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Abstract
A two-player quantum game is considered in the presence of thermal decoherence. It is

shown how the thermal environment modeled in terms of rigorous Davies approach affects

payoffs of the players. The conditions for either beneficial or pernicious effect of decoher-

ence are identified. The general considerations are exemplified by the quantum version of

Prisoner Dilemma.

Introduction
Information processing is a physical phenomenon and therefore information theory is insepara-
ble from both applied and fundamental physics. Attention to the quantum aspects of informa-
tion processing revealed new perspectives in computation, cryptography and communication
methods. In numerous cases a quantum description of the system provides some advantages
over the classical situation, at least in theory. Does quantum mechanics offer more subtle mech-
anisms of playing games? In game theory one often has to consider strategies that are probabilis-
tic mixtures of pure strategies [1, 2]. Can they be intertwined in a more complicated way by
exploring interference or entanglement? There certainly are situations in which quantum theory
can enlarge the set of possible strategies [3–5]. This is a very nontrivial issue as genuine quantum
systems usually are unstable and their preparation and maintenance might be difficult e.g. due
to decoherence [6–10]. Note that quantum formalism can be used in game theory in a more
abstract way without any reference to physical quantum states [11–13]—the decoherence is not
a problem in such approaches. The question is if quantum games are of any practical value. The
answer is positive and some commercial cryptographical and communication methods/prod-
ucts are already available. The field of quantum auctions seems to be promising too [14, 15]. In
this paper we would like to show how the decoherence in quantum games can be described in
terms of completely positive Davies maps [16]. This should be compared with approaches pre-
sented in [6–10, 17]. We focus our attention on the quantum Prisoner Dilemma [4] but the
approach can be used in other games too. We show that properly utilized decoherence can,
sometimes and at certain circumstances, have a beneficial effect. The paper is organized as fol-
lows. We will begin by a brief presentation of quantum game formalism. Then we will describe
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our approach to the decoherence in quantum games. Finally we will discuss some problems that
should be addressed in the near future.

Methods

Quantum game
The general definition of a quantum game would be involved. Here by a quantum game we
understand a quantum system that can be manipulated by at least one party and for which util-
ities of moves can be reasonably defined. We shall suppose that all players know the state of the
game at the beginning and, possibly, at some crucial stages of the actual game being played. We
neglect the possible technical problems with actual identification of the state. Implementation
of a quantum game should include measuring apparatuses and information channels that pro-
vide necessary information on the state of the game at crucial stages and specify the moment
and methods of its termination. We will not discuss these issues here.

We will consider only two–player quantum games: the generalization for the N players case is
straightforward. Therefore we will suppose that a two–player quantum game Γ = (H, ρi, SA, SB,
PA, PB) is completely specified by the underlying Hilbert spaceH of the quantum system [18],
the initial state given by the density matrix ρi 2 S(H), where S(H) is the associated state space,
the sets SA and SB of quantum operations representing moves (strategies) of the players, and the
pay–off (utility) functions PA and PB, which specify the pay–off for each player after the final
measurement is performed on the final state ρf. A quantum strategy sA 2 SA, sB 2 SB is a collection
of admissible quantum operations, that is the mappings of the space of states onto itself. One usu-
ally supposes that they are completely positive trace–preserving maps. Schematically we have:

ri 7!ðsA; sBÞ7!rf 7!measurement ) ðPA; PBÞ :

This scheme for a quantum two–player game can be implemented as a quantummap:

rf ¼ J
�1 � S � D � JðriÞ; ð1Þ

where initially

ri ¼ j00ih00j ð2Þ
describes identical starting positions of Alice (A) and Bob (B). Using entanglement is one of pos-
sible ways to utilize the power of quantummechanics in quantum games. Here the state of play-
ers is transformed using

JðrÞ ¼ JðgÞrJðgÞy ð3Þ

with

JðgÞ ¼ cos ðg=2ÞI � I þ i sin ðg=2Þsx � sx ð4Þ
into an entangled state. Here I and σx denote the identity operator and the Pauli matrix, respec-
tively. Note that due to the presence of noise the amount of entanglement does not necessary
increase with increase of γ. Due to omnipresent decoherence the entangled state of two players
can be affected by thermal dissipation and dephasing described by completely positive Davies
mapD. Description of its detailed properties is postponed to the next section.

For a standard (canonical) matrix representation of quantum states of a two level system

j0ih0j !
0 0

0 1

 !
; j1ih1j !

1 0

0 0

 !
ð5Þ
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the initial state in Eq (2) is given by

ri ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0
BBBBBBB@

1
CCCCCCCA
; ð6Þ

whereas the entangling operator in Eq (4) reads as

JðgÞ ¼

cos ðg=2Þ 0 0 i sin ðg=2Þ

0 cos ðg=2Þ i sin ðg=2Þ 0

0 i sin ðg=2Þ cos ðg=2Þ 0

i sin ðg=2Þ 0 0 cos ðg=2Þ

0
BBBBBBB@

1
CCCCCCCA
: ð7Þ

Then Eq (3) has, for the initial state given by Eq (2), the following matrix form [19]:

JðriÞ ¼

sin ðg=2Þ2 0 0 i cos ðg=2Þ sin ðg=2Þ

0 0 0 0

0 0 0 0

�i cos ðg=2Þ sin ðg=2Þ 0 0 cos ðg=2Þ2

0
BBBBBBB@

1
CCCCCCCA
: ð8Þ

The individual strategies of players SX, X = A, B are implemented as follows:

SðrÞ ¼ ðSA � SBÞrðSA � SBÞy: ð9Þ

In this work we assume that there are only two classical pure strategies available, identity and
flip operation:

SA 2 fI ;F � isxg: ð10Þ
We also allow Bob to follow his strategy by a pure quantum strategy i.e.

SB 2 fIU ;FUg ð11Þ
where the quantum strategy is given by unitary transformation with the explicit matrix form
[19]

Uðy; a; bÞ ¼
eia cos ðy=2Þ ieib sin ðy=2Þ

ie�ib sin ðy=2Þ e�ia cos ðy=2Þ

 !
: ð12Þ

In other words, we assume that the pure strategies of both players differ because only one of
them (Bob) recognizes that information is stored in qubits rather than bits i.e. Bob can utilize
richer class of operations formalized by U. This knowledge is beneficial provided that Bob can
influence Alice’s strategy. It is the case as the J(γ) in Eq (4) entangles Alice’s and Bob’s systems
for γ 6¼ 0. Let us emphasize that in the presence of the entanglement, the actions of the players
are not fully independent, as their qubits remain correlated. In real systems the correlation is
never maximal due to the omnipresent decoherence affecting qubits represented in Eq (1) by
D. It is assumed here that the decoherence influences players in the time when they are
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selecting their strategies S. It is clear that in general decoherence affects quantum states used in
the game at any stage of its time evolution. However, if a considered time interval (e.g. between
preparation of the initial state Eq (2) and applying entangling operator J) is significantly
shorter than the time scale of decoherence process one can safely neglect any dissipation of
information in that time interval. Physically, we assume that the only time interval which is
comparable (or larger) to the decoherence time scale is the one which is required by the players
to work out their strategies. We ask then how the quantum game becomes modified for given
model of quantum dissipation.

The model of decoherence
The only fully natural source of decoherence affecting quantum systems is due to their environ-
ment causing both energy and information dissipation. For our model considerations we
assume that at least one of two qubits in the state χAB = J(ρi) shared by Alice and Bob just
before applying their strategies SA, B interacts with its own environments EA, B. As Alice and
Bob can be separated from each other we neglect any direct interaction both between their
qubits (via proper Hamiltonian term) and the environments EA, B. In other words, Hamilto-
nian of the total system is simplified to the form:

H ¼ HA þ HB þ Hint
AEA

þ Hint
BEB

: ð13Þ

We also assume that qubits A and B are identical:

HA ¼ HB ¼
o
2
ðj1ih1j � j0ih0jÞ: ð14Þ

Moreover, we assume that the interaction between qubits and their environments satisfies
Davies weak coupling approach [20, 21]. Davies approach allows for a mathematically rigorous
construction of a qubit’s reduced dynamics (with respect to environments) in terms of a
completely positive (strictly Markovian) semigroup [20, 21]. Moreover, Davies semigroups can
be rigorously and consistently derived from microscopic Hamiltonian models of open systems
[20], so they satisfy most desired thermodynamic and statistical–mechanical properties such as
the detailed balance condition [21]. Davies approximation has been successfully used in studies
of various problems in quantum information and physics of open quantum systems including
entanglement dynamics [22], quantum discord [23, 24] or properties of geometric phases of
qubits [25] and thermodynamic properties of nano–systems [26]. Here, instead of exploring
the full power of Davies semigroups, we consider only certain elements of Davies dynamical
semigroups: Daviesmaps[16] which inherit all the properties proved to hold true for Davies
semigroups with the complete positivity as the most desired among them. Here we adopt nota-
tion of Ref. [27] (instead of that used in Ref. [16]) and recapitulate an explicit form of Davies
maps applied to the initial state given by Eq (8):

wABð0Þ ¼ JðriÞ ð15Þ
and we consider three possibilities:

wABðtÞ ¼ ½UA � DB�wABð0Þ ð16Þ

wABðtÞ ¼ ½DA � UB�wABð0Þ ð17Þ

wABðtÞ ¼ ½DA � DB�wABð0Þ; ð18Þ
where UA, B denotes Hamiltonian dynamics of a noiseless qubit and the Davies map D = DA,

Quantum Two Player Game in Thermal Environment

PLOS ONE | DOI:10.1371/journal.pone.0134916 August 31, 2015 4 / 13



B(p, A, G, ω, t) reads as follows [16]:

Dj1ih1j ¼ ½1� ð1� pÞð1� e�AtÞ�j1ih1j þ ð1� pÞð1� e�AtÞj0ih0j ð19Þ

Dj1ih0j ¼ eiot�Gtj1ih0j ð20Þ

Dj0ih1j ¼ e�iot�Gtj0ih1j ð21Þ

Dj0ih0j ¼ pð1� e�AtÞj1ih1j þ ½1� ð1� e�AtÞp�j0ih0j; ð22Þ

or, in terms of coherence vector formalism adopted in Ref. [16]:

D ¼

1� ð1� e�AtÞp 0 0 ð1� e�AtÞp

0 eiot�Gt 0 0

0 0 e�iot�Gt 0

1þ ð1� pÞð1� e�AtÞ 0 0 1� ð1� pÞð1� e�AtÞ

0
BBBBBBB@

1
CCCCCCCA

ð23Þ

where the matrix is acting on a density matrix in the column-vector representation, i.e.:

r00 r01

r10 r11

 !
!

r00

r01

r10

r11

0
BBBBBBB@

1
CCCCCCCA

ð24Þ

Let us notice that, contrary to the Dirac bra–ket formalism which we adopt in this work, the
coherence vector formalism is not very convenient for presenting states of composite qubit–
qubit systems as it requires vectors with 16 elements and the two–qubit operators require
(16 × 16)–dimensional matrices.

The p 2 [0, 1/2] parameter appearing in transformation is related to the temperature (here
we set kB = 1) via:

p ¼ exp ð�o=2TÞ=½ exp ð�o=2TÞ þ exp ðo=2TÞ�: ð25Þ

The parameters A = 1/τR and G = 1/τD, if interpreted in terms of spin relaxation dynamics [28],
are related to the energy relaxation time τR and the dephasing time τD, respectively [16]. The
parameters A, G and p depend solely on details of the qubit–environment coupling encoded in
the Hamiltonian Eq 14 [21]. Fulfilling the inequalities [28]

G � A=2 � 0 ð26Þ

guarantees that the Davies map is a trace-preserving completely positive map [21] as it is an
element of the Davies semigroup which is proved to be completely positive and trace preserv-
ing [21]. This property allows one to apply Davies maps to any part of a composite system, also
in the case when the subsystems are initially entangled. Let us notice that it is crucial as the
decoherence D in Eq (1) is a tensor product of two maps with at least one being the Davies
map. Complete positivity guarantees that the ‘output’ χAB(t) in Eq (16) is a quantum state. The
limiting case A = 0 and G 6¼ 0 corresponds to pure dephasing without dissipation of energy.
The Davies decoherence introduces two parameters A and Gmodifying quantum game which
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we consider in addition to the ‘generic set’ consisting of the entangling parameter γ and three
parameters constituting U in Eq (12).

Payoffs
Payoff, the results of the game, can be calculated as an expectation value, weighted by certain
game–dependent real numbers a, b, c, d constituting the payoff matrix:

Bob : 0 Bob : 1

Alice : 0 ða; aÞ ðd; cÞ
Alice : 1 ðc; dÞ ðb; bÞ

ð27Þ

which leads the the following pay-off operator

$A ¼ bTrðj11ih11jrf Þ þ aTrðj00ih00jrf Þ þ cTrðj10ih10jrf Þ þ dTrðj01ih01jrf Þ
$B ¼ bTrðj11ih11jrf Þ þ aTrðj00ih00jrf Þ þ dTrðj10ih10jrf Þ þ cTrðj01ih01jrf Þ:

ð28Þ

For example, the strategy profile (SA = 0, SB = 1) is encoded in the quantum state j01i and
results in payoffs c for Bob and d for Alice. The trace operation represents projective measure-
ments performed on the output state.

We describe the influence of a thermal environment in terms of payoff’s differences

D$ ¼ $B � $A ð29Þ

D$B ¼ $~B � $A ð30Þ

D$A ¼ $B � $~A ð31Þ

D$AB ¼ $~B � $~A ð32Þ
where the tilde denotes the “noisy” player. The signs of Δ’s in Eqs (29–32) identify the winner
of the game i.e. the one of two players whose payoff is larger.

Below we present explicit formulas calculated for four typical quantum strategies. As the
general formulas are very complicated we present the case θ = π/2 for simplicity. Let us notice
that due to symmetry of the system the payoff differences do not depend on a and b. There is
also no difference between the payoff of the ‘noisy’ player and that which is unaffected by the
environment provided that there is no energy exchange between noisy qubit and the thermal
bath i.e. A = 0.

Let us start with the considering the strategy profile (I,IU). The payoffs are given by the for-
mulas:

D$B ¼ 1

2
ðc� dÞ ½cos 2ðgÞ þ cos ð2bþ 2otÞ sin 2ðgÞ

eGt
� ð33Þ

D$A ¼ ðc� dÞ½ð1� 1

eAt
Þð1
2
� pÞ cos ðgÞ þ cos ð2bþ 2otÞ sin 2ðgÞ

2eGt
þ cos 2ðgÞ

2eAt
� ð34Þ

D$AB ¼ ðc� dÞ½ð1� 1

eAAt
Þð1
2
� pAÞ cos ðgÞ þ

cos ð2bþ 2otÞ sin 2ðgÞ
2eGAtþGBt

þ cos 2ðgÞ
2eAAt

� : ð35Þ

For qualitative predictions of payoff’s character particularly important is the long time
behavior of the above presented formulas. We consider D$1X :¼ limt!1D$X where X = A, B,
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AB i.e. we assume that the payoffs are calculated at the time significantly longer than the time
of thermal equilibration of the player’s qubit. Explicit formulas (with no restriction imposed on
θ) read as follows:

D$1
B ¼ 1

2
ðc� dÞ½ cos ðgÞ þ 2ðp� 1

2
Þ cos ðyÞ� cos ðgÞ ð36Þ

D$1
A ¼ ðc� dÞ½1

2
� cos ðyÞ cos ðgÞ

2
� p� cos ðgÞ ð37Þ

D$1AB ¼ ðc� dÞ½1
2
� pA þ ðpB �

1

2
Þ cos ðyÞ� cos ðgÞ ð38Þ

Explicit formulas for remaining strategies are postponed to the Appendix. There is a non-trivial
issue factorizability of probabilities. We are aware of no reliable method to analyze such problem
in simulations. The interested reader is referred to [17, 29, 30] for discussion of this problem.

Results and Discussion
In this section we study one of best known examples of a game: the celebrated Prisoner
Dilemma (PD) [1, 2]. Prisoner Dilemma is often used for analysis of various aspects of cooper-
ation in economics, biology and network science [31]. The story says that two rational agents
(prisoners) have to decide without communication whether cooperate or not. They might
decide to not cooperate, even if it is obvious that they are better off if they do so. In its quantum
version [4] the game ceases to be paradoxical for some classes of quantum strategies but we
should stress here that the dilemma disappears due to dramatic enlargement of the set of strate-
gies for both agents. Therefore, Quantum Prisoner Dilemma is a quite new game that reduces
the classical one if the strategy sets are properly reduced. A general quantum game considered
so far becomes reduced to the PD provided that parameters in payoffs Eq (28) fulfill the rela-
tion c> a> b> d [31]. We choose the following values:

ða; b; c; dÞ ¼ ð3; 1; 5; 0Þ ð39Þ

Further we analyze in detail four strategies of players (or prisoners) assuming that one of
them (Bob) can apply both classical and quantum strategies. Our aim is to present a relation
between difference of Bob’s and Alice’s payoffs with respect to the entangling parameter γ in
Eq (4). Initially we limit our attention to the case when there is only one noisy qubit belonging
either to Bob or to Alice.

First we consider (I,IU) strategy profile. The payoff differences Eqs (31 and 30) calculated
at different time instants are presented in Fig (1). The quantum part of the Bob’s strategy is
chosen to be U = U(π/2,0, π/2). The payoff difference Δ$ can be either positive (Bob is winning)
or negative depending on the value of γ. This dependence is strongly affected by thermal envi-
ronment. Moreover, this dependence is very different in the case when the environment is
attached either to Bob’s or Alice’s qubit. Let us notice that in the case when thermal environ-
ment affects Bob’ qubit his payoff is in the long time limit always larger than the payoff of Alice
i.e. Δ$B> 0 for all γ. It is not the case when the noisy qubit belongs to Alice. There is a range of
γ when Δ$A < 0 i.e. when $B< $A. In other words, in the situation when Alice can control or
choose γ and possesses noisy qubit is favorable if she tries to win or at least minimize her losses.
Let us also notice that there are parameters γ< π/4 such that Δ$A > Δ$B > Δ$ and, simulta-
neously Δ$< 0. This range of parameters is particularly favorable for Bob who wins due to the
presence of thermal environment.
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As the second example we consider (I,FU) strategy profile. Here, in the absence of noise,
the γ–dependence of payoff difference Δ$ is trivial: Bob always wins. In the presence of thermal
bath it does not hold true any more. As presented in Fig (2), there exist γ’s resulting in Δ$A < 0
i.e. Alice payoff becomes larger for sufficiently long time of interaction between her qubit and
environment.

The payoffs for the remaining two strategy profiles (F,FU) and (F,IU) can be obtained
form (I,IU) and (I,FU), respectively, by change of sign: Δ$! −Δ$ and Δ$A, B ! −Δ$A, B. This
symmetry is generic for PD game Eq (39) and does not depend on the specific choice of quan-
tum part of Bob’s strategy U.

The parameter γ is not the only one which affects Alice’s chance to win with Bob. We con-
sider the case when the noisy qubit belongs to Alice. The energy relaxation parametrized by A
is one of the parameters which most significantly affect character of thermal dissipation. As it
was discussed in previous section for A = 0 (i.e. when there is only pure decoherence with no
energy dissipation) Δ$A = Δ$B and the Bob’s ‘quantum benefit’ becomes neutralized. The larger
A is the more different are the payoffs of Bob and Alice as presented for two strategies in Fig
(3). The effect of increasing temperature is visualized in Fig (4). In the limit of high tempera-
ture Δ$A is small but positive. In other words, for some strategies and for given γ Alice defeat
Bob by warming her qubit.

The parameter A can influence payoffs in the games when the classical part of strategy is
given by Vc = I/2+F/2 i.e. for the game averaged with respect to both classical strategies. The
results presented in Fig (5) indicate two basic features. First, after averaging Δ$A = Δ$B. Second,
changing A results in changing γ-’periodicity’ of payoffs.

Fig 1. Payoff differences Eq (29) taken at different time instances t for Alice–Bob strategy profile (I,
IU) with the quantum strategy Eq (12) withU =U(π/2,0, π/2). The thermal Davies environment (with
A = 2G = 2) influences only one player (either Bob or Alice) and p = 0. The contours denote the border
between positive and negative payoff difference.

doi:10.1371/journal.pone.0134916.g001

Fig 2. The same as in Fig (1) but for Alice–Bob strategy profile (I,FU).

doi:10.1371/journal.pone.0134916.g002

Quantum Two Player Game in Thermal Environment

PLOS ONE | DOI:10.1371/journal.pone.0134916 August 31, 2015 8 / 13



Fig 3. Payoff differences Eq (29) as a function of A calculated at time t = 2 for Alice–Bob strategy
profiles (I,IU) (left panel) and (I,FU) (right panel) with the quantum strategy Eq (12) withU =U(π/2,0,
π/2). The thermal Davies environment (withG = 1) influences only one player (either Bob or Alice) and p = 0.

doi:10.1371/journal.pone.0134916.g003

Fig 4. Payoff differences Eq (29) as a function of temperature p calculated at a time t = 2 for Alice–Bob
strategy profiles (I,IU) (left panel) and (I,FU) (right panel) with the quantum strategy Eq (12) withU =
U(π/2,0, π/2). The thermal Davies environment (withG = 1) influences only one player (either Bob or Alice)
and A = 2.

doi:10.1371/journal.pone.0134916.g004

Fig 5. Payoff differences Eq (29) as a function of A calculated at time t = 2 for a mixed Alice–Bob
strategy profile (Vc,Vc U) with Vc =V/2+F/2 and the quantum strategy Eq (12) withU =U(π/2,0, π/2).
The thermal Davies environment (withG = 1) influences only Alice’s qubit. We set A = 0 and p = 0 in panels
where these parameters are fixed.

doi:10.1371/journal.pone.0134916.g005
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The temperature dependence of payoffs is well visible in the long time limit (t!1) of the
payoff differences Eq (29) here calculated for (I,IU) strategy:

D$A ¼ � 5

4
cos ðyÞ þ ð5

2
� 5pÞ cos ðgÞ � 5

8
½ cos ð2gþ yÞ þ cos ð�2gþ yÞ�

D$B ¼ 5

2
p½ cos ð�gþ yÞ þ cos ðgþ yÞ� � 5

4
½ cos ðgþ yÞ � cos ð�gþ yÞ þ 5

4
ð1þ cos ð2gÞ

D$AB ¼ 5

2
pB½ cos ðgþ yÞ þ cos ð�gþ yÞ� � 5

4
½ cos ðgþ yÞ � cos ð�gþ yÞ� � ð5pA þ

5

2
Þ cos ðgÞ

ð40Þ

Formulas for different pure strategies can be obtained via the sign symmetry discussed above.
Let us notice that for θ = π/2 (the strategy chosen in examples above) neither Δ$B nor Δ$AB
depends on the temperature of Bob’s environment.

Conclusions
Amethod of taking account of decoherence in quantum game theory has been presented. We
have assumed that the interaction between qubits and their environments are weak and satisfy
requirements for applying Davies weak coupling approach to reduced dynamics [21]. Actually,
we have represented decoherence via Davies maps. Our analysis shows that the dependence is
strongly affected by a thermal environment. The temperature dependence of payoffs is notice-
able in the long time limit. Moreover, the presented analysis stresses that the payoffs can vary
dramatically in cases when the environment is attached either to Bob’s or Alice’s qubit. This
effect can be beneficial for one of the players as presented graphically for various special cases
of payoff differences. It would be of great interest to adapt this approach to quantum games on
networks of agents [32–34] because systems involving a large number of simple variables with
mutual interactions appear frequently in various fields of research.

Appendix: Explicit payoffs formulas
Here we provide explicit formulas for payoffs for three remaining quantum strategies (I,FU),
(F,IU) and (F,FU) with θ = π/2 together with their long time limits:

D$1X ¼ lim
t!1

D$X ; X ¼ A;B;AB ð41Þ

calculated for an arbitrary value of θ.

(I,F U)

D$B ¼ 1

2
ðc� dÞ½ cos 2ðgÞ þ sin 2ðgÞ cos ð2a� 2otÞ

eGt
� ð42Þ

D$A ¼ ðc� dÞ½ð1� 1

eAt
Þð1
2
� pÞ cos ðgÞ þ cos ð2a� 2otÞ sin 2ðgÞ

2eGt
þ cos 2ðgÞ

2eAt
� ð43Þ

D$AB ¼ ðc� dÞ½ð1� 1

eAAt
Þð1
2
� pAÞ cos gþ

cos ð2a� 2otÞ sin 2ðgÞ
2eGAtþGBt

þ cos 2ðgÞ
2eAAt

� ð44Þ

D$1
B ¼ 1

2
ðc� dÞ½ cos ðgÞ � 2ðp� 1

2
Þ cos ðyÞ� cos ðgÞ ð45Þ
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D$1
A ¼ ðc� dÞ½1

2
þ cos ðyÞ cos ðgÞ

2
� p� cos ðgÞ ð46Þ

D$1AB ¼ ðc� dÞ½1
2
� pA � ðpB �

1

2
Þ cos ðyÞ� cos ðgÞ ð47Þ

(F, IU)

D$B ¼ 1

2
ðd � cÞ½ cos 2ðgÞ þ sin 2ðgÞ cos ð2a� 2otÞ

eGt
� ð48Þ

D$A ¼ ðd � cÞ½ð1� 1

eAt
Þð1
2
� pÞ cos ðgÞ þ cos ð2a� 2otÞ sin 2ðgÞ

2eGt
þ cos 2ðgÞ

2eAt
� ð49Þ

D$AB ¼ ðd � cÞ½ð1� 1

eAAt
Þð1
2
� pAÞ cos gþ

cos ð2a� 2otÞ sin 2ðgÞ
2eGAtþGBt

þ cos 2ðgÞ
2eAAt

� ð50Þ

D$1
B ¼ 1

2
ðd � cÞ½ cos ðgÞ � 2ðp� 1

2
Þ cos ðyÞ� cos ðgÞ ð51Þ

D$1
A ¼ ðd � cÞ½1

2
þ cos ðyÞ cos ðgÞ

2
� p� cos ðgÞ ð52Þ

D$1AB ¼ ðd � cÞ½1
2
� pA � ðpB �

1

2
Þ cos ðyÞ� cos ðgÞ ð53Þ

(F,FU)

D$B ¼ 1

2
ðd � cÞ½ cos 2ðgÞ þ cos ð2bþ 2otÞ sin 2ðgÞ

eGt
� ð54Þ

D$A ¼ ðd � cÞ½ð1� 1

eAt
Þð1
2
� pÞ cos ðgÞ þ cos ð2bþ 2otÞ sin 2ðgÞ

2eGt
þ cos 2ðgÞ

2eAt
� ð55Þ

D$AB ¼ ðd � cÞ½ð1� 1

eAAt
Þð1
2
� pAÞ cos ðgÞ þ

cos ð2bþ 2otÞ sin 2ðgÞ
2eGAtþGBt

þ cos 2ðgÞ
2eAAt

� ð56Þ

D$1
B ¼ 1

2
ðd � cÞ½ cos ðgÞ þ 2ðp� 1

2
Þ cos ðyÞ� cos ðgÞ ð57Þ

D$1
A ¼ ðd � cÞ½1

2
� cos ðyÞ cos ðgÞ

2
� p� cos ðgÞ ð58Þ

D$1AB ¼ ðd � cÞ½1
2
� pA þ ðpB �

1

2
Þ cos ðyÞ� cos ðgÞ ð59Þ
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