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Abstract
Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a

statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States

Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-

returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are

given for future values of the exchange rate.

Introduction
Introduced and first documented by Satoshi Nakamoto in 2009, Bitcoin is a form of crypto-
currency—an “electronic payment system based on cryptographic proof” [1], instead of
traditional trust. [1] noted that buying and selling online has become reliant “almost exclu-
sively on financial institutions serving as trusted third parties to process electronic pay-
ments”. In other words, payments for online transactions must go through a company, such
as a bank or credit card issuer, to be checked for factors such as fraud and successful pay-
ment. This kind of system is based on trust, however these checks come at a price in the form
of increased transaction costs [1], meaning that we often see restrictions in the form of mini-
mum spend limits for electronic payments—i.e., on credit or debit cards. Bitcoin transactions
are non-reversible—they are “computationally impractical to reverse” [1] and can help to
reduce fraud.

Interest in Bitcoin has grown at an increasing pace in recent years. At the end of August
2013, the total available Bitcoins were valued at over 1.5 billion United Stated Dollars (USDs),
and in December 2013 the processing power of the Bitcoin network was claimed to be “roughly
300 times the combined power of the top 500 supercomputers” [2]. [3] states that this is
because supporters of Bitcoin see it as “an ideal currency for mainstream consumers and mer-
chants”. In short, the high liquidity, reduced costs and the high speed of Bitcoin’s partially
anonymous system are what make this currency so interesting [3].

From a wider perspective, Bitcoin is not currently controlled by a central governing body,
reducing privacy concerns. In addition, Bitcoin is not linked with any type of commodity, for
example, gold or silver [4]. Due to the decentralised nature of Bitcoin, the network is instead
controlled by its users. The Bitcoin system utilises a peer-to-peer network of all those who are
involved in creating and trading Bitcoins, to process and check all transactions. Therefore
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“each participant is obliged to maintain the entire transaction history of the system rendering
all transactions transparent” [4]. This in theory should create an incentive for all users to pro-
tect the Bitcoin network. The freedom of Bitcoin may also allow organisations such as Wiki-
Leaks to be funded and to carry out business with fewer restrictions. However, this freedom
along with increased interest and adoption from users means that it may aid and “facilitate
money laundering, tax evasion and trade in illegal drugs and child pornography” [3].

Bitcoin has properties which could make it important in commerce, the most significant
being low transaction costs [5]. As there is essentially no middle man when performing trans-
actions using Bitcoins, “there are few, if any, transaction fees associated with transfers” [6].
This is in comparison to traditional payment methods which can have significantly higher
transaction fees. Thus, in some cases, Bitcoin could provide a more feasible alternative pay-
ment method [6]. This has implications in the developed world, for example, allowing individ-
uals and businesses to carry out online transactions with little or no fees, reducing overall
costs. In particular, for transactions which require conversions between different currencies
(often incurring exchange rate fees), Bitcoin could offer a simpler and more universal pay-
ment system.

Similarly, for less economically developed countries (for simple monetary transfers between
two parties) services such as Western Union have traditionally been a popular way to send
money back home from overseas, or to another party within the same country. A flat or per-
centage fee is often incurred whilst sending money. Again, Bitcoin could allow for money to be
quickly and securely transferred, without the need for any additional fees. This would be hugely
beneficial to those from less economically developed countries.

Traditional purchase of goods and services online is dominated by credit and debit cards, or
PayPal. But where other digital currencies have failed to get a foothold, Bitcoin may not neces-
sarily succeed. [3] suggests that even if card use is becoming less popular, companies may be
able to reduce transaction fees in general, to compete with Bitcoin. On the other hand, Bitcoin
may instead be able to establish itself as a standard in micropayments. The relative cost of pro-
cessing lower value transactions is much greater for traditional payment methods, thus Bitcoin
has a competitive advantage [3].

Bitcoin as an international payment standard has its benefits, but its volatile price suggests
that it may still suffer from problems of traditional currencies. Therefore, Bitcoin could be con-
sidered as a currency exchange rate. However, some researchers argue that Bitcoin does not ful-
fil the criteria for it to be considered as a true currency. [4] claim that “Bitcoin is not a
denominated fiat currency”, however it has features similar to cash, for example, irreversibility
and partial anonymity. According to [7], the wild fluctuations in Bitcoin price cannot be
explained by economic and financial theory. Factors such as interest rates and inflation do not
exist, as there is no central bank overseeing the issuing of Bitcoin. Thus, Bitcoin price is “driven
solely by the investors’ faith in the perpetual growth” [7]. Further to this, [5] indicates that the
three criteria for Bitcoin to be a currency, being a unit of account; medium of exchange; store
of value; are not sufficiently met. International use of Bitcoin is still very limited, “indicating
that few people use it widely as a medium of exchange” [5]; Bitcoin can be traded on various
exchanges usually at different prices; the daily exchange against USD shows little correlation
with USD exchange rate against other major currencies.

Although Bitcoin can be considered to be relatively new, there has already been some initial
analysis into the cryptocurrency, and we provide a literature review here.

[2] study the links between social signals and Bitcoin price through a social feedback cycle.
Using data from Bitcoin exchanges, social media, Google search trends and the user base of Bit-
coin, they found two main positive feedback loops, social and user adoption cycle. An increase
in popularity of Bitcoin leads to increases in searches for Bitcoin and more social media
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coverage. Increases in the number of users leads to an increase in Bitcoin popularity and cover-
age which contributes to the effect of the social cycle. However, their results fail in explaining
sudden negative changes in Bitcoin price.

[7] studies the relationship between digital currencies, such as Bitcoin, and search queries
through Google Trends and Wikipedia. Price level was shown to be significantly positively
related to search terms, with the relation being bi-directional, in that searches affects prices and
prices affect searches.

[8] provide an empirical analysis of Bitcoin-Exchange Risk. They note that whilst Bitcoin
has seen the greatest adoption of any cryptocurrency thus far, it has also attracted the attention
of criminals. Focusing on the risk of Bitcoin users from currency exchanges, their survival anal-
ysis shows that “exchange probability of closure is inversely correlated to its trade volumes”
[8]. Supporting this analysis, there is an indication that “popular exchanges are more likely to
suffer security breaches” [8], something which one might expect.

[9]’s analysis looked into whether Bitcoin intra-network transaction and on-exchange trad-
ing volumes are linked, and also tries to determine if Bitcoin can be classed as an asset or a cur-
rency. Using data from 2011 to 2013, including trading data, transaction data and important
Bitcoin dates, results indicate that the interest generated from new users of Bitcoin impacts on
the volume of Bitcoins traded at the Bitcoin exchange, but not in the overall system. The
authors note that as a currency, Bitcoin would need to be a “means of trade, a vehicle to store
value, or a unit of account in order to compare the value of different goods or services” [9].
Thereby hypothesising that increased adoption of Bitcoin will increase overall Bitcoin network
volume. However, if Bitcoin is an asset, the hypothesis is that an increase in Bitcoin adoption is
positively linked to an increase in Bitcoin exchange volume. Therefore, from the results it
appears that new users adopt Bitcoin with “speculative investment” as an objective, rather than
using it as currency to purchase goods and services.

Some of the latest research comes from [10], modelling and predicting the Bitcoin/USD
exchange rate through the application of a non-causal autoregressive model. Using data from
daily closing rates of Bitcoin/USD from February 2013-June 2013, results from the analysis
show that the Bitcoin/USD rate “displays episodes of local trends, which can be modelled and
interpreted as speculative bubbles” [10]. [10] suggest that these speculative bubbles may arise
as a result of speculative trading of Bitcoin—further supporting [9]’s conclusion that new Bit-
coin users treat it as an asset.

[11] look at the structure and evolution of the Bitcoin transaction network. The study shows
two phases in the lifetime of the Bitcoin system, initially when user adoption was low, Bitcoin
was “more of an experiment than a real currency”. However, after it started to gain momen-
tum, Bitcoin started to behave more like a real currency. In addition, they found that in the sec-
ond phase the accumulation of Bitcoins through wealth distribution converges to a stable
stretched exponential distribution.

The study of [4] measures volatility of Bitcoin exchange rate against six major currencies.
Using raw annualised data over a four year period from 2010 to 2014 and adjusted data, tak-
ing account of volume of transactions, they find that Bitcoin shows the highest annualised
volatility of percentage change in daily exchange rates. However, accounting for the (low) vol-
ume of Bitcoin trades, volatility of the Bitcoin exchange rate is significantly reduced, showing
a more stable exchange rate. The authors note that claims of volatility and risk in Bitcoin
should be interpreted carefully. The significance of the low trading volume of Bitcoin means
that the volatility of Bitcoin will appear greater, and any trading will have a greater effect than
with traditional currency.

Using the data for the period 2010–2013, [12] show “Bitcoin investment exhibits very high
volatility but also very high returns. In addition, for holders of well diversified portfolios, high
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risk is compensated by low correlations with other assets. Including even a small proportion of
Bitcoins in a well-diversified portfolio may dramatically improve risk-return characteristics”.

Using a known technique that is robust in detecting bubbles, [13] investigated the existence
of bubbles in the Bitcoin market. They detected a number of short-lived bubbles over the
period 2010–2014. Three of these were huge appearing in the latter part of the period 2011–
2013 and lasting from 66 to 106 days.

Through wavelet coherence analysis, [14] examines Bitcoin price formation and the main
drivers of price. The study shows that factors such as “use in trade, money supply and price
level” have an impact on long term price. A general increase in price attracts people to create
Bitcoins, thus profit arises from the creation of Bitcoins over time. Although price is deter-
mined through supply and demand, it is also influenced by the interest of investors. In periods
of significant growth or decline in price, good and bad news were found to push the price fur-
ther up or down, respectively.

As there is no intermediary, there is no bid-ask spread for the Bitcoin exchange rate. The
lack of bid-ask spreads, that is, the absence of transaction costs, can effect the movement of
quote prices, hence shape the statistical properties or returns. There is a huge literature on the
effects of transaction costs and bid-ask spreads on returns: [15] find evidence to suggest that
“market-observed average returns are an increasing function of the spread; asset returns to
their holders, net of trading costs, increase with the spread; and, there is a clientele effect,
whereby stocks with higher spreads are held by investors with longer holding periods”; [16]
find evidence to suggest that “returns on high-spreads stocks are higher, but less spread-sensi-
tive, than the returns on low-spread stocks”; [17] finds evidence to suggest that serial covari-
ances of returns are strongly negatively correlated with the square of quoted spreads; [18] find
evidence to suggest that quoted spreads are larger when larger trades take place; and so on.
This suggests that any effect on the return of Bitcoin must be related to other factors such as
news relating to the digital currency.

Two recent papers on fitting of distributions to exchange rate data (not just Bitcoin) are
[19] and [20]. [19] fitted the generalized Lambda, skew t, normal inverse Gaussian and normal
distributions as well as the Johnson’s family of distributions to the data. [20] fitted the Student’s
t, asymmetric Student’s t, hyperbolic, generalized hyperbolic, generalized Lambda, skew t, nor-
mal inverse Gaussian and normal distributions to the data.

One of the known features of Bitcoin is that it is highly volatile, see, for example, [4] and
[12]. Hence, accurate fitting of its variation is so important. The aim of this paper is to provide
a formal statistical analysis of the exchange rate of Bitcoin versus the USD using a wide range
of known parametric distributions in finance. The statistical analysis presented is the most
comprehensive using parametric distributions for any kind of exchange rate data.

Other motivation for this paper are: i) the exchange rate of Bitcoin to the USD behaves very
differently to the exchange rate of major currencies, see Section 2; ii) there have been studies
investigating the best fitting distributions for the exchange rate of major currencies, but none
so far for the exchange rate of Bitcoin; iii) risk measures like the value at risk and expected
shortfall can be easily computed from the fitted parametric distributions; iv) out of sample val-
ues can be easily predicted from the fitted parametric distributions.

The contents of this paper are organized as follows. Section 2 presents the Bitcoin data used
here. Some summary features of the data are described. Section 3 presents fifteen of the most
popular parametric distributions in finance. Several of these distributions were introduced in
the last few years. Section 4 analyzes the exchange rate data for Bitcoin using the distributions
in Section 3. Among other things future predictions are given for the exchange rate. Finally,
some conclusions and future work are noted in Section 5.
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Data
The data are daily Bitcoin Exchange Rate on Bitstamp (Bitcoin versus USD) from the 13th of
September 2011 to the 8th of May 2014. The data were obtained from the database Quandl,
see https://www.quandl.com/data/BITCOIN/BITSTAMPUSD Note that there are no data
before the 13th of September 2011. We have chosen to use data from the Bitstamp Bitcoin
exchange instead of the Bitcoin Price Index published by CoinDesk for the following reasons.
We wanted to focus on a specific Bitcoin exchange based in Britain, and one which has a signif-
icant trading volume. Bitstamp fulfils both these criteria, being located in London and being
the world’s second largest Bitcoin trading volume. Bitstamp exchange started trading on 13th
September 2011, however, CoinDesk launched its Bitcoin Price Index only on 11th September
2013. Therefore, we feel that using the Bitcoin Price Index would lead to a sample size which
may be too small and unreliable to conclude any results from. The Bitcoin Price Index repre-
sents an average of Bitcoin prices across leading global exchanges. Therefore, the index is easily
affected when a certain exchange approaches a downturn or a suspension. In addition, the Bit-
coin Price Index omits Bitcoin exchange if the price is not updated for more than thirty min-
utes. Overall, both the Bitcoin Index Price and Bitstamp exchange price overlap and follow
each other very closely, so there is little difference from choosing one over the other.

The log-returns of the exchange rate are plotted in Fig 1. Some summary statistics of the
log-returns are given in Table 1. We see that the log-returns have mean and median almost
equal to zero, are negatively skewed and have a peakedness greater than that of the normal dis-
tribution. Also shown in Table 1 are the summary statistics of the exchange rates to USD of
some of the major currencies: Australian Dollar, Brazilian Real, Canadian Dollar, Swiss Franc,
Euro, British Pound and Japanese Yen. We see that the behavior of Bitcoin is sharply different
compared to these currencies: its minimum is much smaller, its first quartile is much smaller,
its median is much larger, its mean is much larger, its third quartile is much larger, its maxi-
mum is much larger, its interquartile range is much wider, its range is much wider, its skewness
is much more negative, its kurtosis is much more peaked, its standard deviation is much larger,
its variance is much larger and its coefficient of variation is much smaller. These results are
consistent with findings in [4] and [5].

Fitting of a statistical distribution usually assumes that the data are independent and identi-
cally distributed (i.e., randomness), have no serial correlation, and have no heteroskedasticity.

We tested for randomness using [21]’s rank test, [22]’s test, the difference sign test, the rank
test, [23]’s runs test, the turning point test, and the test due to [24] and [25]. The corresponding
p-values based on log-returns and squares of log-returns are given in Table 2. We tested for no
serial correlation using [26] [27] [28]’s method and the method due to [29] and [30]. The cor-
responding p-values based on log-returns and squares of log-returns are given in Table 3.
These values are supported by the plots of the autocorrelation function and the partial autocor-
relation function shown in Figs 2, 3, 4 and 5. We tested for no heteroskedasticity using [31]’s
test. The corresponding p-values based on log-returns and squares of log-returns are given in
Table 4. All of the tests performed in Tables 2, 3 and 4 are non-parametric in nature, i.e., no
distributional assumptions are made about the data.

It is not uncommon that exchange rate data are independent and identically distributed,
have no serial correlation, and have no heteroskedasticity. Some published examples of such
exchange rate data can be found in [19] and [20].

Section 3 discusses fifteen distributions for the log-returns of the exchange rate of Bitcoin.
These distributions are the normal, Student’ t, logistic, Laplace, exponential power, skew nor-
mal, skew t, generalized t, skewed exponential power, asymmetric exponential power, skewed
Student’s t, asymmetric Student’s t, normal inverse gamma, hyperbolic and generalized
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hyperbolic distributions. The choice of these fifteen distributions is not arbitrary. Some of
these distributions have been used by many others to fit exchange rate data: [32] fitted the nor-
mal distribution to the exchange rates of Japanese Yen to USD, Deutsche Mark to USD, British
Pound to USD, Japanese Yen to Deutsche Mark, Japanese Yen to British Pound and Deutsche
Mark to British Pound; [33] fitted the hyperbolic distribution; [34] fitted the skewed t distribu-
tion to the exchange rate of Polish Zloty to USD; [35] fitted the Laplace distribution to the
exchange rate of Euro to USD; [36] fitted the Student’s t and skewed Student’s t distributions
to the exchange rates of British Pound to USD, Euro to USD and Japanese Yen to USD; [37] fit-
ted the skewed t distribution to the exchange rates of Mexican Peso, Brazilian Real, Euro, Swiss
Franc, Canadian Dollar, Japanese Yen, British Pound and Australian Dollar to USD; [38] fitted
the normal, Student’s t and normal inverse gamma distributions to the exchange rates of Brit-
ish Pound, Canadian Dollar, Euro, Deutsche Mark, Japanese Yen, and Swiss Franc to USD;

Fig 1. Log-returns of the exchange rate of Bitcoin.

doi:10.1371/journal.pone.0133678.g001
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[39] fitted the normal distribution to the exchange rate of Peso in Mexico to USD; [40] fitted
the skewed Student’s t and generalized hyperbolic distributions to the exchange rates of Euro
and Japanese Yen to USD; [19] fitted the skew t, normal inverse Gaussian and normal distribu-
tions to the exchange rates of Japanese Yen, Brazilian Real, Australian Dollar, Canadian Dollar,
Swiss Franc, Euro, British Pound, Mexican Peso and Turkish Lira to USD; [20] fitted the skew
t, normal inverse Gaussian, normal, Student’s t, asymmetric Student’s t, hyperbolic and gener-
alized hyperbolic distributions to the same exchange rate data as in [19]; and so on. We feel
that the collection used here is the most comprehensive collection of distributions used to ana-
lyze any exchange rate data set anywhere.

Table 1. Summary statistics log-returns of the exchange rate of Bitcoin versus those of Australian Dollar, Brazilian Real, Canadian Dollar, Swiss
Franc, Euro, British Pound and Japanese Yen.

Statistics Bitcoin OZ BR CA CH EU UK JP

Minimum −0.664 -0.067 -0.118 -0.050 -0.055 -0.046 -0.045 -0.046

First quartile −0.012 -0.004 -0.005 -0.003 -0.004 -0.004 -0.003 -0.003

Median 0.004 -0.0002 -0.00005 0 0 0 -0.00006 0.00009

Mean 0.005 -0.00005 0.0001 -0.00005 -0.0001 -0.00004 0.00001 0.00004

Third quartile 0.025 0.004 0.004 0.003 0.004 0.003 0.003 0.004

Maximum 0.446 0.088 0.097 0.043 0.085 0.038 0.039 0.037

Interquartile range 0.037 0.008 0.009 0.006 0.008 0.007 0.006 0.007

Range 1.109 0.155 0.215 0.094 0.139 0.085 0.084 0.083

Skewness −1.503 0.866 0.110 -0.076 0.358 -0.145 0.055 -0.253

Kurtosis 22.425 12.707 13.826 5.765 9.170 2.662 4.413 3.889

Standard deviation 0.069 0.008 0.010 0.006 0.007 0.006 0.006 0.006

Variance 0.005 0.00007 0.0001 0.00003 0.00005 0.00004 0.00003 0.00004

Coefficient of variation 15.156 -157.291 96.649 -108.894 -57.625 -143.498 419.938 147.998

doi:10.1371/journal.pone.0133678.t001

Table 2. p-values of the tests for randomness.

Test p-values using

log-returns log-returns2

Bartels (1982) 0.123 0.066

Cox and Stuart (1955) 0.613 0.433

Difference sign 0.238 0.112

Rank 0.352 0.223

Wald and Wolfowitz (1940) 0.243 0.202

Turning point 0.129 0.121

Box and Pierce (1970) 0.302 0.256

doi:10.1371/journal.pone.0133678.t002

Table 3. p-values of the tests for no serial correlation.

Test p-values using

log-returns log-returns2

Durbin and Watson 0.839 0.766

Godfrey and Breusch 0.297 0.265

doi:10.1371/journal.pone.0133678.t003
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Distributions Fitted
Let X denote a continuous random variable representing the log-returns of the exchange rate
of Bitcoin. Let f(x) denote the probability density function (pdf) of X. Let F(x) denote the
cumulative distribution function (cdf) of X. We suppose X follows one of fifteen possible distri-
butions, the most popular parametric distributions used in finance. They are specified as
follows:

• the normal distribution [41], [42] with

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp �ðx � mÞ2

2s2

� �
for −1< x<1, −1< μ<1 and σ> 0;

Fig 2. Autocorrelation function of the log-returns of the exchange rate of Bitcoin.

doi:10.1371/journal.pone.0133678.g002
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• the Student’s t distribution [43] with

f ðxÞ ¼ KðnÞ
s

1þ ðx � mÞ2
s2n

� ��ð1þnÞ=2

for −1< x<1, −1< μ<1, σ> 0 and ν> 0, where KðnÞ ¼ ffiffiffi
n

p
B n=2; 1=2ð Þ and B(�, �)

denotes the beta function defined by

Bða; bÞ ¼
Z 1

0

ta�1ð1� tÞb�1dt;

Fig 3. Partial autocorrelation function of the log-returns of the exchange rate of Bitcoin.

doi:10.1371/journal.pone.0133678.g003
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• the logistic distribution with

f ðxÞ ¼ 1

s
exp � x � m

s

� �
1þ exp � x � m

s

� �n o�2

for −1< x<1, −1< μ<1 and σ> 0;

• the Laplace distribution [44] with

f ðxÞ ¼ 1

2s
exp � j x � m j

s

	 


for −1< x<1, −1< μ<1 and σ> 0;

Fig 4. Autocorrelation function of the squared log-returns of the exchange rate of Bitcoin.

doi:10.1371/journal.pone.0133678.g004
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• the exponential power distribution [45] with

f ðxÞ ¼ b
2sGð1=bÞ exp � jx � mj

s

	 
b
( )

Fig 5. Partial autocorrelation function of the squared log-returns of the exchange rate of Bitcoin.

doi:10.1371/journal.pone.0133678.g005

Table 4. p-values of the tests for no heteroskedasticity.

Test p-values using

log-returns log-returns2

Breusch and Pagan 0.403 0.299

doi:10.1371/journal.pone.0133678.t004
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for −1< x<1, −1< μ<1, σ> 0 and β> 0, where Γ(�) denotes the gamma function
defined by

GðaÞ ¼
Z 1

0

ta�1 exp ð�tÞdt;

• the skew normal distribution [46] with

f ðxÞ ¼ 2

s
�

x � m
s

� �
F l

x � m
s

� �
for −1< x<1, −1< μ<1, −1< λ<1 and σ> 0, where ϕ(�) and F(�) denote,
respectively, the pdf and the cdf of the standard normal distribution;

• the skew t distribution [47] with

f ðxÞ ¼ KðnÞ
s

1þ ðx � mÞ2
s2n

� ��ð1þnÞ=2

þ 2K2ðnÞlðx � mÞ
s2 2F1

1

2
;
1þ n
2

;
3

2
;� l2ðx � mÞ2

s2n

	 

for −1< x<1, −1< μ<1, −1< λ<1, σ> 0 and ν> 0, where 2F1(a, b; c; x) denotes
the Gauss hypergeometric function defined by

2F1ða; b; c; xÞ ¼
X1

k¼0

ðaÞkðbÞk
ðcÞk

xk

k!
;

where (e)k = e(e + 1)� � �(e + k − 1) denotes the ascending factorial;

• the generalized t distribution [48] with

f ðxÞ ¼ t
2sn1=nBðn; 1=tÞ 1þ 1

n
x � m
s

��� ���t� ��ðnþ1=tÞ

for −1< x<1, −1< μ<1, σ> 0, ν> 0 and τ> 0;

• the skewed exponential power distribution [49] with

f ðxÞ ¼ C

exp � 1

p
m� x
2sa

h ip� �
; if x � m;

exp � 1

p
x � m

2sð1� aÞ
� �p� �

; if x > m

8>>>><>>>>:
for −1< x<1, −1< μ<1, α> 0, σ> 0 and p> 0, where C = 1/[2σA0 (p)] and A0(x) =
x(1/x)−1Γ(1/x);

• the asymmetric exponential power distribution [49] with

f ðxÞ ¼ C

exp � 1

p1

m� x
2sa

h ip1� �
; if x � m;

exp � 1

p2

x � m
2sð1� aÞ
� �p2� �

; if x > m

8>>>><>>>>:

Statistical Analysis of the Exchange Rate of Bitcoin

PLOS ONE | DOI:10.1371/journal.pone.0133678 July 29, 2015 12 / 27



for −1< x<1, −1< μ<1, σ> 0, α> 0, p1 > 0 and p2 > 0, where C is given by

C ¼ 1

2saA0ðp1Þ þ 2sð1� aÞA0ðp2Þ
;

• the skewed Student’s t distribution [50] with

f ðxÞ ¼ KðnÞ
s

1þ 1

n
x � m
2sa

h i2� ��
nþ 1

2
; if x � m;

1þ 1

n
x � m

2sð1� aÞ
� �2( )�

nþ 1

2
; if x > m

8>>>>>>>>><>>>>>>>>>:
for −1< x<1, −1< μ<1, 0< α< 1 and ν> 0;

• the asymmetric Student’s t distribution [50] with

f ðxÞ ¼ 1

s

a
a�

Kðn1Þ 1þ 1

n1

x � m
2sa�

h i2� ��
n1 þ 1

2
; if x � m;

1� a
1� a� Kðn2Þ 1þ 1

n2

x � m
2sð1� a�Þ
� �2( )�

n2 þ 1

2
; if x > m

8>>>>>>>>><>>>>>>>>>:
for −1< x<1, −1< μ<1, 0< α< 1, ν1 > 0 and ν2 > 0, where

a� ¼ aKðn1Þ
aKðn1Þ þ ð1� aÞKðn2Þ

;

• the normal inverse gamma distribution [51] with

f ðxÞ ¼ ðg=dÞl affiffiffiffiffiffi
2p

p
K�1=2ðdgÞ

½d2 þ ðx � mÞ2��1 K�1 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx � mÞ2

q	 


for −1< x<1, −1< μ<1, δ> 0, α> 0 and β> 0, where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
and Kν(�)

denotes the modified Bessel function of the second kind of order ν defined by

KnðxÞ ¼
pcscðpnÞ

2
I�nðxÞ � InðxÞ½ �; if n =2 Z;

lim
m!n

KmðxÞ; if n 2 Z;

8>><>>:
where Iν(�) denotes the modified Bessel function of the first kind of order ν defined by

InðxÞ ¼
X1

k¼0

1

Gðkþ nþ 1Þk!
x
2

� �2kþn

;
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• the hyperbolic distribution [51] with

f ðxÞ ¼ ðg=dÞl a�1=2ffiffiffiffiffiffi
2p

p
K1ðdgÞ

½d2 þ ðx � mÞ2�1=2 K1=2 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx � mÞ2

q	 


for −1< x<1, −1< μ<1, δ> 0, α> 0 and β> 0, where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
;

• the generalized hyperbolic distribution [51] with

f ðxÞ ¼ ðg=dÞl a1=2�lffiffiffiffiffiffi
2p

p
KlðdgÞ

½d2 þ ðx � mÞ2�l�1=2 Kl�1=2 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx � mÞ2

q	 

for −1< x<1, −1< μ<1, −1< λ<1, δ> 0, α> 0 and β> 0, where

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
.

Several of these distributions are nested: the normal distribution is the limiting case of the Stu-
dent’s t distribution as ν!1; the normal distribution is the particular case of the exponential
power distribution for β = 2; the Laplace distribution is the particular case of the exponential
power distribution for β = 1; the normal distribution is the particular case of the skew normal
distribution for λ = 0; the Student’s t distribution is the particular case of the skew t distribution
for λ = 0; the exponential power distribution is the particular case of the skewed exponential
power distribution for α = 1/2; the Student’s t distribution is the particular case of the general-
ized t distribution for τ = 2; the skewed exponential power distribution is the particular case of
the asymmetric exponential power distribution for p1 = p2; the Student’s t distribution is the
particular case of the skewed Student’s t distribution for α = 1/2; the skewed Student’s t distri-
bution is the particular case of the asymmetric Student’s t distribution for ν1 = ν2; the skewed
exponential power distribution is the particular case of the asymmetric exponential power dis-
tribution for p1 = p2; the normal inverse gamma distribution is the particular case of the gener-
alized hyperbolic distribution for λ = −1/2; the hyperbolic distribution is the particular case of
the generalized hyperbolic distribution for λ = 1; and so on.

The fifteen distributions include heavy tailed and light tailed distributions. The normal,
logistic, Laplace, exponential power, skew normal, skewed exponential power and asymmetric
exponential power distributions have light tails. The Student’s t, skew t, generalized t, skewed
Student’s t, asymmetric Student’s t, normal inverse gamma, hyperbolic and generalized hyper-
bolic distributions have heavy tails.

Each distribution was fitted by the method of maximum likelihood. That is, if x1, x2, . . ., xn
are independent observations on X then the parameters of each distribution are the values
maximizing the likelihood

LðΘÞ ¼
Yn
i¼1

f ðxi;ΘÞ

or the log-likelihood

lnLðΘÞ ¼
Xn
i¼1

ln f ðxi;ΘÞ;

whereΘ ¼ y1; y2; . . . ; ykð Þ0 is a vector of parameters specifying f(�). We shall letbΘ ¼ by1 ;
by2 ; . . . ;

byk

� �0
denote the maximum likelihood estimate of Θ. The maximization was

performed using the routine nlm in the R software package [52]. The standard errors of bΘ
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were computed by approximating the covariance matrix of bΘ by the inverse of observed
information matrix, i.e.,

cov ðbYÞ �

@2lnL

@y21

@2lnL
@y1@y2

� � � @2lnL
@y1@yk

@2lnL
@y2@y1

@2lnL

@y22
� � � @2lnL

@y2@yk

..

. ..
. . .

. ..
.

@2lnL
@yk@y1

@2lnL
@yk@y2

� � � @2lnL

@y2

k

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

�1

Y¼ Θ̂

:

�������������������
Many of the fitted distributions are not nested. Discrimination among them was performed

using various criteria:

• the Akaike information criterion due to [53] defined by

AIC ¼ 2k� 2 lnLðbΘÞ;

• the Bayesian information criterion due to [54] defined by

BIC ¼ k lnn� 2 lnLðbΘÞ;

• the consistent Akaike information criterion (CAIC) due to [55] defined by

CAIC ¼ �2 lnLðbΘÞ þ kð lnnþ 1Þ;

• the corrected Akaike information criterion (AICc) [56] defined by

AICc ¼ AICþ 2kðkþ 1Þ
n� k� 1

;

• the Hannan-Quinn criterion [57] defined by

HQC ¼ �2 lnLð bΘÞ þ 2k ln lnn;

• the Kolmogorov-Smirnov statistic [58], [59] defined by

KS ¼ sup
x

1

n

Xn
i¼1

Ifxi � xg � bFðxÞ�����
�����;

where I{�} denotes the indicator function and bFð�Þ the maximum likelihood estimate of F(x);
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• the Anderson-Darling statistic [60] defined by

AD ¼ �n�
Xn
i¼1

ln bFðxðiÞÞ þ ln 1� bFðxðnþ1�iÞÞ
h in o

;

where x(1) � x(2) � � � � � x(n) are the observed data arranged in increasing order.

The smaller the values of these criteria the better the fit. For more discussion on these criteria,
see [61] and [62].

The likelihood ratio test [63] can be used to discriminate among nested distributions.
According to this test, if Distribution 1 has k1 parameters and yields a log-likelihood of ln L1
and Distribution 2, a particular case of Distributions 1, has k2 < k1 parameters and yields a log-
likelihood of ln L2, then the former should be preferred if 2ðlnL1 � lnL2Þ > w2k1�k2 ;0:95 , where w2

n;a

denotes the 100α percentile of a chi-square random variable with ν degrees of freedom.

Results and Discussion
The fifteen distributions in Section 3 were fitted to the data described in Section 2. The method
of maximum likelihood was used. The log-likelihood values, the values of AIC, AICc, BIC,
HQC, CAIC and the p-values of KS, AD for the fitted distributions are shown in Table 5. The
parameter estimates and their standard errors for the fitted distributions are shown in Table 6.

We can see from Table 5 that the Laplace distribution gives the smallest values for −ln L,
AIC, AICc, BIC, HQC, CAIC and the largest p-values among all the two-parameter distribu-
tions. The exponential power distribution gives the smallest values for −ln L, AIC, AICc, BIC,
HQC, CAIC and the largest p-values among all the three-parameter distributions. The general-
ized t distribution gives the smallest values for −ln L, AIC, AICc, BIC, HQC, CAIC and the
largest p-values among all the four-parameter distributions. The generalized hyperbolic distri-
bution gives the smallest values for −ln L, AIC, AICc, BIC, HQC, CAIC and the largest p-values
among all the five-parameter distributions.

Overall, the generalized hyperbolic distribution gives the best fit by having the smallest val-
ues for −ln L, AIC, AICc, BIC, HQC, CAIC and the largest p-values. The normal distribution

Table 5. Log-likelihoods and the five criteria for the fitted distributions.

Distribution −ln L AIC AICc BIC HQC CAIC KS AD

Normal 1196.425 2396.851 2396.863 2406.564 2400.551 2408.564 0.009 0.011

Student t -1554.827 -3103.653 -3103.628 -3089.084 -3098.102 -3086.084 0.138 0.134

Logistic -1391.531 -2779.063 -2779.05 -2769.35 -2775.362 -2767.35 0.024 0.036

Laplace -1497.184 -2990.368 -2990.355 -2980.655 -2986.667 -2978.655 0.119 0.080

EP -1560.005 -3114.01 -3113.985 -3099.441 -3108.459 -3096.441 0.218 0.325

Skew normal -1196.425 -2386.851 -2386.825 -2372.281 -2381.299 -2369.281 0.019 0.018

Skew t -1556.337 -3104.674 -3104.632 -3085.249 -3097.273 -3081.249 0.177 0.149

Generalized t -1565.963 -3123.926 -3123.884 -3104.5 -3116.525 -3100.5 0.378 0.406

SEP -1560.14 -3112.28 -3112.237 -3092.854 -3104.878 -3088.854 0.216 0.276

AEP -1567.824 -3125.648 -3125.584 -3101.365 -3116.396 -3096.365 0.472 0.418

SST -1556.808 -3105.616 -3105.573 -3086.19 -3098.214 -3082.19 0.199 0.205

AST -1558.258 -3106.516 -3106.452 -3082.233 -3097.264 -3077.233 0.211 0.268

NIG -1565.278 -3122.557 -3122.514 -3103.131 -3115.155 -3099.131 0.334 0.341

Hyperbolic -1497.392 -2986.783 -2986.741 -2967.357 -2979.381 -2963.357 0.106 0.073

Generalized hyperbolic -1570.229 -3130.458 -3130.395 -3106.176 -3121.206 -3101.176 0.484 0.483

doi:10.1371/journal.pone.0133678.t005
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gives the worst fit by having the largest values for −ln L, AIC, AICc, BIC, HQC, CAIC and the
smallest p-values. The skew normal distribution gives the second worst fit by having the second
largest values for −ln L, AIC, AICc, BIC, HQC, CAIC and the second smallest p-values. With
respect to p-values, all but the normal, skew normal and logistic distributions provide adequate
fits at the five percent level.

The normal inverse gamma and the hyperbolic distributions are particular cases of the gen-
eralized hyperbolic distribution. The use of the likelihood ratio test shows that neither of them
provide as good a fit as the generalized hyperbolic distribution.

One should not conclude that the generalized hyperbolic distribution gives the best fit
because it has the largest number of parameters. Each of the five criteria (AIC, AICc, BIC,
HQC, CAIC) has a factor penalizing for every new parameter added. The factor is 2 for the
AIC, ln n for the BIC, ln n for the CAIC and 2 ln ln n for the HQC. So, more parameters do not

Table 6. Fitted distributions, parameter estimates and standard errors.

Distribution Parameter estimates and standard errors

Normal mb¼ 4:534� 10�3ð2:228� 10�3Þ, sb¼ 6:868� 10�2ð1:581� 10�3Þ
Student t nb¼ 1:389ð1:026� 10�1Þ, mb¼ 3:858� 10�3ð9:195� 10�4Þ,

sb¼ 2:134� 10�2ð1:197� 10�3Þ
Logistic mb¼ 5:391� 10�3ð1:540� 10�3Þ, sb¼ 2:892� 10�2ð8:345� 10�4Þ
Laplace mb¼ 3:753� 10�3ð1:170� 10�3Þ, sb¼ 3:804� 10�2ð1:241� 10�3Þ
EP mb¼ 3:996� 10�3ð1:490� 10�4Þ, sb¼ 2:819� 10�2ð1:368� 10�3Þ,

bb¼ 5:871� 10�1ð2:982� 10�2Þ
Skew normal mb¼ 4:534� 10�3ð3:256� 10�1Þ, sb¼ 6:868� 10�2ð1:597� 10�3Þ,

lb¼ 6:006� 10�9ð5:942Þ
Skew t mb¼ 9:774� 10�4ð1:865� 10�3Þ, sb¼ 2:133� 10�2ð1:206� 10�3Þ,

lb¼ 1:639� 10�1ð9:492� 10�2Þ, nb¼ 1:379ð1:015� 10�1Þ
Generalized t mb¼ 3:026� 10�3ð1:186� 10�3Þ, sb¼ 2:310� 10�2ð3:695� 10�3Þ,

tb¼ 9:471� 10�1ð1:541� 10�1Þ, nb¼ 3:042ð1:423Þ
SEP mb¼ 4:000� 10�3ð1:507� 10�4Þ,

sb¼ 2:812� 10�2ð1:366� 10�3Þ, pb¼ 5:842� 10�1ð2:963� 10�2Þ,
ab¼ 4:936� 10�1ð1:298� 10�2Þ

AEP mb¼ 9:067� 10�4ð3:054� 10�4Þ, sb¼ 2:776� 10�2ð1:363� 10�3Þ,
p1
b¼ 5:435� 10�1ð2:813� 10�2Þ, p2

b¼ 6:028� 10�1ð3:706� 10�2Þ,
ab¼ 4:462� 10�1ð1:464� 10�2Þ

SST mb¼ 1:945� 10�3ð1:299� 10�3Þ, sb¼ 6:295� 10�2ð3:105� 10�3Þ,
nb¼ 1:380ð1:015� 10�1Þ, ab¼ 4:627� 10�1ð1:859� 10�2Þ

AST mb¼ 2:394� 10�4ð1:557� 10�3Þ, sb¼ 6:310� 10�2ð3:112� 10�3Þ,
n1
b¼ 1:193ð1:331� 10�1Þ, n2b¼ 1:593ð1:804� 10�1Þ, ab¼ 4:363� 10�1ð2:329� 10�2Þ

NIG mb¼ 3:504� 10�3ð2:305� 10�4Þ, db¼ 2:070� 10�2ð1:055� 10�3Þ, ab¼ 3:916ð2:989Þ,
bb¼ 1:976� 10�1ð1:003� 10�1Þ

Hyperbolic mb¼ 3:023� 10�3ð6:032� 10�4Þ, db¼ 1:068� 10�5ð9:945� 10�3Þ,
ab¼ 2:628� 101ð1:207� 101Þ, bb¼ 5:185� 10�1ð3:492� 10�1Þ

Generalized
hyperbolic

mb¼ 2:948� 10�3ð8:964� 10�4Þ, db¼ 1:217� 10�2ð2:578� 10�3Þ, ab¼ 7:731ð1:517Þ,
bb¼ 3:447� 10�1ð5:186� 10�1Þ,lb¼ �1:390� 10�1ð1:112� 10�1Þ

doi:10.1371/journal.pone.0133678.t006
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necessarily imply better fits. The generalized hyperbolic distribution gives the best fit only
because it captures the data significantly better than other distributions.

The probability plot and the density plot of the fitted generalized hyperbolic distribution are
shown in Figs 6 and 7. The fitted pdf is also plotted on the log scale. Both figures suggest that
the fit is good. The fit appears reasonable also in the tails.

The value at risk (VaR) and expected shortfall (ES) are two of the most important measures
of financial risk. For the best fitting distribution, the VaR and the ES with probability p can be

Fig 6. Probability plot for the fit of the generalized hyperbolic distribution.

doi:10.1371/journal.pone.0133678.g006
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estimated by

ðbg=bdÞblba1=2�blffiffiffiffiffiffi
2p

p
Kbl ðbdbgÞ Z cVaRp

�1
bd2 þ ðx � bmÞ2h ibl�1=2

Kbl�1=2
ba ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibd2 þ ðx � bmÞ2q	 


dx ¼ p

Fig 7. Empirical histogram and fitted pdf of the generalized hyperbolic distribution (left), Empirical pdf and fitted pdf of the generalized hyperbolic
distribution plotted on log scale (right).

doi:10.1371/journal.pone.0133678.g007
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and

cESp ¼
1

p

Z p

0

dVaRqdq;

respectively, where bg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiba2 � bb2

q
. The plot of dVaRp versus p is shown in Fig 8. The plot ofcESp versus p is shown in Fig 9. Also shown in these figures are historical estimates of the VaR

Fig 8. Historical estimates of the VaR and estimates based on the fitted generalized hyperbolic distribution.

doi:10.1371/journal.pone.0133678.g008
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and the ES. The fitted values for the VaR and the ES appear very close to the historical
estimates.

The estimates of the VaR and the ES can be inferred from Figs 8 and 9, respectively. The
estimates for p = 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.9, 0.99, 0.999, 0.9999, 0.99999 are given in
Table 7. The two tails in Fig 8 are highly steeped, confirming that the returns of Bitcoin are
highly volatile.

Fig 9. Historical estimates of the ES and estimates based on the fitted generalized hyperbolic distribution.

doi:10.1371/journal.pone.0133678.g009
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An out of sample performance of these risk measures can be assessed by a backtest measure
due to [64]:

1

2ta

X
xi2za

xi �cESa

h i�����
�����þ 1

2da

X
xi2za

xi �cESa

h i�����
�����; ð1Þ

where

da ¼
Xn
i¼1

I xi �cESa < qa
n o

for α small,

da ¼
Xn
i¼1

I xi �cESa > qa
n o

Table 7. Fitted estimates of VaR and ES.

p VaR ES

0.1 −5.015 × 10−2 −1.138 × 10−1

0.01 −2.043 × 10−1 −2.926 × 10−1

0.001 −4.108 × 10−1 −5.105 × 10−1

0.0001 −6.420 × 10−1 −7.477 × 10−1

0.00001 −8.865 × 10−1 −9.960 × 10−1

0.9 6.023 × 10−2 −9.360 × 10−3

0.99 range 2.282 × 10−1 3.432 × 10−3

0.999 4.539 × 10−1 3.975 × 10−3

0.9999 7.065 × 10−1 4.446 × 10−3

0.99999 9.739 × 10−1 4.525 × 10−3

doi:10.1371/journal.pone.0133678.t007

Table 8. The backtest measure for the fitted distributions.

Distribution α = 0.001 α = 0.999

Normal 5.908 5.335

Student t 3.253 3.599

Logistic 5.067 4.608

Laplace 3.819 4.063

EP 1.109 2.364

Skew normal 5.235 5.283

Skew t 2.979 2.921

Generalized t 0.589 1.686

SEP 1.739 2.624

AEP 0.093 1.492

SST 1.899 2.845

AST 1.884 2.786

NIG 0.925 2.236

Hyperbolic 4.715 4.208

Generalized hyperbolic 0.052 0.134

doi:10.1371/journal.pone.0133678.t008

Statistical Analysis of the Exchange Rate of Bitcoin

PLOS ONE | DOI:10.1371/journal.pone.0133678 July 29, 2015 22 / 27



for α larger,

za ¼ xi : xi �cESa < qa
n o

for α small,

za ¼ xi : xi �cESa > qa
n o

for α large,

za ¼ xi : xi < dVaRa

n o
for α small,

za ¼ xi : xi > dVaRa

n o
for α large, and qα is the αth empirical quantile of xi � cESa; i ¼ 1; 2; . . . ; n

n o
. Smaller backtest

measures correspond to better forecasting.
The values of Eq (1) for α = 0.001, 0.999 and the fifteen distributions are shown in Table 8.

We see that the generalized hyperbolic distribution gives the smallest values. These values
appear reasonably small. The largest values are given by the normal distribution.

Finally, we give predictions for the exchange rate of Bitcoin. Let Yi denote the exchange rate
on the ith day counting from the 13th of September 2011. Then Xi = ln Yi − ln Yi−1 is the log-
return on the ith day. We can write the exchange rate on the nth day (counting from the 13th
of September 2011) as

Yn � Y0 ¼ exp
Xn
i¼1

Xi

 !
:

We suppose Y0 is a deterministic variable taking the value 5.97, the value suggested by the data
set. So,

Yn ¼ 5:97þ exp
Xn
i¼1

Xi

 !
¼ 5:97þ exp ðTÞ

say.
According to our results, Xi can be assumed to be independent and identical generalized

hyperbolic random variables. The generalized hyperbolic random variable does have a closed
form characteristic function [51]. Hence, by the inversion theorem of [65], the cdf of T can be
expressed as

FTðtÞ ¼
1

2
� bgnbl
pKnbl ðbdbgÞ

Z 1

0

s�1 Im
Knbl bd ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiba2 � ðbb þ isÞ2

q	 

exp½isðnm� tÞ�

½ba2 � ðbb þ isÞ2��nbl=2
8>><>>:

9>>=>>;ds;

where i ¼ ffiffiffiffiffiffiffi�1
p

and Im(�) denotes the imaginary part. The cdf of Yn is therefore

FYn
ðyÞ ¼ FTð ln ðy � 5:97ÞÞ:

Various high and low percentiles of Yn for n = 1000, 2000, 3000, 4000, 5000 are given in
Table 9. These predictions can be reliable and accurate at least in the short term given the
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goodness of fit to the data and given the small values of the backtest measure. The extreme
worst case scenario could occur if rules and regulations prohibit Bitcoin being used or entered
into countries and markets. This will lead to a deterioration in confidence of Bitcoin investors.
The extreme best case scenario could lead to Bitcoin being used as an alternative for Paypal or
even as the main currency in many countries.

The numbers in Table 9 are consistent with the observations “. . . the most notable aspect of
this forecast is the uncertainty. Confidence intervals are very wide, so the overall confidence in
the point forecast is low. With such high volatility, the best an investor or user of Bitcoins
could hope for is to have advance warning of dramatic crashes” of [66].

Conclusions
We have analyzed the exchange rate of Bitcoin versus USD using fifteen of the most popular
parametric distributions in finance, the most comprehensive collection of distributions ever fit-
ted to any exchange rate data. We have found that the generalized hyperbolic distribution gives
the best fit, as assessed by the log-likelihood value, AIC value, AICc value, BIC value, HQC
value, CAIC value, probability plot and the density plot.

We have given predictions for the log-returns of the exchange rate based on the VaR and
the ES, the two most popular financial risk measures. In particular, the log-returns will be
greater than 2.282 × 10−1 with 1 percent chance and will be less than −2.043 × 10−1 with 1 per-
cent chance. Also, the log-returns will be greater than 4.539 × 10−1 with 0.1 percent chance and
will be less than −4.108 × 10−1 with 0.01 percent chance.

We have also given predictions for the exchange rate at future times taken in steps of one
thousand days (approximately three years). In particular, the exchange rate in about six years
from the 13th of September 2011 could exceed 10172920 with 1 percent chance and could be
less than 13.36 with 1 percent chance. Also, the exchange rate in about nine years from the
13th of September 2011 could exceed 4637660718 with 1 percent chance and could be less than
146.519 with 1 percent chance.

These conclusions are consistent with the following: “Bitcoin exchange rates exhibit some-
what complicated dynamics. In the past 24 months, the USD-BTC exchange rate increased
more than 50-fold” [67]; “Bitcoin investment exhibits very high volatility but also very high
returns” [12].

Some future work are to use nonparametric or semiparametric distributions to analyze the
exchange rate data.

Table 9. Predictions for the exchange rate of Bitcoin at day n (counting from the 13th of September 2011).

Percentile level n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

0.1 11.904 182.635 6863.276 305360 14844735

0.01 6.599 13.360 146.519 3435.949 98169.76

0.001 6.092 6.696 14.163 134.777 2508.388

0.0001 6.002 6.077 6.760 14.613 128.040

0.00001 5.980 5.990 6.074 6.798 14.838

0.9 1467.006 425537.8 95054327 18508171925 3.301 × 1012

0.99 13791.29 10172920 4637660718 1.648 × 1012 4.992 × 1014

0.999 71142.51 103590788 79559056488 4.388 × 1013 1.958 × 1016

0.9999 274621.4 699752429 8.256 × 1011 6.539 × 1014 4.014 × 1017

0.99999 887173.1 3674309279 6.293 × 1012 6.824 × 1015 5.526 × 1018

doi:10.1371/journal.pone.0133678.t009
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