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Abstract
Absence epilepsy is an important epileptic syndrome in children. Multiscale entropy (MSE),

an entropy-based method to measure dynamic complexity at multiple temporal scales, is

helpful to disclose the information of brain connectivity. This study investigated the com-

plexity of electroencephalogram (EEG) signals using MSE in children with absence epi-

lepsy. In this research, EEG signals from 19 channels of the entire brain in 21 children aged

5-12 years with absence epilepsy were analyzed. The EEG signals of pre-ictal (before sei-

zure) and ictal states (during seizure) were analyzed by sample entropy (SamEn) and MSE

methods. Variations of complexity index (CI), which was calculated from MSE, from the pre-

ictal to the ictal states were also analyzed. The entropy values in the pre-ictal state were sig-

nificantly higher than those in the ictal state. The MSE revealed more differences in analysis

compared to the SamEn. The occurrence of absence seizures decreased the CI in all chan-

nels. Changes in CI were also significantly greater in the frontal and central parts of the

brain, indicating fronto-central cortical involvement of “cortico-thalamo-cortical network” in

the occurrence of generalized spike and wave discharges during absence seizures. More-

over, higher sampling frequency was more sensitive in detecting functional changes in the

ictal state. There was significantly higher correlation in ictal states in the same patient in dif-

ferent seizures but there were great differences in CI among different patients, indicating

that CI changes were consistent in different absence seizures in the same patient but not

from patient to patient. This implies that the brain stays in a homogeneous activation state

during the absence seizures. In conclusion, MSE analysis is better than SamEn analysis to

analyze complexity of EEG, and CI can be used to investigate the functional brain changes

during absence seizures.
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Introduction
Absence epilepsy is a common generalized epilepsy in children [1]. Its characteristic features
are the abrupt cessation of activities and consciousness impairment, with more or less automa-
tisms [2]. The duration of a typical absence seizure is brief, lasting for seconds, without an aura
or post-ictal impairment [2]. Electroencephalogram (EEG) is a non-invasive measurement that
provides temporal and spatial information regarding the electrical activity of the brain that has
been widely used to detect seizures in patients with epilepsy [3]. Ictal EEG in typical absence
seizures is characterized by the sudden onset of 3 Hz generalized spike-wave complexes, while
the inter-ictal EEG typically shows a normal background.

Over the past decade, the pathophysiology of absence seizures has been extensively studied
in both human and animal models, and various cortical or subcortical activations preceding
generalized seizures have been documented [4–8]. Dynamic changes in the temporo-spatial
course have been shown in typical absence seizures using simultaneous EEG and functional
magnetic resonance imaging (EEG-fMRI) [9–15]. However, the detection of seizure dynamics
from pre-ictal to ictal states cannot be reached solely using conventional EEG without
advanced analysis.

In recent years, advanced algorithm analysis methods have been developed and proposed to
analyze the temporo-spatial evolution of EEG recordings [16, 17]. Among these, entropy-based
approaches that can characterize the rate of creation of information in dynamic systems have
been used for quantifying the “complexity” and “irregularity” of EEG recordings. These
approaches may play a leading role in the analysis of biological signals [18–20]. Novel, non-
linear entropy measurement methods such as approximate entropy (ApEn), sample entropy
(SamEn), and Lempel-Ziv entropy offer the potential to find specific patterns and examine
irregularities in a time series [18]. These have been considered to be practical entropy-based
measurements in previous researches [21, 22]. However, traditional entropy-based algorithms
(e.g., ApEn and SamEn) only quantify the regularity of a time series. A higher entropy value
may reflect an increase in the degree of irregularity and randomness but is not guaranteed to
have an increase in the complexity of the time series. For example, white noise series have high
entropy in scale 1, but this value will decrease quickly when increasing the scales. This means
that white noise series have a high degree of irregularity and randomness but low complexity
[23,24]. Therefore, in 2002, a multiscale entropy (MSE) analysis that calculates SamEn for each
scale over multiple time scales, which defined the complexity index (CI) by calculating the area
under the MSE curve to provide a more meaningful measure of complexity, was proposed by
Costa et al [23]. At present, MSE and CI have been successfully utilized to analyze several bio-
logical signals (e.g., EEG signals) and distinguish healthy status from pathological conditions,
including Alzheimer's disease, autism, and epilepsy [23, 24]. More recently, in 2011, Ahmed
and Mandic proposed a multivariate MSE (MMSE) algorithm, which can be used to analyze
the situation and relationship of each channel [25]. This algorithm can not only investigate the
physiological conditions but also investigate the relationship between channel and channel.
However, in this study, we applied multiple-channel MSE by computing MSE repeatedly for
each channel separately [23]. This is different from multivariate MSE [25]. Ordinary computer
speed and memory are not enough for running 19 channels together using MMSE. Because we
should clarify the function in the different parts of brain and define the physiological meanings
before we apply this algorithm, in this study, we only investigated the difference in MSE in dif-
ferent channels of different patients.

Based on the evidence from these studies as well as our own previous studies, the present
study aimed to investigate the role of MSE of EEG signals in children with absence seizures and
clarify the variations of CI in their pre-ictal and ictal states. Because the abnormality in
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“cortico-thalamo-cortical network”may lead to the development of absence seizures [5–7], we
wanted to investigate whether the involvement of cerebral cortex can be demonstrated by the
changes of MSE and CI in EEG.

Materials and Methods

Ethics statement
The Institutional Review Board of National Taiwan University Hospital approved the present
study and waived the need for written informed consent from the participants, as the data were
analyzed anonymously.

EEG recording and processing
Data of EEG signals were collected from subjects receiving routine EEG examination. EEG
were performed with 19 Ag/AgCl electrodes placed on the scalp at Fp1, Fp2, Fz, F3, F4, F7, F8,
Cz, C3, C4, Pz, P3, P4, T3, T4, T5, T6, O1, and O2 electrode sites, following the 10/20 interna-
tional electrode placement [26]. Thirty-four EEG events were recorded by the digital EEG sys-
tem (Nicolet) with a sampling frequency of 200 Hz, and 21 EEG events were recorded by the
digital EEG system (Nihon Kohden) with a sampling frequency of 1000 Hz using a 16-bit ana-
logue-to-digital converter and filter within a frequency band of 0.5–70 Hz to remove the arti-
facts. EEG of the patients was performed by sampling frequency of both 1000 Hz and 200 Hz
due to the recent installation of a newer machine. The patients’ EEG signals were recorded for
1–2 h continuously to ensure the detection of seizure onset.

The timing of onset and offset of seizure attacks was identified by experienced pediatric neu-
rologists who assessed characteristic clinical manifestations and typical 3–4 Hz generalized
symmetric spike-wave discharges lasting>1.0 s. In this research, 15–20 s of EEG data using
monopolar montage with average reference in pre-ictal and ictal states were analyzed. Only
segments free of artifacts such as eye movements, blinks, muscle movements, or other artifacts
were visually identified and selected for analysis. Two sampling frequencies, 200 Hz and 1000
Hz, were used for analysis. The offline EEG data points were extracted for analysis.

To investigate the dynamic changes of EEG signals during different seizure phases, the EEG
signals without artifacts were selected and segmented into pre-ictal (10 s before seizure onset)
and ictal (intervals during onset and offset of seizure attacks) phases. The ictal phase last for
9–12 s.

Subjects
The EEG recordings were obtained from 21 children with absence epilepsy, aged 5–12 years.
The children were newly diagnosed to have absence epilepsy and were treatment naïve. Among
them, 13 (34 seizure episodes) were assessed using the digital EEG system (Nicolet) with a sam-
pling frequency of 200 Hz, while eight (21 seizure episodes) were evaluated using the digital
EEG system (Nihon Kohden) with a sampling frequency of 1000 Hz. The demographic data of
these children were collected from the Department of Pediatrics, National Taiwan University
Hospital.

Multiscale entropy
Entropy was regarded as the index of the degree of randomness of data points. In the MSE
analysis, the original EEG time series {x1,x2,. . .,xN} was first coarse-grained by the scale factor

(SF) τ to get different new EEG time series (Fig 1). The EEG time series fyðtÞi g in different scales
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could be calculated as follows:

yðtÞi ¼ 1

t

X jt

i ¼ ðj� 1Þtþ 1
xi; 1 � j � N

t=

Entropy was then calculated in different time series. SamEn is a measurement of the irregu-
larity of data points. The calculations of SamEn were expressed as follows:

SamEnðm; r;NÞ ¼ �ln
Cðmþ1ÞðrÞ
CmðrÞ

Where

CmðrÞ ¼ ðN �mÞ�1
X N �m

i
Cm

i ðrÞ

Therefore, Cm
i ðrÞ is the number of all probable pairs (i,j) with d<R Therein, d ¼ jxmi � xmj j

denoted the distance between points xmi and xmj in the space of dimensionm, r is a coefficient of

tolerance, SD is a standard deviation of original data, R represents the maximum tolerable dis-
tance, and N is the length of the time series. Various theoretical and clinical applications had
proven that SamEn had better statistical validity form = 1 or 2 and 0.1�r�0.25 [24]. In the
present study,m = 2, r = 0.15, R = r �SD were applied. Therefore, the value of SamEn could be
0–2.5 according to a previous study using 1000 random data points. The 2.5 indicates the data
like random number, and zero indicates that the data are predictable [18]. Furthermore, the
scale was set to 20, as in our previous study. Entropy was then calculated for each coarse-
grained time series and plotted as a function of the scale factor to get MSE. In the analysis of
MSE, SamEn is the entropy in scale 1.

Unlike SamEn, MSE observed the difference on different scales that represented diverse fre-
quencies [22,23]. The analysis of SamEn requires enough data points to calculate because it is
derived from statistical physics. For example, if you select the parameterm = 2 and r = 0.15 in
SamEn, the data points needed are 500–1000 points [18]. In MSE, the scale one is SamEn, and

Fig 1. The illustration of the coarse graining procedure for scales 1 to τ.

doi:10.1371/journal.pone.0134083.g001
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the data points should be sufficient to calculate SamEn. But the scale 2 is only half the data
points because scale 2 is computed by taking the average of every 2 points, and scale 3 is com-
puted by taking the average of every 3 points, and so on. In calculating the data points to scale
20, there may be insufficient data points for low sampling frequency such as 200 Hz. Because
most absence seizures last<15 s, it is impossible to get enough ictal data points for analysis in
low sampling frequency. In addition, short-lived transient effects may be better captured by
higher sampling frequency within short data epochs. Therefore, in the present study, the scale
factor was set at 1–10 for EEG data of 200 Hz and 1–20 for EEG data of 1000 Hz to get enough
data for analysis. This was performed to ensure that the shortest coarse-grained time series had
around 400–1000 data points.

Complexity index
By calculating the area between the curve of MSE and the axis of scale factors, the complexity
index (CI) over the time scales can be determined. CI was different from the irregularity com-
puted by SamEn. Considering the status from all scales (frequencies), MSE is a more straight-
forward way of presenting the complexity of cerebral EEG signals [27, 28]. Because CI was
closely related to the scale factor and larger scale factors required more data points to analyze,
only EEG data with 1000 Hz sampling rate was used in this part. Therefore, a total of eight
patients and 21 seizure episodes were used for analysis.

To understand the capability of CI to exhibit the brain’s circumstance, variations of CI from
the pre-ictal state to the ictal state were calculated in EEG. We estimated CI using 3 s epochs, in
15 s of pre-ictal and 15 s of ictal data. The CI value was calculated from 3 s data points rather
than 10 s data points to clarify the transient changes before ictal state. The 3 s period was used
because a 3 s period had 3000 point data for analysis and could be calculated to scale 5. The CI
changes using at least scale 5 could reach statistical significance in the ictal state in most chan-
nels. Through the CI calculations, investigations over the entire brain were more intuitively
performed on each channel area by marking different CI values into different colors.

Statistical analysis
The EEG files for analysis were available from the EEG workstation and the dataset for analysis
in this study could be obtained upon request. Statistical analysis for comparison between pre-
ictal and ictal states in each time scale was performed using the t-test and analysis of variance
(ANOVA). The CI differences in different channels between pre-ictal and ictal states were
compared by ANOVA, followed by post-hoc tests. Pearson correlations between different sei-
zures in the same patient or different seizures in different patients in the ictal and pre-ictal
states were calculated to investigate the relationship between different seizure episodes. Statisti-
cal significance was set at p< 0.05.

Results
Twenty-one patients with 55 absence seizure episodes were included in this study. All seizure
episodes showed typical clinical manifestations and 3 Hz generalized spike-waves in the EEG
during seizure episodes. The demographic data, including the sex, age of seizure onset, and
EEG signals are summarized in Table 1. The anti-epileptic drugs were prescribed after EEG
examinations and diagnosis.

Entropy of pre-ictal state versus ictal state
Results from the EEG data of 1000 Hz sampling frequency revealed more detailed information
and was calculated to a larger scale factor than those of 200 Hz (Fig 2). The points on 1000 Hz
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at scale 20 in Fig 2 were corresponding to the points on 200 Hz at scale 4. Differences in MSE
values in the pre-ictal and ictal states were also significantly larger in those using 1000 Hz sam-
pling frequency. The MSE values of 19 channels in the pre-ictal and ictal states are shown in
Fig 3. It showed the decrease of MSE in all channels during ictal state. The decrease of MSE in
all channels during ictal state indicated that the complexity of brain decreased and the brain
remained at a homogeneous activation state in ictal state. The results showed that SamEn, the
entropy in scale 1, had a relatively poor performance than MSE in detecting the difference
between pre-ictal and ictal states in absence seizures (Table 2). Most channels did not reveal
statistical significance in SamEn.

In MSE analysis, the difference in MSE became larger at larger scale factors and showed no
significant discrimination at smaller scale factors in channels of Fp1, Fp2, F7, F8, T3, T4, and
O2. MSE in all channels revealed statistically significant changes in the pre-ictal and ictal states
after scale 5. Comparing MSE changes in the inter-ictal state with age-matched control
(Table 3), there was no significant change in MSE, indicating that the change in MSE came
from the absence seizure. Because only new cases of absence seizures without medications were
enrolled, the MSE changes were not due to the medications.

Variation of complexity index
Entropy values that were computed to multi-scale were apt to show the complexity of the brain
more accurately. The CI further clarified the changes of brain network over multiple time

Table 1. Demographic data of children with absence epilepsy (n = 21). The EEG was done before anti-epileptic drug was given.

Case Sex Age of onset EEG Number of seizures Average duration of seizures (sec)

1 F 8y GSW, FS 3 7

2 M 5y GSW 2 9.5

3 F 6y GSW 2 8

4 M 6y GSW, FS 2 8.5

5 F 5y GSW, FS 2 8

6 F 7y GSW, FS 4 9

7 F 7y GSW 2 7.5

8 M 3y GSW 2 8

9 F 6y GSW, FS 4 9.3

10 M 9y GSW, FS 3 8

11 M 7y GSW, OS 2 9.5

12 F 6y GSW, OS 2 10.5

13 F 5y GSW 2 6.5

14 F 8y GSW, FS 3 7

15 F 5y GSW, OS 2 7

16 F 7y GSW, FS 4 8.2

17 F 6y GSW, FS, OS 3 8.5

18 M 7y GSW, CS, PS, OS 3 7.4

19 M 9y GSW, FS 4 9.3

20 F 8y GSW, FS 2 7.5

21 F 12y GSW 2 7

Total 7M/14F

Mean 6.8±1.9y 2.6±0.8 8.2±1.1 sec

Abbreviations: M, Male; F, Female; GSW, generalized spike-waves; FS, frontal spikes; OS, occipital spikes; PS, parietal spikes

doi:10.1371/journal.pone.0134083.t001
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scales. In this study, the sampling frequency also affected the CI, with higher CI in higher sam-
pling frequency for the pre-ictal state (data not shown). This indicated that higher sampling
frequency may be more sensitive to detect CI changes in the ictal state.

Changes in CI values in the pre-ictal and ictal states also varied in different channels (Fig 4
and Table 3). The occurrence of absence seizures (ictal state) decreased the CI in all channels
(Table 3). However, compared to changes in the occipital areas, the decrease of CI in F3, C3,
F4, C4, Cz, and Fz were significantly larger during seizures (p<0.01). The greater decrease in
CI during absence seizures in the frontal and central areas might support the fronto-central
cortical involvement of “cortico-thalamo-cortical circuity” in the occurrence of generalized
spike and wave discharges in absence seizures [4, 5, 7].

Furthermore, in order to understand the capability for exhibiting the brain’s circumstance
by CI, variations of CI from the pre-ictal to the ictal states of EEG signals were analyzed, with
3 s per interval (Fig 5). The CI changes in different time periods of 5 patients from channels Fz
and Cz were plotted. CI value is normally high in pre-ictal state, and decreases in ictal state as
shown in the Fig 5. Using correlation approach, CI changes in the ictal state from different

Fig 2. Themultiscale entropy from a single seizure in a single patient.Multiscale entropy of preictal (blue line) and ictal (red line) states from a single
seizure in a single patient, respectively, showing that multiscale entropy with higher sampling frequency (1000Hz, lower panel) can reveal greater difference
between ictal and pre-ictal states than lower sampling frequency (200Hz, upper panel). The curve also seems smoother and can be calculated to a larger
scale factor. Due to more data points in high sampling frequency, the points on high sampling frequency (lower panel) at scale 20 are corresponding to points
on low sampling frequency (upper panel) at scale 4. Each panel represented MSE from one seizure in one patient. The sample entropy was the entropy at
scale 1 (marking “*” in the figure).

doi:10.1371/journal.pone.0134083.g002
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seizure episodes of the same patient were significantly correlated. In contrast, the correlation of
CI values was poor among different patients in the ictal state and in different seizures in the
same patient in the pre-ictal state (data not shown). These indicated that CI changes were con-
sistent across different absence seizures of the same patient but were quite different from
patient to patient in ictal states.

In addition, even in the pre-ictal state, the correlation between different seizures in the same
patient was low. In order to display variations of CI more intuitively, the changes of CI in dif-
ferent time periods from pre-ictal states to ictal states were plotted from Patient 1 (Fig 6). From
this figure, a more intuitive way of investigating the CI variation in different time periods was
attained to determine the network dysfunction of the brain. The CI values were dramatically
reduced during the ictal state, especially over the frontal and central areas.

Fig 3. Themean of multi-scale entropy of pre-ictal and ictal states in all patients with sampling frequency of 1000 Hz. Pre-ictal state was represented
by the blue line with dots and ictal state was represented by the red line with triangles. The x-axis represented the scale factor and the y-axis represented the
multi-scale entropy. The error bars were standard errors. *p<0.01; op<0.05.

doi:10.1371/journal.pone.0134083.g003
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Discussion
Recent advances in understanding the pathophysiology of absence epilepsy suggest that
absence seizures may not be truly generalized seizures from the beginning, and various cortical
or sub-cortical activation preceding generalized seizures have been documented [4–7, 9–11].
The present study was designed to determine the spatial and temporal connectivity of brain in
absence seizures via measuring EEG complexity using MSE analysis. Our findings clearly dem-
onstrate that the complexity of EEG signals in the ictal state are decreased, apparently mainly
over the frontal and central regions, with a similar pattern in the same patient, whereas the

Table 2. Sample entropy in different channels in pre-ictal and ictal states, showing there were no sig-
nificant differences in most channels of pre-ictal and ictal state.

Sample Entropy (Mean±Standard error)

ictal preictal P value

Fp1 0.10±0.01 0.11±0.02 0.642

Fp2 0.11±0.00 0.11±0.02 0.872

F3 0.10±0.01 0.14±0.01 0.038

F4 0.10±0.01 0.15±0.02 0.050

Fz 0.10±0.00 0.13±0.01 0.068

F7 0.11±0.01 0.12±0.02 0.742

F8 0.12±0.01 0.12±0.02 0.993

C3 0.11±0.01 0.15±0.02 0.119

C4 0.11±0.01 0.16±0.02 0.101

Cz 0.10±0.01 0.14±0.02 0.081

T3 0.13±0.01 0.14±0.03 0.667

T4 0.13±0.01 0.18±0.03 0.285

T5 0.11±0.01 0.14±0.02 0.261

T6 0.11±0.01 0.15±0.02 0.204

P3 0.10±0.01 0.14±0.01 0.082

P4 0.11±0.01 0.15±0.02 0.090

Pz 0.10±0.01 0.13±0.02 0.138

O1 0.11±0.01 0.16±0.03 0.140

O2 0.10±0.01 0.13±0.02 0.237

doi:10.1371/journal.pone.0134083.t002

Table 3. The complexity index for age-matched controls and inter-ictal, pre-ictal and ictal states of absence seizures showing no difference in age-
matched controls, inter-ictal, and pre-ictal state. However, there was significant decrease of CI values in ictal state compared with pre-ictal state
(P < 0.05).

Channel F3 C3 P3 F4 C4 P4 T3 T5

Inter-ictal 12.2±3.0 12.6±1.6 12.9±1.5 13.5±1.5 12.7±1.9 12.7±1.7 11.4±3.4 12.4±1.1

Pre-ictal 10.5±2.8 11.9±2.5 11.1±3.4 11.6±2.8 11.6±2.7 11.6±2.9 11.6±2.8 11.6±2.9

Ictal 6.6±2.7 8.2±2.6 8.2±3.3 5.9±1.7 7.5±2.2 8.0±2.2 6.9±2.0 7.9±2.7

Control 11.7±2.2 11.8±2.6 12.9±1.6 10.5±3.6 11.8±3.0 9.6±2.4 10.9±1.6 11.9±2.6

Channel T4 T6 Fz Cz Pz O1 O2

Inter-ictal 11.5±1.9 12.7±1.4 11.8±1.7 11.2±2.1 11.7±1.2 12.4±1.1 11.8±1.1

Pre-ictal 11.4±2.8 11.4±2.8 9.6±2.5 11.2±3.2 11.7±2.8 11.7±2.7 11.7±2.6

Ictal 6.6±1.9 8.2±2.4 7.4±2.6 6.9±2.7 8.2±2.8 7.9±2.7 8.6±3.0

Control 11.5±2.2 11.4±3.6 10.2±3.3 11.5±2.8 11.0±2.4 12.6±2.1 11.5±0.5

doi:10.1371/journal.pone.0134083.t003
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correlation of the CI pattern in the ictal state is poor among different patients. Moreover, the
data herein support our observation that EEG signals with a sampling frequency of 1000 Hz
provide better resolution of serial complexity changes in a short time period from pre-ictal to
ictal states.

Changes in brain biological complexity can be revealed more clearly using the MSE method
rather than the irregularity calculated by the SamEn method. MSE analysis can distinguish dif-
ferences between pre-ictal and ictal states more clearly at a higher scale factor. Recently, the
scale-dependent Lyapunov exponent (SDLE) algorithm applied in heart rate variability has
been claimed to be better than other complexity measures such as the Hurst parameter, the
SamEn, and MSE [29]. Therefore, we may use SDLE algorithm to detect dynamical changes of

Fig 4. Themean of complexity index (CI) in pre-ictal and ictal states in all patients with sampling frequency of 1000Hz. Comparing CI changes in the
pre-ictal and ictal states in the occipital areas, the changes were significantly larger in F3, F4, Fz, C3, C4, and Cz. The error bars were standard errors.
*p<0.01.

doi:10.1371/journal.pone.0134083.g004

Fig 5. The variations of complexity index (CI) in different time period for five patients. Variations of CI at channels Fz and Cz in different time periods for
five patients showed consistent CI changes in different seizures during the ictal states for the same patient. In contrast, the CI changes in different patients
were not consistent. The different colors represented different seizure episodes in the same patients.

doi:10.1371/journal.pone.0134083.g005
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epileptic seizures from EEG recordings in the future. Another disadvantage of the present
research was that the patients were collected by sampling frequencies of both 1000 Hz and
200 Hz due to installing the newer machine recently. The points on 1000 Hz at scale 20 in Fig 2
corresponded to the points on 200 Hz at scale 4. According to sampling theory, we can only
capture 500 Hz and 100 Hz signals for sampling frequency 1000 and 200 Hz, respectively.
Therefore, by collecting EEG data using sampling frequency of 1000 Hz, it could get more data
points for analysis and lead to a longer scales when doing MSE analysis, and clarify more
detailed information of brain. If we can obtain the EEG data points in higher sampling fre-
quency, we may also clarify more functional change of the brain. Furthermore, the scale factors
in MSE analysis are also corresponding to frequency range in EEG. The MSE analysis at smaller
scale factors reflect temporal dynamical complexity of higher frequency signals, while larger
scale factors reflect those at lower frequencies [30, 31]. Therefore, MSE can be used to detect
the frequency spectrum like low frequency waves of delta, and theta, and high frequency waves
of alpha, beta, and gamma according to different scales [31]. Some diseases may significantly
reduce complexity at smaller scale factors but other diseases may show abnormalities at large
scale factors [30, 31]. In our case, the higher scale factors provide more difference in this popu-
lation indicating that absence seizure with 3 Hz spike-waves during ictal state were driven by
low frequency changes. However, this would be an interesting topic to investigate if MEG or
cortical recordings can be simultaneously recorded to do the comparison in the next stage
study.

As mentioned above, short-lived transient effects may be better captured by higher sampling
frequency within short data epochs, and shorter data epochs are also useful when the data are
irregular as in the case with EEG. Therefore, EEG signaling with sampling frequency of
1000 Hz can ensure the collection of enough data points in a shorter period. In addition, tem-
poral changes of CI and MSE in 1–2 s, especially in the pre-ictal state, can be demonstrated
more clearly using high sampling frequency, which cannot be obtained using low sampling
frequency.

The analysis of complexity of the EEG signals is thought to reflect the ability of the neuronal
network to adapt and function in a changing environment [24]. This study shows that entropy
values and the CI at the pre-ictal state have a higher value than those at the ictal state. The shift
from high-complexity towards low-complexity dynamics following transition to the ictal state
provides evidence that physiologic variability or heterogeneity of brain electrical activity are
lost at the ictal state. Similar results have been reported in temporal lobe epilepsy using other
non-linear measures [32]. The findings in the present study are also compatible with the gen-
eral hypothesis that decreased entropy or CI is associated with diseases such as epilepsy.

Fig 6. The variations of complexity index (CI) from epoch a to f in patient 1. Each epoch represented mean CI value calculated from 5 sec EEG data
points from the pre-ictal state to the ictal state. Changes in mean CI were more prominent over the frontal and central areas during ictal state. The top of the
figure was the front of the head and the bottom of the figure was the occipital area of the head. Blue color represented low CI value while red color
represented high CI value.

doi:10.1371/journal.pone.0134083.g006

Complexity of Multi-Channel Electroencephalogram Signal Analysis

PLOS ONE | DOI:10.1371/journal.pone.0134083 August 5, 2015 11 / 14



Through simultaneous EEG and EEG-fMRI analysis in some epileptic studies, the spatio-
temporal variation of brain activity can be detected clearly during seizure episodes [14, 33].
However, through CI analysis in different EEG channels, the brain’s situation during seizures
can be understood in an easier way. Previous EEG-fMRI studies show evidence of a variety of
cortical or sub-cortical activations preceding generalized seizure in absence epilepsy [9–11, 14].
In rat models of absence seizures, studies have showed a “cortical focus” within the perioral
region of the somatosensory cortex [34, 35]. Recent animal and magnetoencephalography
(MEG) studies further demonstrated that generalized spike and wave discharges may originate
from the lateral fronto-parietal cortical area [5, 7]. The results here also show that changes in
CI values in the pre-ictal and ictal states are most prominent over the frontal and central areas.
The CI values are dramatically reduced during the ictal state especially over the frontal area
(Fig 6). These may provide the evidence of frontal involvement in absence seizures as in previ-
ous EEG-fMRI studies [10, 13]. In the present study, the significance of drop in CI in Fig 5b
remained unknown. It did occur in some patients in pre-ictal state. In EEG-fMRI study [10,
13], there was activation of some brain areas before the onset of absence seizure in some
patients. We suppose that there is also decrease of CI in some areas of brain before the onset of
absence seizure in some patients. Because such changes are most prominent in MSE with a
sampling frequency of 1000 Hz, higher sampling frequency in MSE analysis may be needed to
obtain more information in investigating brain function. Measurements of MSE and CI in
childhood absence epilepsy may also help clarify the role of the cortical network in the genera-
tion of generalized spike-waves in the future.

Several theories about the generation and development of absence seizures have been pro-
posed in recent years [4]. Previous EEG-fMRI studies reveal that BOLD signal changes are con-
sistent across different absence seizures of one patient, but are quite different from patient to
patient [11]. In the present study, CI variation during different seizure episodes of the same
patient revealed a similar pattern with high correlation coefficients, suggesting that the brain
remains at a homogeneous activation state of similar degree in the same patient during differ-
ent absence seizures. In contrast, the correlation of CI variations is poor in different patients in
this study, implying clinical diversity and heterogeneity in absence patients.

In conclusion, the present study demonstrates a significant decrease of complexity during
ictal state in absence seizures, mainly in the frontal and central regions. A pattern of decreased
complexity is highly correlated in different absence episodes from the same patient but not
from patient to patient. The results corroborate the altered brain function in children with
absence epilepsy and the diverse pathophysiology of absence epilepsy. Lastly, MSE with a wide
range of time scales is a useful and sensitive method for exploring brain dysfunction in absence
seizures for further study.
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