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Abstract
Ultimately, the genotype of a cell and its interaction with the environment determine the

cell’s biochemical state. While the cell’s response to a single stimulus has been studied

extensively, a conceptual framework to model the effect of multiple environmental stimuli

applied concurrently is not as well developed. In this study, we developed the concepts of

environmental interactions and epistasis to explain the responses of the S. cerevisiae prote-

ome to simultaneous environmental stimuli. We hypothesize that, as an abstraction, envi-

ronmental stimuli can be treated as analogous to genetic elements. This would allow

modeling of the effects of multiple stimuli using the concepts and tools developed for study-

ing gene interactions. Mirroring gene interactions, our results show that environmental inter-

actions play a critical role in determining the state of the proteome. We show that individual

and complex environmental stimuli behave similarly to genetic elements in regulating the

cellular responses to stimuli, including the phenomena of dominance and suppression.

Interestingly, we observed that the effect of a stimulus on a protein is dominant over other

stimuli if the response to the stimulus involves the protein. Using publicly available transcrip-

tomic data, we find that environmental interactions and epistasis regulate transcriptomic

responses as well.

Introduction
In their native environments, cells continuously respond to a complexity of environmental sti-
muli. These include ambient temperature fluctuations, nutrient availability, signaling mole-
cules, and physical forces. In response, cells adjust their biochemical state through multiple
mechanisms including the differential production, modification, and degradation of transcripts
and proteins [1,2,3,4,5]. Both extracellular signaling and the metabolic environment strongly
influence a cell’s growth and responses to therapeutic treatments [6,7,8,9]. Model organisms
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have been used extensively to study cellular responses to individual and combinations of envi-
ronmental stimuli [1,10,11,12,13,14,15,16,17]. We extend these approaches by developing and
testing a novel conceptual framework to study proteomic responses of cells to the combinato-
rial effects of multiple concurrent environmental factors. We have modeled our analysis of
these complex environmental interactions using the concepts of gene interaction and genetic
epistasis.

Gene interaction is defined as the interaction between genes at different loci that affect the
same characteristic or a trait [18]. Classically, genetic epistasis is referred to a type of gene
interaction in which a mutation at one locus masks or suppresses the phenotype of a mutation
at a different locus [18,19]. To test the independence of the effects of individual genes, genetic
epistasis has also been defined mathematically as a type of gene interaction in which the com-
bined effect of two or more mutations is not the sum of the effects of the individual mutations
[20,21,22].

Conceptually, the problem of studying multiple concurrent environmental stimuli is similar
to the problem of studying the effects of multiple genetic mutations. The product of a gene
functions as part of one or more functional modules in concert with the products of many
genes. The changes in a gene, for example its loss of function or gain of function, affects the
phenotype due to the changes in the activity of the functional modules. If multiple genetic
alterations are present, the total effect is due to the integration of the effects of the individual
alterations through the functional modules. Similarly, environmental stimuli affect the bio-
chemical state of the cells through specific sensing, signaling, and response modules. Concur-
rent application of multiple environmental stimuli, similar to the genetic alterations, requires
the integration of information from these modules to mount an optimal response. By consider-
ing an environmental stimulus as an analogue of a gene, we hypothesized that the concepts of
gene interaction and epistasis can be extrapolated to devise a conceptual framework for study-
ing the combined effects of multiple concurrent stimuli. There are several benefits of using this
approach; (1) all the genetic, biochemical, and computational tools and concepts developed for
studying gene interactions would become available for studying the effects of the environment,
(2) it would allow for easier mechanistic interpretation of the responses to complex environ-
mental stimuli, (3) the contributions of an individual stimulus to altering biological processes
can be more easily elucidated, and (4) it would provide a unifying framework for studying
gene-gene, gene-environment and environment-environment interactions.

In this study, we define an environmental interaction as the interaction between different
environmental stimuli that affect the same observable characteristic or trait. Similar to the sta-
tistical definition of genetic epistasis, environmental epistasis is an environmental interaction
in which the effects of the individual stimuli are not independent of each other [20,21,22].
To test our hypothesis, we used the yeast S. cerevisiae and grew cells at standard conditions
(glucose, 30°C) and changed growth conditions to either high temperature (37°C, HT stimulus)
or the non-fermentable carbon source glycerol (G stimulus), and concurrently with both envi-
ronmental stimuli (glycerol, 37°C, HT+G stimuli) (S1 Fig). Using precise quantitative proteo-
mics of the S. cerevisiae proteome and the changes in protein abundance as the readouts of the
interactions, we show that environmental interactions and epistasis play central roles in deter-
mining the state of the proteome in response to multiple, concurrent environmental stimuli.
We also show that, using the dominance of one stimulus over another, environmental interac-
tions can be used to identify proteins that are important for responding to a dominant stimu-
lus. We validated our approach using an independent publicly available transcriptomic dataset.
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Experimental Procedures

Strains and Media
All experiments used the diploid S. cerevisiae strain BY4743, which has been previously
described [23]. Cells were grown using standard techniques [24].

Growth rate analysis
Cells were grown in 96 well plates in 100 μL cultures (10 μL of starter culture and 90 μL of
fresh media) with continuous shaking in a BioTek Synergy 4 Hybrid Microplate Reader for
10 h. Growth rates were assayed in 8 conditions: (1) Synthetic complete medium with glucose
(ScD) at 30°C, (2) ScD at 37°C, (3) Synthetic complete medium with glycerol (ScG) at 30°C,
(4) ScG at 37°C, (5) Yeast extract, peptone medium with glucose (YPD) at 30°C, (6) YPD at
37°C, (7) Yeast extract, peptone medium with glycerol (YPG) at 30°C, and (8) YPG at 37°C.
Absorbance was measured at 660nm at 3 min intervals. Using custom R scripts, the doubling
times were calculated from the linear regression curve through the log growth phase using the
log of the absorbance and time of growth. A two-tailed t-test of independence with Bonferroni
correction for the 11 comparisons (7 comparisons of the control, YPD at 30°C, to the test con-
ditions, 3 comparisons of the observed concurrent double stimuli effect to the expected sum of
individual stimulus effects, and 1 comparison of the observed concurrent three stimuli effect to
the expected sum of the effects of the three individual stimulus) was used to calculate the statis-
tical significance of a stimulus effect on the growth rate [25].

Preparation of yeast protein extracts
Five mL of YPD (1% yeast extract, 2% peptone, 2% glucose) was inoculated with a single yeast
colony from a YPD agar plate and grown overnight. Three replicates were grown under each
growth condition: YPD at 30°C and 37°C and YPG at 30°C and 37°C. Fifty mL of YPD was
inoculated with 50 μL of the overnight culture and grown at 30°C and 37°C. One hundred mL
of YPG (1% yeast extract, 2% peptone, and 3% glycerol v/v) was inoculated with overnight cul-
tures and grown at 30°C and 37°C. The cultures were grown with constant shaking at 175 rpm
in Innova 44 shaker incubators (New Brunswick Scientific). For all four growth conditions,
cells were harvested at mid-log phase as determined by OD600 measurements. Cells grown in
YPD were harvested after 14 h, while cells grown in YPG were harvested after 24 h. All cultures
were centrifuged at 2000 rpm for 5 min at 4°C using a Sorvall HLR6/H600A/HBB6 rotor in
Sorvall RC-3B centrifuge and washed with ice cold deionized H20. The cell pellets were resus-
pended in 1 mL ice cold wash buffer (10 mM Tris pH 8.0, 5 mM beta-mercaptoethanol,
500 mM ammonium chloride, 100 mMmagnesium acetate) and lysed at 4°C using glass beads
and a Bead Beater (BioSpec, Inc) for 10 min as previously described [26]. The whole cell
extracts (WCE) were clarified by centrifugation at 20,000g for 15 min at 4°C, and a 200 μL
aliquot of the cleared WCE was stored at -80°C.

Isobaric tag for relative and absolute quantitation (iTRAQ) labeling
The total protein concentration was determined using a Bradford assay according to the manu-
facturer’s protocol (Sigma Aldrich). For each growth condition, 50 μg of total protein was
mixed with 50 ng of bovine serum albumin (Thermo Scientific) as an internal standard. Each
protein sample was acetone precipitated and resolublized in 25 μl iTRAQ dissolution buffer
(500 mM triethylammonium bicarbonate, 0.1% sodium dodecyl sulfate). The proteins were
reduced with tris(2-carboxyethyl)phosphine at 60°C for 60 min and the cysteines were deriva-
tized with methyl methanethiosulfonate at room temperature for 10 min. All samples were
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digested with sequencing-grade modified trypsin (1:50; Promega Corporation) overnight at
37°C. Equal fractions of the tryptic digests from the three replicates grown in YPD at 30°C
were pooled separately and used as a control for the iTRAQ experiments. Fifty μg of the pooled
control and 50 μg of each of the replicates were used for iTRAQ labeling. The iTRAQ labeling
reagents were resolublized in 150 μL anhydrous ethanol (Sigma Aldrich). 75 μL of iTRAQ
reagent solutions were added to each 50 μg sample, incubated with shaking for 1 h at room
temperature on an Eppendorf Thermomixer R, pooled, frozen, lyophilized, resolublized in
200 μL of buffer A (0.1% formic acid), and stored at -80°C.

Liquid chromatography and mass spectrometry
The iTRAQ-labeled samples were analyzed with MudPIT as previously described [27]. Precur-
sor ions were analyzed in the Orbitrap mass analyzer followed by four CID fragment ion scans
in the ion trap and four HCD fragment ion scans (normalized collision energy = 45%) in the
Orbitrap.

iTRAQ data analysis: RAW files generated by the MudPIT experiments were searched
using the Sequest HT database search engine running under Proteome Discoverer v1.4 (Thermo
Scientific) against a forward and reverse yeast protein database (S.cererevisiae_orf_trans_all_SGD.
fasta.6718) with appended common contaminant sequences [28,29]. Beta-methylthiolation and
iTRAQmodifications were included as constant modifications. Oxidation of methionine and
tryptophan, and deamidation of glutamine and asparagine were used as variable modifications.
Precursor mass tolerance was set to 3 Da and fragment mass tolerance was set to 0.8 Da. Protein
assembly, reporter ion quantitation, and protein fold change calculations were done using Pro-
teoIQ at 5% peptide and protein FDR (Premier Biosoft). Hierarchical clustering analysis was done
using Cluster 3.0 [30]. Heatmaps were generated using Java Treeview [31]. Circos plots were
generated as described in Krzywinski et. al. to visualize the genomic locations of the quantitated
proteins [32]. For better visualization, only those regions of the genome that were quantitated in
this study are shown. The mass spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with the dataset identifier PXD002371
[33].

Environmental interaction analysis
All analysis was performed using R scripts to parse the fold change expression data to identify
proteins that show specific expression patterns in response to complex environmental stimuli.
For each protein, we used linear regression to test for any association of high temperature or
glycerol using a model that included main effects for glycerol and temperature and the glycerol
by temperature interaction. We used the effect size estimates and ANOVA p-values (3 degrees
of freedom) calculated by the lm function and adjusted the p-values for a 5% FDR using the
Benjamini-Hochberg procedure for finding differentially expressed proteins [34]. We used
the adjusted p-value cut-off of 0.05 to determine statistical significance. If the overall adjusted
p-value was greater than 0.05, we classified the proteins as non-responders. The positive and
negative signs of the effect size estimates correspond to upregulation and downregulation,
respectively, showing the direction of change. The remaining proteins were further classified
into environmental interaction classes based upon the effect size estimate p-values and the
direction of change. If the p-value of an estimate was less than 0.05, the protein was considered
differentially expressed in response to that environmental stimulus.

To test if a protein is affected by environmental epistasis, the effect size estimates for the
individual high temperature (HT) and glycerol stimuli (G) were summed, the combined
standard error calculated as the square root of the sum of the squared standard errors, and a
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two-sample t-test of independence was used to compare the summed effect size estimate to the
effect size estimate for the concurrent high temperature and glycerol stimuli (HT+G). If a t-test
p-value was less than 0.05, the protein was assumed to be affected by environmental epistasis.

Environmental interaction analysis of transcriptomic dataset
Normalized expression data described in Knijnenburg et. al. was downloaded [13]. The tran-
scriptomic data were generated using haploid S. cerevisiae (CEN.PK113-7D MATa) cells
grown in chemostat cultures [13]. We chose 4 culture conditions similar to our experimental
design for further analysis. The culture conditions tested were: 1) with ammonium sulfate as
the nitrogen source (n = 5), 2) with methionine as the nitrogen source (n = 3), 3) anaerobic
conditions (n = 4), and 4) with methionine as the nitrogen source and anaerobic conditions
concurrently (n = 3). Transcriptomic data from the cells grown with ammonium sulfate as the
nitrogen source were used as the baseline control. The fold change was calculated by subtract-
ing the average normalized expression data of baseline samples from the individual expression
data. Finally, the genes were classified into various types of environmental interactions as
described above.

Co-expression network analysis
Sparse PArtial Correlation Estimation (SPACE) was used to build protein co-expression net-
works and identify the hub genes [35]. To account for outliers, the data were normalized using
probabilistic quotient normalization and scaled using a generalized logarithmic scaling factor
[36,37]. The data were scaled and centered to have a standard deviation of 1 and mean of 0 to
remove any bias in the correlation analysis [38]. We estimated the partial correlation matrix
using the space.dew method implemented in the SPACE R package [35]. We selected the
default value of the tuning parameter for constructing the initial network [35]. The network
was visualized in Cytoscape 3.1.1 [39].

Results
While cells measure and respond to many environmental stimuli, we chose temperature and
carbon source to test our hypothesis. Both stimuli are known to be important factors for sur-
vival and have wide-ranging effects on yeast metabolism [1]. We used growth with glucose at
30°C as the control, and high temperature and glycerol as the stimuli. The changing growth
conditions were: glucose at 37°C (HT stimulus), glycerol at 30°C (G stimulus), and glycerol at
37°C concurrently (HT+G stimulus). To precisely measure the proteomic responses of the cell,
we used isobaric tag for relative and absolute quantitation (iTRAQ) labeling followed by multi-
dimensional protein identification technology (MudPIT)-based mass spectrometry to quantify
the steady state proteomes under the four different growth conditions (S1 Fig) [40,41]. A total
of 1064 proteins were quantitated in the control and the three test conditions. We filtered the
data to focus only on the 466 proteins that were quantitated in all three independent replicates
of all of the three test conditions (Fig 1A, S1 Table). Cross-correlation analysis of the filtered
data showed high reproducibility among the replicates (S2 Fig). The proteomic changes in the
cells grown with the concurrent stimuli were more similar to the changes induced by glycerol
compared to high temperature (S2 Fig).

We defined the response to an environmental factor(s) as the log2-fold change in protein
abundance/expression between the control and experimental conditions. For this study, we
used “fold change” to denote the log2 fold change. We built linear regression models for each
protein using fold changes to estimate the effect sizes of the stimuli. We used ANOVA for esti-
mating statistical significances since we were comparing multiple stimuli. We interpreted the
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positive or negative sign of the effect size as either upregulation or downregulation, respec-
tively. The Benjamini-Hochberg procedure was used to adjust the ANOVA p-values at 5%
FDR [34]. A protein was assumed to be differentially expressed if the adjusted overall ANOVA
p-value was less than 0.05. These proteins were further analyzed and classified into different
environmental interaction classes using the direction of the change (upregulated or downregu-
lated) and the p-values of the effect size estimates [34].

Stimuli-specific expression patterns can be used to identify proteins
important for responding to the stimuli.
We observed 283 proteins differentially expressed with high temperature, 379 proteins differ-
entially expressed in response to glycerol, and 370 proteins were differentially expressed in con-
current high temperature and glycerol (Fig 1B and 1D, and S1 Table), while 41 proteins did not
change in response to any of the stimuli. We selected GeneMANIA Cytoscape plugin for path-
way analysis since it extends the input list of differentially expressed proteins by adding related
proteins to enhance sensitivity and coverage [42,43]. It also allows using the complete prote-
ome as the background. This helped to build a more complete picture of differentially regulated
pathways. Pathway analysis of these two differentially expressed protein groups revealed the
same top five pathways; none were specific to either stimulus (Fig 1C and 1E). All of the top
five pathways were related to protein synthesis and translational control, suggesting that the

Fig 1. Proteomic responses to complex environmental stimuli.Diploid S. cerevisiae (BY4743) cells were grown in rich media under 4 conditions: 1)
glucose as the carbon source at 30°C, 2) glycerol as the carbon source at 30°C, 3) glucose at 37°C, and 4) glycerol at 37°C. Three biological replicates for
each growth conditions were performed. Fold changes were calculated from iTRAQ reporter ion intensities using reporter ion intensities from the pooled
replicates of growth in glucose as the carbon source at 30°C as the baseline. The fold changes were log2 transformed for downstream analysis. The color bar
shows the fold change range. A) Complete filtered proteomic dataset for high temperature stimulus (HT), glycerol stimulus (G), and concurrent glycerol and
high temperature stimuli (HT+G) (Red: Up, Green: Down, Black: No change). The heatmap represents the fold changes of 466 proteins. B) Fold changes of
283 proteins differentially expressed in response to HT stimulus. C) Bar graph shows the–log q-value of enrichments of the top 5 pathways in the list of
proteins differentially expressed after the HT stimulus. D) Fold changes of 379 proteins differentially expressed in response to the G stimulus. E) Bar graph
shows the–log q-value of enrichments of the top 5 pathways in the list of proteins differentially expressed after the G stimulus.

doi:10.1371/journal.pone.0134099.g001
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regulation of protein synthesis is an important step in responding to environmental stimuli.
Translation factors are some of the most abundant proteins in yeast and our proteomic assays
are limited by the abundance of proteins in the cell. Although this could have confounded
pathway analysis and led to the identification of translation associated pathways as being the
most enriched, using only the differentially expressed proteins suggests that these pathways
are, at the least, being differentially regulated. Furthermore, similar observations have also
been made in previous studies [1,10,44]. It is noteworthy that the pathways expected to be
important for responding to these stimuli, such as “protein folding” for growth at high temper-
ature and “TCA cycle” for growth with glycerol were present farther down the list at numbers
39 and 53, respectively (S2 and S3 Tables) [45,46,47]. This mirrors a common problem in
‘omics’ studies that generate large lists of candidate genes, transcripts and proteins. The impor-
tant responders are lost in a long list where a majority of differentially expressed genes or pro-
teins is not directly responding to the stimulus. Therefore, choosing candidates for an in-depth
mechanistic study becomes a challenge.

To address this problem, we devised a methodology using dominance in environmental
interactions to identify proteins and pathways important for responding to a stimulus. We
noticed proteomic expression patterns in which the response to one stimulus was dominant
over the other. We speculated that a protein critical in responding to a stimulus will respond to
that stimulus even when challenged by a competing stimulus. If this hypothesis is correct, such
an environmental interaction could serve as a filter to select and identify proteins that respond
specifically to the dominant environmental stimulus.

To test this hypothesis, we classified the list of 466 proteins responding to the concurrent
glycerol and high temperature stimuli based upon their expression patterns. Two classes of
dominant environmental interactions are possible. In one class, a stimulus reverses an expres-
sion change induced by the other stimulus (Fig 2A and 2B, top panels, rows 1 and 3). In the
other class, a stimulus induces a change in expression, while the other stimulus has no effect on
its own and does not change the response to the concurrent stimulus (Fig 2A and 2B top pan-
els, rows 2 and 4). Each class is represented by two theoretical expression patterns for a total of
four expression patterns for each stimulus (Fig 2A and 2B top panels).

For the environmental interactions in which the HT stimulus was dominant over the G
stimulus, the p-values for all of the effect size estimates were less than 0.05. The changes for the
HT and HT+G stimuli were in the same direction and differed from the G stimulus (Fig 2A,
top panel, rows 1 and 3). Alternatively, the p-values for only the HT and HT+G stimuli effect
size estimates were less than 0.05 and the directions of change for the HT and HT+G stimuli
were the same (Fig 2A, top panel, rows 2 and 4). In all, we identified 30 proteins for which the
response to the HT stimulus was dominant over the G stimulus (Fig 2A and S1 Table). We
used pathway analysis to identify which protein classes were responding to the dominant stim-
ulus. The group of proteins for which the HT stimulus was dominant included the heat shock
response proteins HSP10, HSP60, SSA1, SSA2, and HSP150 (Fig 2A bottom panel, and S1
Table). Pathway analysis of these 30 proteins showed that the top five enriched pathways
included protein folding, protein refolding, and unfolded protein binding (Fig 2C, S5 Table).
These pathways are expected to be important for growth at higher temperatures [45,46,48,49].

For the environmental interaction in which the G stimulus is dominant, we saw a similar set
of patterns as described above except the G stimulus dominates the HT stimulus (Fig 2B, top
panel). There are 121 proteins for which the response to the G stimulus was dominant over the
HT stimulus (Fig 2B, bottom panel and S1 Table). The group of proteins for which the G stim-
ulus was dominant includes metabolic enzymes such as CDC19, ACO1, and LSC1. (Fig 2B,
bottom panel, and S1 Table). Pathway analysis of these 121 proteins showed that the top five
pathways included the oxidation-reduction process, the generation of precursor metabolites
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and energy, and the tricarboxylic acid cycle (Fig 2D, and S6 Table). All of these three pathways
are expected to be important for respiratory growth [47,50,51]. Consistent with our hypothesis,
pathway analysis of proteins that respond to a dominant environmental stimulus reveals a
functional relationship to the response to the stimulus. High temperature has a dominant effect
on proteins involved in protein folding, while glycerol has a dominant effect on proteins
involved in respiratory metabolism. These results show the practical applications of using dom-
inant environmental interactions to identify proteins that respond to specific stimuli and that
are directly involved in the cell’s response to that stimulus.

Analysis of expression patterns reveals that environmental interactions
mirror gene interactions.
In addition to the dominant interactions of concurrent environmental stimuli, we observed
other classes of environmental interactions that mirror gene interactions. First, we observed a
class of proteins whose abundance either increased or decreased in response to both the indi-
vidual stimuli as well as the concurrent stimuli (Fig 3A). This is similar to gene pairs in which
both the individual mutants as well as the double mutant have the same phenotype. We

Fig 2. Dominance of an environmental stimulus used to identify proteins that are important for responding to the environmental stimulus. The
color bar shows the range of fold changes. Pathway analysis was done using theGeneMANIA Cytoscape plugin [42]. Bar graphs were generated in
Graphpad Prism. A) Proteins for which HT stimulus is dominant over G stimulus. The theoretical expression patterns are depicted in the top panel (Red,
upregulation; green, downregulation; and black no statistically significant change in expression). The heatmap of fold changes in expression for 30 proteins
for which HT stimulus is dominant over G stimulus is shown in bottom panel. B) Proteins for which G stimulus is dominant over HT stimulus. The theoretical
expression patterns are depicted in the top panel. The heatmap of fold changes in expressions for 121 proteins for which G stimulus is dominant over HT
stimulus is shown in bottom panel. C) Bar graph shows the–log q-value of enrichments of the top five pathways in the list of proteins for which HT stimulus is
dominant over G stimulus. D) Bar graph shows the–log q-value of enrichments of the top five pathways in the list of proteins for which G stimulus is dominant
over HT stimulus.

doi:10.1371/journal.pone.0134099.g002
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classified these proteins as non-specific environmental responders. This class is represented by
two theoretical expression patterns: activated or repressed (Fig 3A, top panel and S1 Table).
For these non-specific environmental response modules, the p-values for all the effect size esti-
mates were less than 0.05 and the directions of change were the same (Fig 3A, top panel). We
identified 175 proteins that correspond to these patterns, and pathway analysis revealed that

Fig 3. Proteins in different environmental interaction classes and the corresponding enriched pathways after concurrent G and HT stimuli. The
color bar shows the range of fold changes. Pathway analysis was done usingGeneMANIA Cytoscape plugin[42]. Bar graphs were generated inGraphpad
Prism. A) Non-specific environmental response (NER) proteins to individual and concurrent HT and G environmental stimuli. The theoretical expression
patterns are shown in the top panel. The fold changes of 175 NER proteins are shown as a heatmap. B) The theoretical expression patterns for discordant
environmental interaction are shown in the top panel. The fold changes of 41 proteins are shown as a heatmap. C) The theoretical expression patterns for
suppression environmental interaction are shown in the top panel. The fold changes of the 58 proteins affected by suppression are shown as a heatmap. D)
Bar graph shows the–log q-value of enrichments for the top 5 pathways for the non-specific environmental response proteins. E) Bar graph shows the–log q-
value of enrichments for the top 5 pathways in the list of proteins affected by discordant environmental interaction. F) Bar graph shows the–log q-value of
enrichments for the top 5 pathways in the list of proteins affected by suppression environmental interaction.

doi:10.1371/journal.pone.0134099.g003
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they are largely involved in protein synthesis and translational control (Fig 3A, bottom panel
and 3D, and S7 Table).

We also observed proteomic responses to concurrent environmental stimuli similar to gene
interactions in which the two single mutants are wild-type or have one phenotype, while the
double mutant has a different phenotype (Fig 3B). This class includes proteins whose expres-
sion was either decreased or unchanged after a single stimulus but was increased if both stimuli
were applied concurrently. The class also includes proteins whose expression was either
increased or unchanged after a single stimulus but was decreased by the concurrent stimuli.
We classified this environmental interaction group as a discordant class. There are eight theo-
retical expression profiles in the discordant environmental interaction class (Fig 3B, top panel).
For the discordant environmental interaction, the p-value for the HT+G concurrent stimuli
effect size estimate was less than 0.05 and the directions of change for either the HT or G sti-
muli were not the same as HT+G. We identified 41 proteins that show discordance (Fig 3B,
bottom panel and S1 Table). They are mainly involved in protein synthesis and metabolic path-
ways (Fig 3E, and S8 Table).

Finally, we observed suppression, in which a protein’s abundance changed in response to a
single stimulus, yet the change was suppressed by the simultaneous application of the second
stimulus (Fig 3C). This class is similar to gene interactions in which double mutants show the
wild-type phenotype [52,53]. The suppression class is represented by eight theoretical expres-
sion patterns (Fig 3C, top panel). For suppression environmental interactions, the p-value for
the HT+G effect size estimate was more than 0.05, and the p-value for at least one of HT and
G stimuli effect size estimates was less than 0.05. We identified 58 proteins that are affected by
suppression (Fig 3C, bottom panel and S1 Table). Pathway analysis revealed that metabolic
pathways are most affected by suppression (Fig 3F and S9 Table).

A large fraction of the proteome is affected by environmental epistasis
An important feature of genetic epistasis is that the modulating effects of multiple genes are
not always independent of each other [20,21,22,54,55]. In many cases, non-independence is
diagnostic of a functional relationship between genes [20,22,54]. Genetic epistasis is used to
test if the effects of genetic elements are independent. Genetic epistasis occurs when the effects
are not independent. We tested if the effects of these two individual environmental stimuli
were independent of each other for individual proteins in the proteome. Similar to the mathe-
matical approach to genetic epistasis, we measured the response of each protein and classified a
response as influenced by environmental epistasis if the sum of the effects of the individual sti-
muli for a protein was not equal to the response to the concurrent stimuli (t-test, p-value
�0.05) [20,21,22]. We used log2 fold change as the measure of the effect of a stimulus. From
our list of 466 quantitated proteins, 240 proteins were affected by environmental epistasis
(S1 Table). Pathway analysis of these proteins revealed that a majority of the enriched pathways
are involved in protein synthesis and translational control (Fig 4A and S10 Table). The topmost
enriched pathways included cytoplasmic translation, cytosolic ribosome, and structural con-
stituent of ribosome (Fig 4A and S11 Table).

Pathway analysis of the 226 proteins not affected by environmental epistasis revealed a large
number of metabolic pathways (Fig 4B and S1 and S10 Tables). It is interesting to note that the
distribution of pathways affected by environmental epistasis is different from those that are
unaffected. Protein synthesis and translational control seem to be disproportionately affected
by environmental epistasis compared to other pathways. These pathways have previously been
found to change in response to the changes in the growth rate [56,57]. If the effects of the two
stimuli on the growth rate are not independent, it could explain the observed environmental
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epistasis. To test the independence in the effects of the two stimuli on the growth rate, we deter-
mined the doubling times under the same conditions. The change in the doubling times was
used to measure the effect of a stimulus. Our data shows that the effects of high temperature
and glycerol on the growth rate are additive and, therefore, independent of each other (S4 Fig).
Further studies are required to elucidate the functional significance of the environmental
epistasis.

A number of genetic epistasis subtypes have been defined based upon the mathematical
models used to measure the expectation of a phenotype in double mutants [54,55,58,59,60].
Four most commonly used definitions are (1) additive, (2) multiplicative, (3) minimum, and
(4) log [55,58]. Although we used only the additive definition for developing the concept of the
environmental epistasis in this study, future studies can be performed to compare the results
obtained using different definitions.

Environmental interactions and epistasis regulate mRNA levels.
Although, we identified the environmental interactions using quantitative proteomic data, we
speculated that this framework would be applicable to any quantifiable readout including tran-
scriptomic and phenotypic traits. In pioneering studies using chemostat cultures of S. cerevi-
siae, Knijnenburg et al. measured the transcriptional response of yeast to multiple, concurrent
environmental stimuli [13]. They found linear regression models of expression for the vast

Fig 4. Environmental epistasis in the proteomic response to concurrent stimuli. Pathway analysis was
done using theGeneMANIA Cytoscape plugin[42]. Bar graphs were generated inGraphpad Prism. A) Bar
graph shows the–log q-value of enrichments of the top 10 pathways in the list of proteins affected by epistasis
(purple) and their–log q-value in the list of proteins not affected by epistasis (orange). B) Bar graph shows
the–log q-value of enrichments of the top 10 pathways in the list of proteins not affected by epistasis (orange)
and their–log q-value in the list of proteins affected by epistasis (purple).

doi:10.1371/journal.pone.0134099.g004
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majority of genes required a combinatorial interaction term[13]. This suggests the change in
transcription of most genes cannot be explained by simply adding the effects of the individual
stimuli. Based on our proteomic results, we hypothesized that environmental epistasis plays a
role in determining the state of the transcriptome as well.

To test if our environmental interaction and epistasis models are observed in the transcrip-
tomic responses to concurrent stimuli, we analyzed Knijnenburg dataset which measured the
transcriptomic responses of yeast cells growing in carbon limited chemostat cultures [13]. In
the experiment, two concurrent stimuli were applied: (1) a change in nitrogen source from
ammonium sulfate to methionine and (2) a change from aerobic to anaerobic growth (Fig 5A
and S12 Table) [13]. The data showed 564 transcripts were affected by environmental epistasis,
while 5987 transcripts were not affected (p-value�0.05) (S12 Table). In contrast to our proteo-
mic analysis, pathway analysis of the transcripts affected by environmental epistasis revealed
enrichment for pathways including microbody, peroxisome, and phytosteroid metabolic pro-
cess (S13 Table). This could be because of the differences between the strains, stimuli, and cul-
ture conditions used in the transcriptomic and our proteomic studies. Similar to our proteomic
analysis, we observed dominant environmental interactions in the expression of the transcripts
(Fig 5B and 5C and S12 Table). Nitrogen source was dominant for 281 transcripts (Fig 5B and
S12 Table). Pathway analysis of these transcripts identified pathways involved in methionine
metabolism such as sulfur amino acid metabolic process, sulfur compound metabolic process
and methionine metabolic process (Fig 5D and S14 Table). Similarly, anaerobic growth was
dominant for 938 transcripts (Fig 5C and S12 Table). Pathway analysis of these differentially
expressed transcripts showed enrichment of pathways involved in energy production such as
cellular respiration, mitochondrial membrane and respiratory chain (Fig 5E and S15 Table).
We also observed the same environmental interaction classes in their transcriptomic data as in
our proteomic data, including non-specific environmental response, discordance, and suppres-
sion (S12 Table). These results strongly suggest that environmental interactions play a signifi-
cant role in regulating the biochemical state of cells.

Coexpression network analysis shows community structures are guided
by environmental interaction and epistasis.
Coexpression networks link together proteins whose expression levels are regulated in the
same way [61,62]. As a consequence, coexpression network analysis can be used to determine
if the abundances of proteins affected by environmental epistasis are regulated differently than
the proteins that are not affected by environmental epistasis. To explore the protein modules
whose expression changes are correlated with each other, we built a coexpression network
using the merged proteomic responses from both individual and concurrent stimuli using the
Sparse PArtial Correlation Estimation approach (SPACE) (Fig 1A) [35]. An edge, representing
coexpression, was introduced between two proteins if the correlation between them was above
the average of the correlation matrix. To validate the network, we first tested the power law
structure of the reconstructed network [35,63]. The reconstructed network followed the power
law distribution. The power law parameter α was approximately 4, which is close to the empiri-
cally observed value of 3.45 [63]. Next, we repeatedly reconstructed the network by varying the
tuning parameter around the default value and fitting the network to the power law distribu-
tion. We found that the reconstructed network follows the power law distribution and that the
power law parameter was in the range of 3.75. We identified the sub-graph spanned by the top
1% of highly connected nodes. We found that the Jaccard similarity score of these highly con-
nected nodes was 0.83 on the scale of 0 to 1. Therefore, these nodes were classified as hub
nodes, which is one of the characteristic features of power law networks. There were 7 hub
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nodes based upon the above criterion. Next, we checked the significance of the identified hubs
using the Wilcox Rank sum test and found that the hub community is statistically significant
(p-value = 0.04) [64]. Finally, we compared the reconstructed network with BioGrid protein
interaction data and found that approximately 30% of the edges are previously known interac-
tions and that these interactions were found in every reconstructed network when we varied

Fig 5. Environmental interactions affect transcriptomic profiles as well. Normalized expression data from Knijnenburg et. al. 2009 was used for the
analyses. The transcriptomic data used in the study used haploid S. cerevisiae cells (CEN.PK113-7D MATa) grown in carbon limited chemostat cultures
under 4 conditions – 1) ammonium sulfate as nitrogen source (n = 5), 2) methionine as nitrogen source, NS stimulus (n = 3), 3) Anaerobic condition, AN
stimulus (n = 4), and 4) methionine as nitrogen source under anaerobic conditions NS+AN stimulus (n = 3) [13]. Fold changes were calculated from
normalized expression data using average normalized expression data from the five replicates of growth with ammonium sulfate as the baseline. The color
bar shows the range of fold changes. Pathway analysis was done usingGeneMANIACytoscape plugin[42]. Bar graphs were generated inGraphpad Prism.
A) A heatmap of fold changes of the complete transcriptomics dataset consisting of 6551 transcripts. B) A heatmap showing the fold changes for 281
transcripts for which NS stimulus is dominant. C) The–log q-value of enrichment for the top 5 pathways enriched in the list of transcripts for which NS stimulus
is dominant. As anticipated, pathways expected to be involved in metabolization of methionine are enriched. D) A heatmap showing the fold changes for 938
transcripts for which AN stimulus is dominant. E) The–log q-value of enrichment for the top 5 pathways enriched in the list of transcripts for which AN stimulus
is dominant. As anticipated, pathways expected to be involved in energy production are enriched.

doi:10.1371/journal.pone.0134099.g005
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the tuning parameter to estimate the partial correlation matrix [65]. The final coexpression
network consisted of 329 nodes with at least one neighbor and a total of 359 edges (Fig 6A).

The largest community within this network includes 205 nodes and 249 edges, with two
clearly separate sub-graphs connected by a single node (Fig 6B). Interestingly, one sub-graph
consists predominantly of proteins affected by environmental epistasis while the second sub-
graph consists of proteins not affected by environmental epistasis. Within the global coexpres-
sion network, we observed that proteins affected by epistasis were more likely to be linked with
each other than with proteins that are not affected by epistasis and vice versa (Fig 6A). There
are 199 edges between two proteins affected by epistasis and 85 edges between two proteins not
affected by epistasis. However, only 75 edges involved proteins of both types (Fig 6C). This
structural organization of the coexpression network suggests that the responses of proteins
affected by environmental epistasis are controlled by a different mechanism than the responses
of those not affected by environmental epistasis.

Previous studies indicate that proteins linked in a coexpression network are likely to func-
tion in the same pathway [61]. We hypothesized that the grouping of proteins upon classifica-
tion into environmental interaction classes might be driven by their functional associations. If
true, we would expect to find more edges in the coexpression network between proteins within
the environmental classes. Indeed, we found this result in this network. Our data show that 299
of the edges (83%) are between proteins in the same environmental interaction class, while
only 60 are between proteins in different classes (Fig 6D).

Discussion
Using the concepts of gene interactions and epistasis, we have developed a unifying conceptual
framework to understand the cellular responses to complex environmental stimuli. Although,
we have only explored the cases with complete dominance of a stimulus, it is possible that both
the stimuli contribute to a change in expression. It is also possible that many stimuli contribute
towards a change. We speculate that the tools and approaches developed for gene-gene interac-
tions involving multiple genes can be applied in such cases [66]. In addition to linear regression
modeling and ANOVA, we also tested our hypothesis using one sample and two sample t-tests
of independence (data not shown). The results from both approaches were in good agreement.

The effect of mixtures of compounds has been actively studied in toxicology, especially in
the context of environmental toxins [67,68,69,70,71,72,73,74,75,76,77,78]. These studies have
led to the development of three complementary models to predict the combined effects of com-
pounds in a mixture: (1) in the concentration addition model the total toxicity of a mixture is
the sum of the individual toxicities of the component compounds, (2) in the independent
action model the toxicities of the components of a mixture are independent of each other, and
(3) in the simple interaction model the individual components, at the concentrations being
tested, are not toxic, but are toxic when used together in a mixture. These models have been
successful in predicting the total toxic effects of mixtures of compounds in many cases
[67,69,70,71,72,74,78]. However, it is not immediately clear which one to apply in a specific
case without model fitting [69].

Environmental interactions and epistasis can be extrapolated to explain the three models.
For example, the concentration addition model can be the case of incomplete dominance
where many stimuli affect the biological processes under investigation. This would happen if
the compounds in the mixture affect similar biological pathways. If the actions of the com-
pounds are antagonistic to each other, it may lead to either the dominance or the suppression
interaction. If their actions are not antagonistic, the combined effect would be the sum of the
individual effects which could be observed as the non-specific environmental response.
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Fig 6. Coexpression network based on all the quantified proteins and all conditions (G stimulus, HT stimulus, and HT+G stimulus). Proteins are
depicted as nodes. Nodes that are coexpressed are connected with an edge. The coexpression network was generated with SPACE algorithm using fold
change [35]. Network visualization and analysis was done in Cytoscape 3.1.1 [39]. Bar graphs were generated inGraphpad prism. A) All nodes that have at
least one edge. Nodes affected by environmental epistasis are highlighted in purple. The circular layout was used to generate the initial network graphics in
Cytoscape 3.1.1. Far-flung communities of inter-connected nodes were manually brought together, while preserving the inner community structure, for better
visualization. B) The largest community in the coexpression network. Most of the proteins affected by environmental epistasis are members of a subgraph
(top circle) that predominantly contains other proteins that are also affected by environmental epistasis. A similar trend is observed with the proteins not
affected by environmental epistasis (bottom circle). C) The numbers of three types edges: 1) both nodes are affected by environmental epistasis (199 edges),
2) neither of the nodes are affected by environmental epistasis (85 edges), and 3) only one of the nodes is affected by environmental epistasis (75 edges).
Proteins affected by epistasis are predominantly connected to proteins that are also affected by epistasis. D) Number of edges that connect nodes to other
nodes within the same environmental interaction classes (299) or between the classes (60). Co-regulatory connections between proteins are predominantly
between those of the same class.

doi:10.1371/journal.pone.0134099.g006
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The independent action model explains the case where the compounds under investigation
act upon different pathways [68,70,71,72,75,77]. This is similar to a gene interaction where two
mutations have two unrelated phenotypes and both phenotypes persist in the double mutant.
By applying the logic of environmental interaction to this model, we can deduce that the
changes induced by a mixture that follows the independent action model would have elements
specific to the component compounds of the mixture. Additionally, the changes important to a
specific compound would persist in the combinatorial condition, which could be used to iden-
tify molecules and pathways that respond to the specific compound in the mixture.

The simple interaction model explains the cases where the compounds individually have
little or no toxicity, but are toxic when applied together [73,75]. In terms of environmental
interaction, this could be a case of the discordance interaction. The effects explained by this
model could also be a special case of environmental epistasis, where the combined effect of
compounds is more than the sum of their individual effects. It is worth noting that although we
discuss only three of the mixture toxicity models, there are a number of other models that
explain the toxicities of compounds in a mixture [67,68,69,70,71,72,73,74,75,76,77,78]. Envi-
ronmental interactions and epistasis provides a conceptual framework unifying the different
toxicity models. The interpretation of results can be made simpler using environmental inter-
actions and epistasis.

Phenotypic plasticity provides the conceptual framework for studying the interaction
between genotype and environment. Phenotypic plasticity is the ability of an organism to
change its phenotype in response to changes in the environment [79]. It has been used to
explain the ability of the same genotype to generate different phenotypes in different environ-
ments [79]. However, phenotypic plasticity considers the environment as a monolithic entity.
It fails to separate the relative contributions of the different environment components, for
example; physical components such as temperature and pressure, chemical components such
as nutrients, and signaling molecules that activate different pathways. Applying environmental
interactions and epistasis would help parse out the individual contributions of the stimuli
towards the change in the phenotype.

Similar to genetic epistasis, our data show that the effects of individual environmental sti-
muli are not necessarily additive. Proteins affected by environmental epistasis are distributed
throughout the genome and do not appear to be clustered at specific locations in the genome
(S3 Fig). The prevalence of environmental epistasis in determining the changes in the proteome
suggests that epistasis needs to be taken into account when building mathematical models of
gene expression.

Consideration of environmental epistasis is especially important in light of the recent
attempts to build quantitative linear regression models of gene expression in which the inde-
pendent variables are the environmental stimuli and the dependent variable is gene expression
[80]. Interestingly, in a linear regression modeling study of transcriptional regulation in rice
under native conditions, the regression model was able to predict gene expression under native
conditions even if the environmental parameters varied slightly from those used for building
the model. However, the predictive power of the regression model was reduced under con-
trolled laboratory conditions suggesting that there may have been unknown epistatic interac-
tions in the native conditions absent in the controlled lab conditions [80].

Concurrently applied environmental stimuli behave similarly to genetic elements in the way
they interact to regulate the biochemical states of the cells. The observation of environmental
interactions and epistasis in determining the states of both the proteome and transcriptome in
diverse experimental conditions suggests the prevalence of this phenomenon in nature. Essen-
tially, environmental interaction in concert with phenotypic plasticity and gene interactions
can be envisaged as a mathematical operator with three components that determines the
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changes in the biochemical state of the cell. The gene interaction component is derived from
the effects of the genetic elements, while the environmental interaction component results
from the effects of all the environmental stimuli. When the gene and environmental interac-
tions are not independent of each other, phenotypic plasticity accounts for the deviations of
the observed from the expected characteristic or trait. Most studies so far have treated pheno-
typic plasticity, gene interactions, and environmental interactions separately due to a lack of a
common unifying framework [20,22,53,54,55,68,69,70,72,75,79,81,82,83,84,85]. Our data sug-
gest that as an abstraction, environmental stimuli can be treated as genes to build a conceptual
framework that combines the effects of genes and stimuli. Environmental interactions and
epistasis play a critical role in cellular homeostasis as seen in this study’s patterns of change in
the proteome and the transcriptome.

Our data also suggest that a protein or a transcript is more likely to be critical for responding
to a dominant environmental stimulus than to a recessive one. This could lead to more efficient
experiment designs for identifying factors directly affected by an environmental stimulus. For
example, experiments could be designed in which an unrelated stimulus B is applied concur-
rently with the stimulus of interest A. The proteins or transcripts, for which the effect of A is
dominant, would be more likely to be directly affected by stimulus A. We speculate that the
same approach may be extended to genetic perturbations. In this case, an environmental stim-
ulus could be applied in conjunction with the genetic perturbation. As with two concurrent
environmental stimuli, a transcript or a protein for which the genetic perturbation is dominant
may be more likely to be directly affected by it. Therefore, using dominance, environmental
interactions can also be used to devise studies to identify agents, such as regulatory RNAs, pro-
teins, or small molecules which are critical for driving a range of biological processes in health
and disease including drug interactions, adaptation in tumor microenvironment and immune
responses.

Supporting Information
S1 Fig. Experimental design workflow used in this study. Two environmental stimuli used
were high temperature and glycerol as the carbon source. Diploid S. cerevisiae cells (BY4743)
were grown in rich media under 4 conditions: 1) glucose at 30°C (used as control), 2) glycerol
at 30°C (G stimulus), 3) glucose at 37°C (HT stimulus), and 4) glycerol at 37°C (HT+G sti-
muli). Three biological replicates were performed for each condition.
(EPS)

S2 Fig. Correlation matrix heatmap (red is high). Correlation matrix was generated in
R. There is a high correlation among replicates showing reproducibility across experimental
replicates.
(EPS)

S3 Fig. Visualization of S. cerevisiae genomic locations of the proteins quantitated with
fold changes represented as a heatmap using Circos plot (Red: Up, Green: Down, Black: No
change)[32]. Outermost circle- chromosomes, Second circle-fold changes of proteins with HT
stimulus, Third circle-fold changes of proteins with G stimulus, Fourth circle-fold changes of
proteins with HT+G stimuli, innermost circle-whether affected by epistasis or not (Purple:
Affected by environmental epistasis, Orange: Not affected by environmental epistasis).
(EPS)

S4 Fig. The effect of high temperature and glycerol on yeast doubling times. Doubling times
were calculated for growth in control (n = 25), high temperature (n = 25), glycerol (n = 25),
and concurrent high temperature and glycerol (n = 24). The difference in doubling times from
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the control was used to measure the effect of the stimuli and is plotted on Y-axis. HT leads to a
decrease of -11 minutes (sd = 6), G leads to an increase of 137 minutes (sd = 14), and HT+G
leads to an increase of 142. minutes (sd = 22). The expected effect of HT+G was calculated by
summing the observed effects of HT and G (Sum HT+G, increase of 127 minutes with sd of
16). The difference in the means for HT+G and Sum HT+G was not statistically significant
(p-value = 0.1034, two-tailed t-test of independence with Bonferroni correction for 11 compari-
sons)
(EPS)

S1 Table. Complete data matrix of proteins.
(TXT)

S2 Table. GeneMANIA pathway analysis output for HT stimulus.
(XLSX)

S3 Table. GeneMANIA pathway analysis output for G stimulus.
(XLSX)

S4 Table. GeneMANIA pathway analysis output for HT+G stimulus.
(XLSX)

S5 Table. GeneMANIA pathway analysis output for HT stimulus dominance.
(XLSX)

S6 Table. GeneMANIA pathway analysis output for G stimulus dominance.
(XLSX)

S7 Table. GeneMANIA pathway analysis output for non-specific environmental reponse in
protein expression.
(XLSX)

S8 Table. GeneMANIA pathway analysis output for discordance in protein expression.
(XLSX)

S9 Table. GeneMANIA pathway analysis output for suppression in protein expression.
(XLSX)

S10 Table. GeneMANIA pathway analysis output for environmental epistasis in protein
expression.
(XLSX)

S11 Table. GeneMANIA pathway analysis output for no environmental epistasis in protein
expression.
(XLSX)

S12 Table. Complete data matrix of transcripts
(TXT)

S13 Table. GeneMANIA pathway analysis output for environmental epistasis in transcript
expression.
(XLSX)

S14 Table. GeneMANIA pathway analysis output for dominance of NS
(XLSX)

S15 Table. GeneMANIA pathway analysis output for dominance of AN
(XLSX)
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S16 Table. Doubling times under the 8 growth conditions.
(XLSX)
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