letters, respectively.

Explanatory variable Abbreviation Unit Range (min—max)

Neighborhood:

Ash regeneration ash n m-2 0 12.1

Beech regeneration bch n m-2 0 3.6

Hornbeam regeneration hbm n m-2 0 12.9

Maple regeneration map n m-2 0 7

Other coniferous species regeneration ocs n m-2 0 0.1

Other deciduous species regeneration ods n m-2 0 1.9

Oak trees in the overstory OAK n ha-1 18 238

Ash in the overstory ASH n ha-1 0 84

Beech in the overstory BCH n ha-1 0 472

Hornbeam in the overstory HBM n ha-1 0 384

Maple in the overstory MAP n ha-1 0 104

Other coniferous species in the overstory OCS n ha-1 0 98

Other deciduous species in the overstory ODS n ha-1 0 296

Basal area:
Total G m2 ha-1 14.407 40.7

Oak trees in the overstory G_OAK m2 ha-1 2.269 29.2

Other species in the overstory G_OSP m2 ha-1 2.064 29.8

Stand parameters:
Stand age age years 94 190

Percentage of browsed trees br % 0.3 54.5

Shannon diversity H_div numeric 0.61 1.58

Light conditions:
indirect site factor isf % 4 36

openness (cone angle 15°) opn % 2 51

Soil conditions:

pH-value pH numeric 3.79 5.82

Cation exchange capacity CEC cmol kg-1 39.89 305.96

Field capacity fc mm m-2 62 212

Sodium Na mmol kg-1 0.15 1.02

Potassium K mmol kg-1 0.72 4.7

Magnesium Mg mmol kg-1 0.83 92.67

Iron Fe mmol kg-1 0 5.18

Manganese Mn mmol kg-1 0.09 3.15

Aluminium Al mmol kg-1 0.66 64.09

doi:10.1371/journal.pone.0134935.t001

Regeneration Patterns of European Oak Species

PLOS ONE | DOI:10.1371/journal.pone.0134935 August 12, 2015 6 / 16



Regeneration was found on 466 subplots (97%), oak regeneration was found on a total of
314 subplots (65%). Most subplots with regeneration were found on sites preliminary classified
as “NW” (218 subplots), followed by “Nw” (87), “nW” (84), and “nw” (77). The oak regenera-
tion mainly consisted of individuals from development stage Oak1 (4718 corresponding to
61%), followed by development stage Oak2 (2191 or 28%), development stage Oak3 (726 or
9%), and development stage Oak4 (83 or 1%).

Over all study regions, an average of 1.6 oaks m-2 was found per subplot, with averages of
2.1 oaks m-2 in Arnstein, 2.2 oaks m-2 in Ebrach, and 0.5 oaks m-2 in Kaisheim. The mean
number of oak regeneration per transect differed significantly between Arnstein and Kaisheim
(p< 0.05) and Ebrach and Kaisheim (p< 0.05). No significant differences were found between
Arnstein and Ebrach (p = 0.87).

Relations between explanatory variables and regeneration (CCA)
The CCA ordination in Fig 1A shows the plot and study area ordination together with nutrient
and water supply levels. The ordination placed the oak regeneration on the right side of the
CCA (Fig 1B). The development stage Oak3 stood alone, the other development stages were
grouped together close to the first CCA axis and stood opposite to the ash and maple regenera-
tion referring to the first axis. The other deciduous and coniferous species, and also hornbeam,
seemed to be more strongly associated with the second axis. The environmental variables (Fig
1C) showed that an increase of oak regeneration can be expected with increasing light availabil-
ity (isf), stand age, and basal area of oak (G_OAK). The soil conditions showed that more oak
regeneration could be expected were Al and Fe contents were higher. Also the sites classified as
unfavorable with respect to nutrient supply (nW, nw) were located in the direction of increas-
ing oak regeneration. Oak regeneration in development stage Oak3 seemed to be related to
browsing (br). Ash and maple regeneration were associated with more favorable site conditions
(NW) and found in the direction of increasing CEC soil content and increasing pH-value.

The permutation test of all constraints simultaneously resulted in p<0.05. Testing the vari-
ables separately showed that G_OAK (p< 0.05), G_OSP (p< 0.05), and br (p< 0.05) were
significant. The first five axes of the CCA had significant loadings. The Eigenvalue of the first
two constrained axes were 0.449 and 0.246, respectively.

Identification of relevant explanatory variables for the regeneration
The Boruta analysis confirmed and specified the results of the CCA analysis. A detailed inspec-
tion of the results from the Boruta analysis showed that there were differences among the vari-
able importance for the total data and the different development stages of oak (Table 2).

Focusing on the overall regeneration performance of oak showed that the browsing percent-
age (br) and the basal area of all other species (G_OSP) were closely related to the abundance
of oak regeneration. In addition, the soil pH and iron content (Fe) were identified as important
variables.

Among the four development stages the importance of the variables shifted. For oaks of the
first development stage (Oak1), Fe was identified as most important, followed by the measures
for basal area (G_OAK, G_OSP, G). For Oak2 mainly light (isf, opn), browsing percentage
(br), and competition (bch, BCH) were important. Browsing percentage was also important for
Oak3, combined with soil pH and basal area (G). Eventually, for Oak4 only basal area (G,
G_OSP) and light (opn, isf) were identified as important (Table 2).

Regeneration Patterns of European Oak Species

PLOS ONE | DOI:10.1371/journal.pone.0134935 August 12, 2015 7 / 16



Fig 1. Canonical Correspondence Analysis (CCA) for the 48 plots (a), the species (b) and the
environmental variables fit to the ordination (c). The four development stages of oak are labeled as Oak1,

Regeneration Patterns of European Oak Species

PLOS ONE | DOI:10.1371/journal.pone.0134935 August 12, 2015 8 / 16



Explanatory strength of relevant variables (regression models)
The regression models reached a R2 value of 0.51 on average (Table 3). The deletion of non-sig-
nificant variables led to models with a minimum of two (Oak1) or three (OakT) explanatory var-
iables. For Oak2 isf was not significant but model simplification lead to significant slopes
(p< 0.001) for model comparisons with ANOVA (“F-test”) justifying retaining the more com-
plicated model, with isf as non-significant variable. The p-values of the variables of Oak3 indi-
cated significant effects for browsing (br) and the interaction of basal area and browsing (G:br),
but not for basal area alone (G). Retaining the non-significant variable for Oak3 led to the high-
est R2 of 0.832 among all development stages. The same was true for the model of Oak4, where
the basal area alone was not significant, but was significant in interaction with other explanatory
variables, next to the isf. Table 3 shows that different variables were of importance for the differ-
ent development stages of oak regeneration, as also suggested by the Boruta analysis.

Discussion

Environmental and structural variables determining the oak regeneration
performance
The results of this study showed that natural oak regeneration performance cannot be attrib-
uted to single variables, but depends on a combination of variables, which was also found by
Reif and Gärtner [34]. Above all, light conditions are mentioned in literature as being

Oak2, Oak3, and Oak4, total oak regeneration is labeled as OakT, the other labels follow the abbreviations
given in Table 1.

doi:10.1371/journal.pone.0134935.g001

Table 2. Variables identified as important by the Boruta analysis. Variables presented for predicting the
abundance of total oak regeneration (OakT) and the regeneration in each development stage (Oak1 –Oak4),
presented with their fraction of random forest runs (Norm Hits) in which they were more important than the
most important shadow value.

Regeneration development stage Identified variables Norm Hits

OakT br 0.95

G_OSP 0.93

pH 0.73

Fe 0.71

Oak1 Fe 0.98

G_OAK 0.81

G_OSP 0.74

Oak2 isf 0.97

br 0.96

bch 0.92

BCH 0.88

opn 0.71

Oak3 br 1.00

pH 0.96

G 0.91

ocs 0.74

Oak4 G 1.00

G_OSP 0.94

opn 0.87

isf 0.75

doi:10.1371/journal.pone.0134935.t002
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important for the oak regeneration (e.g. [46–49]). Oak regeneration is also subject to high levels
of browsing (e.g. [33,50]). But also competition with ground vegetation (e.g. [51,52]), and
nutrient or water supply (e.g. [53]) are mentioned. All these variables were identified as being
important and can be confirmed by this study (Table 2). It is the combination of the variables
that creates favorable or unfavorable conditions for the occurrence of natural oak regeneration,
which shows the importance of considering various variables to successfully regenerate oak
naturally. These findings allow answering our first research question, namely that conditions
can be identified that are favorable for natural oak regeneration.

Differentiation among oak regeneration development stages
This study tried to differentiate ecological prerequisites for natural oak regeneration in general
but especially for different development stages of the regeneration. In oak forest stands, mature
trees usually begin to regenerate with an age of 30 to 40 years, withQ. petraea usually beginning
slightly later than Q. robur [54,55]. During the first year, seedling growth is mainly a result of the
acorn weight and size [56,57]. For this reason, oak seedlings often survive in large numbers [27]
and unfavorable conditions. However, already shortly after this stage, other requirements come
into play that affect the survival of the oak saplings. This shows that ontogeny has a strong
impact on resource requirement as it was observed for European beech [58]. Accordingly, we
found some variable combinations to be more strongly related to natural oak regeneration abun-
dance in the different development stages than others. Their role is discussed in the following.

Seedlings (development stage: Oak1)
For the occurrence of seedlings, the study has shown that mainly the overstory composition is
of importance, since the basal area of oaks (G_OAK) and other species (G_OSP) in the

Table 3. Model coefficients with estimates and p-values of the regression models. Models for logarithmically transformed values of total oak regenera-
tion (OakT) and regeneration in each development stages (Oak1 –Oak4), presented together with the adjusted R2 of the models.

Model Coefficient Estimate p-value Adj. R2

OakT Intercept 2.5346 <0.0001 0.47

br 0.0296 <0.05

G_OSP -0.0825 <0.001

Fe 0.2446 <0.05

Oak1 Intercept 2.1548 <0.0001 0.367

Fe 0.2889 <0.001

G_OSP -0.0664 <0.05

Oak2 Intercept 0.6609 <0.05 0.464

BCH -0.0032 <0.05

br 0.0346 <0.001

isf 0.0329 0.064

Oak3 Intercept -0.1908 0.483 0.832

G 0.0041 0.666

br 0.1326 <0.0001

G:br -0.004 <0.0001

Oak4 Intercept -0.4557 0.173 0.44

G 0.0255 0.074

isf 0.0879 <0.001

G:isf -0.004 <0.05

doi:10.1371/journal.pone.0134935.t003
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overstory were important explanatory variables (Table 2). The CCA analysis showed that seed-
ling abundance strongly decreased with increasing basal area of other species (G_OSP) and
generally increased in the direction of increasing basal area of oak (G_OAK) (Fig 1). Highest
regeneration abundances for Oak1 was also found where the total basal area (G) was around 25
m² ha-1, with high proportions of oak (G_OAK) and low proportions of other species
(G_OSP). This result confirmed earlier findings for other species indicating that conspecific
adult overstory density may have a positive effect on seedling density in early development
stages [59]. However, in later development stages overstory tree density may have the opposite
effect [59]. From other studies it is known that slightly reduced basal area, e.g. by a light shel-
terwood cutting could increase the survival rates of oak seedlings, due to an increased photo-
synthetic potential and water-use efficiency [60]. Next to the overstory composition, soil Fe
content was positively associated with oak abundance (Table 2). Major et al. [61] found that
red oak (Q. rubra L.) was less abundant on fertile sites with elevated soil calcium. Here, higher
soil pH values and CEC values were related to higher abundances of maple, ash, and hornbeam
regeneration. The findings suggest that soil conditions indirectly affect seedling abundance
twofold: Firstly, competition by other tree species in the regeneration increases with increasing
soil fertility. Secondly, mature oak trees, which are more likely to be cultivated on less fertile
soils, predetermine oak regeneration on these sites. The reason for cultivating oaks on nutrient
poor sites is because other high value timber species, for example, maple, ash, cherry and Sor-
bus species, cannot grow there. In this study, soil water content was not identified as important
variable for the oak regeneration, neither when estimated as field capacity, nor following the
forest site classification system. Possibly the soil water conditions were not extreme enough to
see an effect. Marginal water conditions might not have been represented well, because all sites
are considered suitable for oak regeneration.

Young saplings (development stage: Oak2 and Oak3)
Sapling occurrence from development stage Oak2 and Oak3 was related to browsing (Tables 2
and 3), but low regeneration abundances could not be assigned to high browsing rates, as one
would have expected (e.g. [62]). The CCA (Fig 1) showed that more oak regeneration from
development stage Oak3 was found in the direction of higher browsing percentage. In any case,
if many oaks occur in the regeneration also many of them are browsed. Other studies pointed
out that oak seedlings and saplings are among the most attractive broadleaved tree species,
especially to roe deer (Capreolus capreolus L.) [34,63]. It may therefore be that in some stands
oak regeneration was missing due to heavy browsing, because the seedlings had already disap-
peared after they had been repeatedly browsed (browsing freshly germinated seedlings to
death, comp. [64]). These cases may misleadingly support the conclusion that no negative
impact of browsing on oak regeneration exists. For a more detailed differentiation between
browsing impact and other important variables pairs of fenced and unfenced plots were estab-
lished for future measurements in each of the study areas.

Studies from North America have shown that oaks are more successful where fires reduce
overstory density, understory competition, and increase light penetration through the canopy,
creating an environment more beneficial for the regeneration of Q. rubra [49,65–67]. Beech
overstory and regeneration (BCH, bch) were important variables for Oak2 (Table 2) and
increased in the direction of decreasing regeneration from Oak2. This can be interpreted as
result of competition, also confirmed in North American red oak stands, where shade-tolerant
species suppress oak regeneration under the absence of fire [68]. However, conifer regeneration
(ocs) increased in the same direction as Oak3 (Fig 1). Soil pH was also identified as important
for the abundance of Oak3 by the Boruta analysis (Table 2). Sapling abundance decreased with
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increasing pH (Fig 1). This finding again points to less severe competition by species such as
sycamore maple (Acer pseudoplatanus L.) and European ash (Fraxinus excelsior L.) on less fer-
tile sites, as the two competing species are strongly dependent on base saturation in early devel-
opment stages [69].

This study showed that the occurrence of oak saplings from development stage Oak2 was
related to light conditions (Table 2) and that abundance increased with increasing light avail-
ability (Table 3). Highest regeneration abundances for Oak2 and Oak3 were found for isf values
around 20%. This supports the hypothesis that there is an optimal value of light availability for
oak regeneration at this stage [47,55,70]. However, light requirement of oak increases with
increasing age and size [70]. Thus, the “optimum” range of light conditions will change over
time.

Old saplings (development stage: Oak4)
Old saplings also showed a clear relation to light conditions and basal area of the stand
(Table 2). The abundance of Oak4 increased with decreasing basal area of the other tree species
(G_OSP) and increasing basal area of oak (G_OAK). An even stronger increase could be found
with increasing isf (Fig 1). In stands of a given stand density, light transmission is higher under
oak trees than under European beech [71]. The finding that increasing overstory oak density
seemed to even promote oak saplings was unexpected. However, it may partly be an artefact as
it may represent that high mature oak density corresponds with low density of other, more
shade casting species, such as European beech. As not a single out of our 48 stands provided
more than 36% isf, the positive relationship between G_OAK and abundance of oak saplings
does not mean that the latter would not have benefited from light conditions beyond this value.
Even though younger specimens of Q. petraea are assumed to be slightly more shade tolerant
than specimens of Q. robur [72], light requirements in this study increased with age. This find-
ing supports the assumption of increasing light demand of oak seedlings during ontogeny [70].
So far, we could not find any sign that oak seedlings and saplings are more shade tolerant
under better site (i.e. soil nutrient and water supply) conditions as ecological theory suggests.
However, as stated above it is very likely that our site gradient was not long enough to detect
such pattern.

Addressing the second question raised in the introduction, the results of this study clearly
indicate that different development stages of the oak regeneration are distinctively influenced
and require different environmental conditions.

Conclusions and Management Recommendations
The complementary statistical approaches (CCA, Boruta, and regression models) identified a
few variables strongly related to the regenerations performance of oak. The analyses clearly
revealed that the importance of variables changes in dependence of the development stages of
oak, anticipating differences in requirements among development stages.

Competition within the regeneration layer is an important variable controlling the regenera-
tion performance of oak. Tree, shrub, and herb species are known to interfere with oak seed-
lings [73–75]. Hence, replacement of oak regeneration by other species is recognized as a
common problem after any kind of disturbance [51]. Since oaks are considered as light
demanding species (e.g. [14]) any disturbance of the canopy cover in closed forests primarily
results in improved conditions for seedlings and saplings of oak, but also for other species.
Here, competing beech regeneration was of some importance. Where abundance of beech
regeneration was high, oak regeneration was low and vice versa. Ligot et al. [30] found that
beech saplings naturally outcompete oak saplings. The same trend was found for ash, even
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though this relationship was not identified as important explanatory variable. Hence, there
seemed to be a tendency of mutual exclusion for some species indicating the importance of
competition as the driving biotic variable of forest development (compare [76]).

We conclude that a successful natural regeneration of oak is facilitated by reducing the
interspecific competition. This is achieved by regenerating oak (1) with a sufficient proportion
of mature oaks in the overstory in the initial stage, (2) under appropriate i. e. continuously
increasing light conditions which are achieved by repeatedly reducing overstory density, and
(3) on sites not as favorable for other species, e.g., sites with lower pH values and soil CEC.
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