
RESEARCH ARTICLE

GDSCalc: A Web-Based Application for
Evaluating Discrete Graph Dynamical
Systems
Sherif H. Elmeligy Abdelhamid1, Chris J. Kuhlman2*, Madhav V. Marathe2, Henning
S. Mortveit2, S. S. Ravi3

1Computer Science Department, Virginia Tech, Blacksburg, Virginia, United States of America, 2 Virginia
Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America, 3 Computer Science
Department, University at Albany—SUNY, Albany, New York, United States of America

* ckuhlman@vbi.vt.edu

Abstract
Discrete dynamical systems are used to model various realistic systems in network science,

from social unrest in human populations to regulation in biological networks. A common

approach is to model the agents of a system as vertices of a graph, and the pairwise interac-

tions between agents as edges. Agents are in one of a finite set of states at each discrete

time step and are assigned functions that describe how their states change based on neigh-

borhood relations. Full characterization of state transitions of one system can give insights

into fundamental behaviors of other dynamical systems. In this paper, we describe a dis-

crete graph dynamical systems (GDSs) application called GDSCalc for computing and

characterizing system dynamics. It is an open access system that is used through a web

interface. We provide an overview of GDS theory. This theory is the basis of the web appli-

cation; i.e., an understanding of GDS provides an understanding of the software features,

while abstracting away implementation details. We present a set of illustrative examples to

demonstrate its use in education and research. Finally, we compare GDSCalc with other

discrete dynamical system software tools. Our perspective is that no single software tool

will perform all computations that may be required by all users; tools typically have particular

features that are more suitable for some tasks. We situate GDSCalc within this space of

software tools.

Introduction

Background and Motivation
Civil disobedience [1], addiction [2], emotional behavior [3], social media [4], biology [5], and
finance [6] are some of the research topics that are studied using agent-based modeling. Many
simulations in these fields represent their populations (of proteins, neurons, institutions,
humans) as networks, with vertices and edges denoting agents and their interactions, respec-
tively. One goal of simulation is to understand how information, behaviors, and other

PLOSONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 1 / 24

a11111

OPEN ACCESS

Citation: Elmeligy Abdelhamid SH, Kuhlman CJ,
Marathe MV, Mortveit HS, Ravi SS (2015) GDSCalc:
A Web-Based Application for Evaluating Discrete
Graph Dynamical Systems. PLoS ONE 10(8):
e0133660. doi:10.1371/journal.pone.0133660

Editor: Ramesh Balasubramaniam, University of
California, Merced, UNITED STATES

Received: August 23, 2014

Accepted: June 30, 2015

Published: August 11, 2015

Copyright: © 2015 Elmeligy Abdelhamid et al. This
is an open access article distributed under the terms
of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by Defense
Threat Reduction Agency (DTRA) Comprehensive
National Incident Management System Contract
(CNIMS) Contract HDTRA1-11-D-0016-0001; DTRA
Grant HDTRA1-11-1-0016; National Institutes of
Health (NIH) MIDAS Grant 5U01GM070694-11;
Department of Energy (DOE) Grant DE-SC0003957;
NSF NetSE Grant CNS-1011769; and NSF SDCI
Grant OCI-1032677. SHEA is funded as a graduate
student by the government of Egypt. CJK, MVM, and
HSM are funded on all contracts. SSR is funded by

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0133660&domain=pdf
http://creativecommons.org/licenses/by/4.0/

contagions propagate through a networked population. There are fundamental aspects of net-
work dynamics common to these and other domains, and other aspects that are domain-
specific.

In this work, we present an open access, web-based application called GDSCalc (or GDSC),
which uses a discrete dynamical systems formulation referred to as a graph dynamical system
(GDS) [7]. (Other names include finite dynamical systems and generalized cellular automata.)

Informally, a GDS consists of a network; a set of states, an element of which is assigned to
each vertex; a function for each vertex that describes how the agent changes its state; and an
update procedure that specifies the sequencing of vertex function execution. A GDS computes
dynamics by evaluating vertex functions that have dependencies encoded by the (dependency)
network, at each time step. A GDS is defined formally below.

The GDSC application can be used for both research and education. As evidence for the for-
mer point, we note that three works [8–10] used GDSC to identify experimentally dynamical
system behaviors that were then rigorously proved as general characterizations of GDSs. Thus,
GDSC is a useful tool for experimental mathematics and computational mathematics, where
computational studies are used to guide formulation of theorems and provide insights for their
proofs. Furthermore, computational results are also useful in their own right; e.g., to explain
experimentally-observed behavior of biological systems [5, 11]. Finally, GDSC will be used in a
university network science course in Fall 2015.

GDSC works on small to moderate size networks. The reason for this is inherent in the prob-
lem of computing the complete dynamics of a GDS: the number of state transitions that must be
calculated for an n-vertex graph and Boolean (i.e., 2-state) vertex set can be as large as n! � 2n. For
a 100-vertex graph, this is 10188 state transitions. Nonetheless, specific reasoning can be done for
a much larger class of networks. Furthermore, the theorems alluded to above are constructed for
arbitrary numbers of vertices; i.e., the mathematical results are applicable to large (finite) n.

GDSs generalize concepts such as cellular automata, Boolean networks, graph automata,
and synchronous and sequential discrete dynamical systems. We will return to this topic when
we discuss other software systems. GDSs are closely related to a host of other models, such as
finite automata, discrete recurrent Hopfield networks, finite state machines, and systolic arrays
(see [12] for further references). GDS is a general model of computation which can simulate
general and resource-bounded Turing machines [12].

Contributions
Major contributions of this paper and GDSC follow.

1. Theoretical and software foundations of GDSCalc capabilities. We discuss the major ele-
ments of GDS theory which provide the basis for the web-application. In particular, the the-
ory is designed to produce amental model [13] (as well as a formal model) for the user,
which is then reflected in the user interface (UI), compute engine, and results of GDSC.

2. Illustrative examples using GDSCalc. We provide four examples that highlight the useful-
ness of GDSC for classroom use and research. Although our focus here is on research, our
examples will also bring out the usefulness of GDSC for educational purposes. (Terms used
here are defined below.) These examples also address features of the system. The first example
describes how GDSCwas used to find a class of GDS, based on trees (acyclic graphs), that gen-
erate particular long-term dynamics: a user-specified limit cycle size. The second example
addresses stability and evolution. It illustrates how GDSC was used to find classes of GDS that
produce arbitrarily large limit cycles, and limit cycles that form undirected binary hypercubes
in attractor graphs. Both of these results significantly extend the state-of-the-art on system

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 2 / 24

NSF NetSE contract. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

stability. A third illustrative use case departs from binary or Boolean vertex state systems to
investigate dynamical systems which have any finite number of vertex states. We established
what to our knowledge are the first theoretical results of their kind on large state sets, identify-
ing conditions that guarantee that the only long-term dynamics of a system are fixed points,
and that these systems can produce bifurcations. These first three sets of results are our own.
In a fourth example, we illustrate that GDSC can produce results in the literature [5] from
other researchers, demonstrating that GDSC is applicable to research beyond ours. We
emphasize that in the first three examples, the experimental results were used to develop intui-
tion and concrete data that enabled us to achieve a primary aim: to rigorously prove phenom-
ena about dynamical systems. This justifies our earlier claim that GDSC can be used for
experimental and computational mathematics. Furthermore, these examples demonstrate the
range of applications that can be investigated with GDSC. Although each set of results can
potentially be used in multiple applications, our first through fourth sets of results were moti-
vated by general systems, evolution, social sciences, and biology, respectively. We note that
these examples illustrate the human-computer interactive nature of problem solving possible
with GDSC. For the first three examples, the problems being addressed can only be defined at
a high level (e.g., does a GDS exist that has a requisite set of dynamical properties?). Since
there are no known algorithmic solutions to these problems, they require interactive systems
[14] that enable a user to test many sets of inputs.

3. Comparisons of dynamical systems software tools. We compare GSDC with other dynam-
ical systems tools. We also describe several other dynamical system models which serve as
background for the comparisons. GDSC provides unique features not found in other tools.
For example, our tool is web-based, meaning that a user need not concern herself with com-
piling software, third-party libraries, software upgrades, commercial software purchase, sys-
tem compatibility issues, and high performance resources needed for many of the
computations. We also note that GDSC will not perform some analyses available with other
software. Our position is that GDSC is a useful tool for some classes of problems, but that
other tools are better suited for other problems. An analyst is best served by having access to
a collection of tools so that she may select one that is appropriate for a particular task.

The GDSC online environment [15] contains supporting materials including: a PowerPoint
presentation for teachers and researchers to introduce/overview the system to users; a user and
systems manual; videos that describe how the tool provides immediate usability [16]; and a list
of relevant publications.

Organization. GDS is formally introduced in the next section, with an example to make the
concepts concrete. Research-driven examples are used to demonstrate the utility of the GDSC
system; these examples are taken from real research projects using published data. Finally, we
itemize features of our system and compare GDSC to other dynamical systems software.

Analysis
In this section, we formally present the GDS. Then, to make the ideas concrete, we present two
vertex functions for vertex state update, followed by examples of GDSs. Variants of the GDS
formalism can be found in [17]. In the last subsection, we make a few comments about the
GDSC software, relating it to the GDS model.

Graph Dynamical System Formalism
A GDS is denoted by S(X, F,W, K). Let X denote a directed graph, called a dependency graph,
with vertex set v[X] = {1, 2, . . ., n} and edge set e[X]. We use the convention that directed edge

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 3 / 24

(u, v) means that the state of vertex u is used to determine the next state of vertex v. To each
vertex v we assign a state xv 2 K and refer to this as the vertex state; K is the vertex state set.
The 1-neighborhood of a vertex v is the set of vertices adjacent to v in X. Let n[v] denote the
sequence of vertices in the 1-neighborhood of vertex v sorted in increasing order such that for
each u 2 n[v], there exists a directed edge (u, v) 2 e[X]. (If v 2 n[v], meaning that there is a
directed self-loop, then the 1-neighborhood is closed.) In other words, each such u is an in-
neighbor of v, and din(v) = jn[v]j, where din is the in-degree of v. We write the sequence x[v] of
vertex states corresponding to the vertices in n[v] as

x½v� ¼ ðxn½v�ð1Þ; xn½v�ð2Þ; . . . ; xn½v�ðdinðvÞÞÞ :

We refer to x[v] as the restricted state. Here, n[v](i) is the ith entry in the sequence. We call x
= (x1, x2, . . ., xn) the (system) state. We denote the (system) state and restricted state at time t
as x(t) and x(t)[v], respectively.

The dynamics of changes in vertex states are governed by a sequence F ¼ ðfvÞnv¼1 of vertex
functions where each fv:K

din(v) ! Kmaps as

xvðt þ 1Þ ¼ fvðxðtÞ½v�Þ :

That is, the state of vertex v at time t+1 is given by fv evaluated for the restricted state x[v] at
time t. To reduce notation, we will often omit the time t from the restricted state.

An update schemeW governs how the list of vertex functions assemble to a graph dynam-
ical system map (see e.g. [7, 18])

F : Kn�!Kn

producing the system state at time t+1 from that at time t; i.e., x(t+1) = F(x(t)).
We first address the synchronous and sequential update schemes. In the former case we

have the synchronous (parallel) GDS map

Fðx1; x2; . . . ; xnÞ ¼ ðf1ðx½1�Þ; f2ðx½2�Þ; . . . ; fnðx½n�ÞÞ :

We refer to this subclass of GDS as synchronous dynamics systems (SyDS), since all vertex
functions are executed simultaneously (i.e., in parallel); it is sometimes referred to as general-
ized cellular automata. In the latter case we consider permutation update sequences. We first
introduce the notion of X-local functions. Here, the X-local function Fv:K

n ! Kn is given by

Fvðx1; . . . ; xnÞ ¼ ðx1; . . . ; xv�1; fvðx½v�Þ; xvþ1; . . . ; xnÞ ;

i.e., Fv updates only the vth component of the system state. Using π = (π1, . . ., πn) 2 SX (the set
of all permutations of v[X]) as an update sequence, the corresponding asynchronous (or
sequential) GDS map Fπ:K

n ! Kn is given by

Fp ¼ Fpn
� Fpn�1

� � � � � Fp2
� Fp1

;

which is the composition of the X-local functions. We refer to this class of asynchronous sys-
tems as (permutation) sequential dynamical systems (SDS).

A generalization of the two previous update schemes is block sequential. In this scheme,
the vertices are partitioned into a sequence of q sets or blocks B = (B1, B2, . . ., Bq). The vertex
functions for the vertices in each block are executed simultaneously, with sequential ordering
between consecutive blocks. Let πB = (πB1

, . . ., πBq
) be a block permutation. We have the X-

local function, for l 2 {1, . . ., q}, FπBl:K
n ! Kn, where the ith entry in FπBl is the identity map if

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 4 / 24

vertex i =2 Bl and is fi if vertex i 2 Bl. We have the block sequential GDS map

FpB
¼ FpBq

� FpBq�1
� � � � � FpB2

� FpB1
;

and refer to it as a block sequential dynamical system (BSDS). When the size of each block is
one, a block sequential GDS map reduces to a sequential GDS map, and when all vertices are in
one block, the block sequential map reduces to a synchronous GDS map. We describe all three
types of maps here because different works in the literature may use only one of the update
methods.

To this point, we have described fair word orders; that is, each vertex appears exactly once
in a (block) permutation. Unfair word orders [18], where vertices may appear more than once
in a (block) permutation, are also studied. If unspecified, the convention is to assume a fair
word order.

The phase space Γ(F) of the GDS map F is a directed graph with vertex set Kn and edge set
f x;FðxÞð Þ j x 2 Kng. A state x for which there exists a positive integer p such that Fp(x) = x is a
periodic point, and the smallest such integer p is the period of x. If p = 1 we call x a fixed
point of F. A state that is not periodic is a transient state. Classically, the omega-limit set of x,
denoted by ω(x), is the set of accumulation points of the sequence {Fk(x)}k � 0. In the finite
case, the omega-limit set (also called a (limit) cycle, (periodic) orbit, limit set, or attractor) is
the unique periodic orbit reached from x under F.

Given two update sequences π and π0, if Fπ and Fπ0 give the exact same state transitions; i.e.,
Fπ(x) = Fπ0(x) for every x 2 Kn, then the GDS maps are equal; i.e., Fπ = Fπ0, and we say that the
maps are functionally equivalent. If the limit cycle structures for the two maps are the same,
to within an isomorphism, then we say the two maps are cycle equivalent [7]. Cycle equiva-
lence describes long-term dynamics. If two maps are functionally equivalent, then they are
cycle equivalent. Functional and cycle equivalence can be computed for any pair of GDSs, irre-
spective of update sequence.

Example Vertex Functions
First, we introduce threshold and bithreshold vertex functions. We confine ourselves to Bool-
ean systems so that K = {0,1}. We write din for din(v) and assume that v 2 n[v]. A Boolean
threshold function θv, k, din : K

din ! K is defined by

yv;k;dinðx1; . . . ; xdinÞ ¼
(
1; if svðx1; . . . ; xdinÞ � k and

0; otherwise;
ð1Þ

where svðx1; . . . ; xdinÞ ¼j f1 � j � din j xj ¼ 1g j.
Threshold functions are used in modeling biological systems [5, 19], and social behaviors

(e.g., joining a revolt, technology adoption, spread of rumors, and other social contagions), see,
e.g., [20–23]. A bi-threshold function is a function θv, k01, k10, d

in : Kdin ! K defined by

yv;k01 ;k10 ;dinðx1; . . . ; xdinÞ ¼
(yv;k01 ;din

; if xv ¼ 0;

yv;k10 ;din
; if xv ¼ 1 :

ð2Þ

We call k01 the up-threshold and k10 the down-threshold. The up-threshold k01 denotes the
minimum number of vertices in n[v] that are required to be in state 1 in order for v to transi-
tion to 1 when its state is 0. When xv = 1, if the number of vertices in n[v] that are in state 1
(including v, in a closed neighborhood) is at most k10−1, then v transitions to 0. Otherwise xv
does not change. Alternatively, using σv, we have the following equivalent description. If we let

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 5 / 24

σv = σv(x1, . . ., xdin) for vertex v, then v transitions from state 0 to state 1 if σv� k01. A vertex v
transitions from 1 to 0 if σv < k10. Otherwise, xv remains unchanged.

When k01 = k10, the bi-threshold function behaves like a standard threshold function.
These two thresholds are integers (without loss of generality), and the effective ranges of the

thresholds are k01 2 [0, din+1] and k10 2 [1, din+2]. When k01 = 0 for v, the vertex will transition
from state 0 to 1, irrespective of the states of its neighbors. When k01 = din+1, v will remain in
state 0 irrespective of the states of its neighbors. However, from a practical standpoint, we
allow k01 2 N because this enables thresholds to be more easily specified. For example, if we
have a collection of vertices Vc whose states should remain 0, then it is easier to set k01 = n for
all v 2 Vc (since xv = 0, v cannot have n vertices in its closed neighborhood that are in state 1).
This value of k01 = n applies to all vertices in Vc without inspecting their degrees. In an analo-
gous manner, k10 = din+2 assigned to v ensures that it always transitions down, from 1 to 0.
The limiting case occurs when v =2 n[v], because in this case, v and all of its din neighbors could
be in state 1. We have that the number of vertices in state 1 is din+1< k10 = din+2, which
ensures the down-transition to 0. Similarly, when xv = 1, if we set k10 = 1, then v will never tran-
sition down because it will never be true that the number of vertices in state 1 in the closed
neighborhood of v is< k10.

A second vertex function is the nor function for a Boolean system; nor: Kdin ! K, defined by

norðx1; . . . ; xdinÞ ¼ Pdin

j¼1ð1þ xjÞ ð3Þ

where all (1+xj) are modulo 2. Hence, the only way for a nor vertex function to evaluate to 1 is
for all inputs to have state 0. GDSs that utilize nor functions are studied because they have
interesting properties, such as limit cycles in phase spaces are not fixed points [18].

GDS: Illustrative Examples
We provide phase spaces for GDS maps wherein the dependency graph X is a bidirected Circle4
graph on four vertices, the vertex state set K = {0,1}, and all vertex functions are nor functions.
We compare the phase spaces of the synchronous GDS, and particular sequential and block
sequential GDSs. Fig 1 provides the graph and three phase spaces. The top phase space is for
the synchronous GDS; the middle phase space is for a sequential GDS where π = (1,2,3,4); and
the lower phase space is for a block sequential GDS with πB = ([1, 2],3,4). The block sequential
permutation has blocks B1 = {1,2}, B2 = {3}, and B3 = {4}, meaning that f1 and f2 execute in par-
allel, followed by f3, and then f4, and hence is close to the sequential permutation.

Given the state (0,0,0,0), the next state is F(0,0,0,0) = (1,1,1,1) for synchronous update,
Fπ(0,0,0,0) = (1,0,1,0) for sequential update (with the particular permutation), and FπB(0,0,0,0)
= (1,1,0,0) for the specified block permutation. Hence, the next states are different for the three
GDSs.

Overall, it is apparent that the three phase spaces are different. The long-term dynamics are
also different, as described by the limit cycles. The sequential GDS has one 7-cycle; the syn-
chronous GDS contains 2-cycles with multiplicity 3 (i.e., there are three 2-cycles); and the
block sequential GDS has one 2-cycle (i.e., multiplicity 1).

In each GDS, state (0,0,1,1) is a transient state (it is not an element of a limit cycle). In the
sequential and synchronous systems, it is part of a transient of length 1; i.e., there is one transi-
tion from state (0,0,1,1) before the system reaches a state on a limit cycle. This is the maximum
transient length for these two GDSs. In contrast, for block sequential update, state (0,0,1,1) is
part of a transient of length 3. In this system, this is the maximum transient length, and there
are 10 transients of length 3.

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 6 / 24

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 7 / 24

A basin of attraction, as used here, is the set of all states that (eventually) transitions to, or
is contained in, an attractor. For example, in the synchronous GDS, the two states (0,1,0,0) and
(0,0,0,1) form a 2-cycle attractor, and since there are no transient states that (eventually) transi-
tion to these two states, these two states form the basin of attraction for this attractor. There are
three basins of attraction for the synchronous GDS. For each of the sequential GDS and the
block sequential GDS, there is one attractor and one basin of attraction; this means that all
states eventually transition to the respective limit cycle.

No pair of these three GDSs are functionally equivalent because they do not produce the
same state transitions; i.e., the same phase spaces. Based on the cycle lengths and multiplicities
given above, no two GDSs are cycle equivalent. See Table A in S1 File for GDSC analyses and
data described in this example.

Overview of GDSC Analysis
Fig 2 provides a simple activity diagram for specifying an analysis with GDSC. These activities
reflect the theoretical model presented above. The user specifies a graph X. Thirteen graph tem-
plates are available for composing graphs, which include lattices, cliques, bicliques, and trees. A
vertex function fv is assigned to each vertex v. Currently, 15 types of vertex functions exist in
the library from which a user can choose. The threshold, bithreshold, and nor functions of Eqs
(1), (2), and (3) are three such types. Since many of these functions take user-specified inputs,
the range of functions that can be evaluated is significantly greater than 15. An update scheme
is then chosen. Any of the schemes described above can be selected, including fair and unfair
word orders. As the fourth step, evaluation of all system states is the typical choice. After a job
is submitted, its status can be monitored. Upon completion, results in the form of an XML file
that contain all system state transitions, all functionally equivalent GDS maps, and all cyclic
equivalent GDS maps can be viewed. Plots are also produced from the XML file.

Results
We provide four example research problems solved with GDSC. The first three illustrate our
use of GDSC to compute dynamics, which we then used to prove more general results. These
theoretical results have been published [8–10]. The fourth study demonstrates the wider appli-
cability of GDSC by illustrating how dynamical systems used by other researchers (e.g., [5])
can also be modeled in this framework. Experimentally, we can evaluate 20-vertex graphs. This

Fig 1. Phase spaces for three GDSs. The bidirected graph X = Circle4 (top), and the phase spaces of the
synchronous GDS; a sequential GDS with update permutation π = (1,2,3,4); and a block sequential GDS with
block permutation πB = ([1, 2],3,4). All vertices use the nor function.

doi:10.1371/journal.pone.0133660.g001

Fig 2. Sequence of high-level user activities to run an analysis in GDSC.

doi:10.1371/journal.pone.0133660.g002

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 8 / 24

limitation is due to memory consumption; we are working to increase this limit. Also, at least
for the first three examples below, it is very difficult to envision that the theoretical results
could have been produced without a tool like GDSC to perform computations that, in turn,
guide or inform the theoretical studies.

Before moving to these examples, we note that the power of GDSC grows with user expertise
in dynamical systems (although this expertise is not required). As one example, it was proved
in [7] that for any network X that is a tree, all sequential update permutations produce the
same cycle equivalence class. Consequently, naively computing phase spaces (and limit cycles)
for all permutations of a 20-vertex tree requires determining 20! � 220 � 1024 state transitions.
But using the above result, this number can be reduced by a factor of 20!� 1018 because now
only one of the 20! permutations need be evaluated. Other examples of theoretical results that
can be used to reduce computational load can be found in, for example, [5, 7, 8, 24, 25].

Tree Structures and Limit Cycle Sizes for Sequential and Synchronous
Update
In this work, we investigated the sizes of limit cycles that can be generated for sequential and
synchronous update schemes of bithreshold GDS maps, where vertex functions are described
by Eq (2). We proved significant differences for these schemes for arbitrary graphs. We showed
that bithreshold synchronous GDS maps can have limit cycles of length at most 2 [8]. We also
showed for bithreshold systems that if Δ = k10 − k01 � 1, then sequential GDS could only pro-
duce fixed points. This motivated the question of how large limit cycles could be in sequential
update systems if the condition on Δ is violated. To this end, we used GDSC to experimentally
explore a range of graph classes and instances to identify sequential GDSs that produce arbi-
trarily long limit cycles, for the thresholds (k01, k10) = (1,3), which minimally violate the condi-
tion on Δ.

By “minimally violated,” we mean conditions that just make a condition false. For example,
if k10 = 3 and k01 = 1, then Δ = 2, which minimally violates the condition Δ� 1. Δ = 3 also vio-
lates the condition, but not minimally. Minimally violating a condition is useful to investigate
because we determine whether such violations lead to large differences in phase space proper-
ties, such as the length of the longest limit cycle.

Three such graph classes are shown in Fig 3 at the left (so-calledH, Y, and X trees, based on
their structures). The plot on the right shows the maximum cycle length as a function of num-
ber of graph vertices when the condition on Δ� 1 is minimally violated with k01 = 1 and k10 =
3, so that Δ = 2. Given H trees as a starting point, Y trees, for sufficiently large n, produce larger
limit cycles for the same number of vertices. Also, unlike the other two structures, X trees can
produce fixed point (beyond the obvious case of the zero state) and 2-cycle limit sets. The
issue of designing (dynamical) systems to produce particular behaviors is of general interest
(e.g., [26]).

The dashed curve in Fig 3 represents data for synchronous update. As noted above, synchro-
nous systems can have cycle lengths of at most 2. Thus, this figure also illustrates the impact of
update scheme on limit cycle size: the size difference between synchronous and sequential
update schemes can be arbitrarily large. Tables B through D in S1 File contain GDSC analyses
for X, Y, and H trees of this section.

Multi-State, Multi-Threshold Systems
Much of the work on discrete dynamical systems focuses on Boolean systems (with K = {0,1})
where state 0 represents an inactive or non-participating state and state 1 represents an active
or participating state. From a social dynamics perspective, there is considerable motivation for

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 9 / 24

investigating systems with more states (e.g., [27]) so that a finer resolution of behavior can be
assessed. Macy [21], in studying social behavior, cites Elster [28]: “although the assumption of
a dichotomous independent variable—the decision [by humans] to cooperate—is convenient
for many purposes, it is often unrealistic. Often, the problem facing the actor is not whether to
contribute, but how much to contribute.” In [10], we study GDSs where there can be any finite
number r of states, that is, K = {0, 1, 2, . . ., r − 1}. We explore sequential update behavior to
find necessary conditions for these GDSs to produce only fixed points as limit sets. The vertex
state transitions for the case r = 3 are given in Fig 4. The threshold kij, for i< j, is the minimum
sum of the states of the vertices in n[v] that will cause v to transition from state i to j. For
threshold kij with i> j, a vertex v transition from state i to j if the sum of the states of the verti-
ces in n[v] is strictly less than kij. We note that (biological) regulatory networks [29, 30] use
multi-state vertex states to describe, for example, multiple expression levels. Selected main
results for sequential update follow.

First, we show the theoretical result, for the r = 3 case, that there are four inequalities involv-
ing the six thresholds (Fig 4) such that if all conditions are satisfied, then a sequential GDS will
produce only fixed points as limit sets. These fixed point conditions, specified in terms of only
thresholds and constants, are [10]:

i. Δ01 �min{−C1 − 1, C1 + 3},

ii. Δ12 �min{C1 − C2 − 3, −C1 + C2 + 5},

iii. (k21 + k12) + (k10 + k01) − 4k02 � −C2 − 1 and

iv. −(k21 + k12) − (k10 + k01) + 4k20 � C2 + 11,

Fig 3. Experimental results generated with GDSC showing the maximum cycle length versus number of graph vertices when the conditionΔ = k10
− k01 � 1 is minimally violated. The goal is to produce GDSs that generate larger limit cycles than fixed points. The three tree structures on the left were
found experimentally, and results were used to prove that there exist graphs with particular structures that produce limit cycles of any specified size for
sequential update (see plot at right). Functional forms of these relationships are given in [8]. These structures differ in the smallest limit cycles they can
produce and in the maximum cycle size for a given number of vertices. Data for the sequential update scheme are presented as solid lines; limit cycle size
increases without bound for increasing graph size. Data for synchronous update, for all graph structures, is the dashed black curve.

doi:10.1371/journal.pone.0133660.g003

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 10 / 24

where Δ01 = k10 − k01, Δ12 = k21 − k12, and C1 and C2 are constants. Note that in some sense,
there is flexibility in assigning C1 and C2, but specifying them to create a broader range of per-
missible thresholds for one inequality can restrict the range of thresholds in another. The num-
bers of inequalities, thresholds, and constants grow as r increases.

Second, the bounds on these conditions are sharp, which we demonstrate through computa-
tions. That is, there exist GDS maps such that if any one of the conditions above is minimally
violated, then the GDS can produce arbitrarily large limit sets. For example, consider a Circlen
graph, n� 4 (a Circle4 graph is shown in Fig 1), with the state transition diagram in Fig 4. We
use the permutation π = (1, 2, . . ., n) for the sequential GDS. We take C1 = −2 and C2 = −6
because these maximize the right hand sides of conditions (i) and (ii). The conditions become
(i) Δ01� 1 and (ii) Δ12 � 1. Consider the multi-threshold vector k = (k01, k10, k12, k21, k02, k20)
= (2,3,6,6,4,5). It can be shown that these thresholds satisfy the four inequalities above; there-
fore, the GDS will produce only fixed points as limit sets. Thus, in Fig 5, the green curve, corre-
sponding to k01 = 2, is flat: the maximum cycle length is 1 (i.e., fixed points) irrespective of n.
Now, consider an identical system except change k01 from 2 to 1. This minimally violates con-
dition (i): Δ01 = k10 − k01 = 3 − 1 = 2, which is not� 1. It can be shown that the other three con-
ditions are still satisfied. The largest limit cycle in this latter system, where k01 = 1, is shown in
Fig 5. We see that the maximum limit cycle length now grows with n. For example, for an
n = 40 vertex Circle graph, the maximum cycle length is 39. In general, the maximum cycle
length, for this particular GDS, is n − 1. Thus, we see that by taking a n-vertex graph, and using
two GDSs, one with k01 = 2 and one with k01 = 1, but otherwise are the same, the difference in
the maximum limit cycle lengths for the two systems is (n − 1)−1 = n − 2. Hence, this result
demonstrates that minimal violation of a single fixed point condition produces a bifurcation:
GDSs that transition from generating only the smallest limit sets to arbitrarily large ones.
Table E in S1 File contains GDSC analyses and data for conditions in Fig 5.

Fig 4. A 3-vertex-state, multi-threshold systemwhere each vertex state transition is governed by a
distinct threshold. Threshold kij governs the transition from state i to j.

doi:10.1371/journal.pone.0133660.g004

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 11 / 24

Stability and Biological Evolution
Researchers have long used Boolean networks (essentially, GDSs or automata with K = {0,1})
to study biological systems [11]. One issue that bears on evolution and species fitness is stabil-
ity. The question is: how stable are genetic structures? One approach to answer this question is
to start by computing the phase space of a GDS. Then, one vertex state of one (system) state in
a limit cycle is flipped (from 0! 1 or vice versa) and one determines whether the long-term
dynamics end up in the same limit cycle or a different one. One forms an attractor graph,
where each vertex represents a limit set (or attractor), and a directed edge from attractor Ai to

Fig 5. Results that guided proofs of bifurcations in r-state sequential GDSmaps.When the threshold vector is k = (k01, k10, k12, k21, k02, k20) =
(2,3,6,6,4,5), the maximum cycle size ℓ = 1 is fixed for all n of Circlen because the fixed point conditions do not depend on n. When k01 is reduced from 2 to 1,
the maximum cycle length increases with number of vertices in Circlen graphs as ℓ = n − 1.

doi:10.1371/journal.pone.0133660.g005

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 12 / 24

attractor Aj means that one vertex state of a system state in Ai can be flipped such that the
resulting state lays in the basin of attraction of (i.e., transitions to a state in) Aj.

Essentially, the more limit cycles in the attractor graph, referred to as ergodic sets or
strongly connected components of the graph, the more biologically diverse the GDS. Most
work (e.g., [19, 31]) on Boolean networks demonstrates that limit cycles in attractor graphs are
(i) very few in number, and (ii) almost always fixed points, and occasionally 2-cycles. These
results suggest that mutations all lead to the same one or two biological states.

As an illustrative example, we consider a sequential GDS map Fπ with bithreshold vertex
functions and (k01, k10) = (1,3) on the graph Circle4. We use sequential update with permuta-
tion π = (1,2,4,3). In the top of Fig 6, we show the phase space, and highlight the four attractor
basins A1 through A4. We slightly abuse notation by letting Ai, 1� i� 4, represent an attractor
and attractor basin. We draw the four attractors as vertices in the lower portion of the figure.
To join these vertices in the attractor graph, we evaluate edges Ai ! Aj as described immedi-
ately above. We see in attractor A1, which consists only of the fixed point state (0,0,0,0), that if

Fig 6. Phase space for a bithreshold sequential GDS and an ergodic set for the attractor graph. A
bithreshold sequential GDS with (k01, k10) = (1,3) and permutation π = (1,2,4,3). The four basins of attraction
in the phase space are highlighted (top). The resulting attractor graph (bottom) forms an ergodic set (i.e., a
strongly connected component) of size 4.

doi:10.1371/journal.pone.0133660.g006

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 13 / 24

we flip the vertex state x4 from 0 to 1, then the state (0,0,0,1) is in the basin of attractor A2, and
hence we have directed edge (A1, A2). As another example, if we take state (1,0,1,1) on the limit
cycle in A3, and change the state of x4 from 1 to 0, then the state (1,0,1,0) is in the basin of
attraction of A4, yielding the directed edge (A3, A4). With similar arguments, we arrive at the
attractor graph at the bottom of Fig 6, which forms one 4-cycle. A noteworthy point is that the
directed edges between pairs of attractors are bi-directed in this example. They need not be;
they only need to form a strongly connected component (i.e., each vertex Aj needs to be reach-
able from each Ai). Thus, A1, A2, A3, and A4 form an ergodic set of size 4. Table F in S1 File con-
tains the information for this analysis in GDSC. We now describe the use of GDSC to
experimentally identify Boolean bithreshold and threshold GDSs that are rich in attractor
structure.

We searched experimentally using GDSC for graphs X in GDSs that generate many attractor
graph limit cycles, and cycle structures larger than fixed points. The analyses we use here are
identified in Table G in S1 File. We found that graphs composed of cliques of at least five verti-
ces (i.e., K5) in bithreshold GDSs (see Eq (2)) with (k01, k10) = (qi − 1, qi − 1), where qi is the
number of vertices in the ith clique, can produce both features. Finding these GDSs took con-
siderable experimental work. Then the issue of how to connect multiple cliques together
needed to be resolved, and we used experiments again for this purpose. We built up intuition
for permissible connectivity patterns among cliques in order to generate formal proofs of
behaviors; cliques cannot be connected in any arbitrary fashion to achieve our purposes.

We focus here on three general results that we proved from these experiments [9], which
are stated in terms of the example in Fig 7 (for concreteness). There are nc = 9 cliques in the
graph on the left, and vertices can take on the states in K = {0,1}. There are ns = 3 subgraphs Xi,
i 2 {1,2,3}, in different colors, with X1, X2, and X3 containing nc,1 = 2, nc,2 = 4, and nc,3 = 3 cli-
ques, respectively, that form the graph X. Our results follow.

1. There are 2nc ¼ 29 fixed points (attractors) in the graph of Fig 7.

2. Let all vertices in X be in state 1, except those vertices with the gray background, which are
in state 0. However, the vertices labeled 1, 2, and 3—called free boundary vertices (FBVs)—

Fig 7. Representative results on ergodic sets generated with the help of GDSC. The 49-vertex graph X on the left has ns = 3 subgraphs Xi, 1� i� ns,
shown in blue, orange, and maroon. There are three results implied by experiments on smaller graphs and theory-based extensions to larger graphs; see text
for details. All three of these results significantly extend characterizations of ergodic sets.

doi:10.1371/journal.pone.0133660.g007

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 14 / 24

with the gray background can be in either state 0 or state 1. This produces ergodic sets that
are binary hypercubes Qns

2 , with 2ns ¼ 8 vertices. The hypercube on the right of Fig 7 denotes
the state (x1, x2, x3) of FBVs 1, 2, and 3 (other vertex states are fixed, as just described, and
not shown for clarity).

3. There are at least nQ ¼ Qns
i¼1 nc;i ¼ 2 � 4 � 3 ¼ 24 distinct hypercubes with this structure

that vary with different choices of FBVs.

The key insight can be understood by considering the two K6 cliques on the left in the figure
that comprise X1. If all vertices in the upper clique are in state 1 and all the vertices in the lower
clique are in state 0, then we see that because the thresholds are (k01, k10) = (qi − 1, qi − 1) =
(5,5), we achieve fixed points when vertex 1 is in state 0 and state 1. Thus, we can flip that state
back and forth and remain in different fixed points. The construction of the ergodic sets then
follows [9].

Theoretical results (2) and (3), which are presented more formally in [9], illustrate that
GDSs can be specified to generate (i) an arbitrarily large number of ergodic sets, and (ii) these
ergodic sets can have an arbitrarily large number of vertices; i.e., an arbitrarily large number of
system states. Both results are significant departures from previous work, and suggest much
greater levels of biodiversity and evolutionary potential. Furthermore, the cliques themselves
are suggestive of communities or clusters of cells.

This particular example illustrates another point. The graph of Fig 7 contains 49 vertices. To
produce these results, we run each subgraph Xi with GDSC independently. The dashed lines rep-
resent edges that serve to produce a connected graph. However, these edges are chosen so that
there is no interaction among the Xi and hence they can be evaluated separately. The point is,
larger graphs can be analyzed by exploiting problem semantics, as stated in the Introduction.

We make several points regarding the use of GDSC in these three examples. First, our exper-
iments and theoretical results include synchronous, sequential, and block sequential update
schemes, illustrating the utility of being able to model all of these update disciplines. Second,
since these results were generalized through rigorous proofs, they apply to graphs of any finite
size (e.g., n> 1 million vertices), which is well beyond the sizes of graphs that can be fully char-
acterized experimentally. Third, these results are also applicable to system control issues [32].

Biological Networks
Here, we study threshold automata Boolean networks (with K = {0,1}) that are used to model
genetic regulatory networks (e.g., [5, 25]). Both forms of vertex state transition, namely 0! 1
and 1! 0, are permitted. In particular, we model the 12-vertex, weighted, directed graph in
Fig 3 of [5], shown here as Fig 8. The linear threshold model used for the state transition
dynamics for vertex v is given by

fvðxÞ ¼
X
u2n½v�

ðwu;vxuÞ � kv ð4Þ

with the next state of xv given by

xv ¼
(
1 if fvðxÞ > 0

0 if fvðxÞ � 0
ð5Þ

Here, wu, v is the weight of the directed edge from u to v, and denotes the influence of vertex u
on v, and kv is the threshold of vertex v. The edge weights and vertex thresholds are given in Fig
8. A negative edge weight wu, vmeans that u inhibits the transition of v.

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 15 / 24

In GDSC, we use the linear threshold vertex function with self-loops explicitly specified
(only one vertex in Fig 8 has a self-loop). The limit sets (attractors) of [5] are six fixed points
for the sequential case and six fixed points and seven 2-cycles for the synchronous case (see
their Table 1). We reproduce their results: our sequential GDS produces 46 fixed points and
our synchronous GDS produces 46 fixed points and 20 2-cycles; our limit cycles include all of
their limit sets. The analyses with GDSC are provided in Table H in S1 File. They argue that
their limit cycles are the only meaningful ones for their particular application. We can also
model the other networks in that paper.

Discussion
Features of GDSC are compared with those of some other discrete dynamical systems software.
This overview is not exhaustive; an avenue for future work would be to conduct a thorough
evaluation of all dynamical systems software. Our view is that different tools have different
capabilities and are useful for particular types of problems. Hence, we will identify features of
other tools that GDSC does not have. To do this, we first introduce some terminology.

Fig 8. Biological network from [5] modeled by GDSC. Edge weights are given next to edges, and vertex thresholds are specified inside the vertices.

doi:10.1371/journal.pone.0133660.g008

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 16 / 24

Sampling of Dynamical Systems
A forward trajectory is the sequence of state transitions, starting from a specified state, and
continuing until a limit cycle is reached, or, in the case of probabilistic models, until some
number of state transitions is completed.

There are multiple definitions for asynchronous update. We defined asynchronous update
earlier. In [25, 33], asynchronous update is the process of selecting one vertex (at random)
whose state is updated at each time t. A single vertex is typically selected uniformly at random,
but other approaches are used, such as specifying b� n vertices randomly at each time step to
update. In [29, 34], a different definition is used: asynchronous update is characterized by each
vertex having a different time interval between state updates.

Cellular automata (CA) are dynamical systems that use grid structures of cells, where each
cell has a state and is influenced by its nearest neighbors (either 4—north, south, east, and west
—or 8—where diagonal cells are included) [35]. A vertex in a dependency graph, which can
have connections to any other vertices in the graph, is a generalization of the connectivity of a

Table 1. Overview of selected dynamical systems software tools that are most closely aligned with GDSC.

Name Vertex
State Set
Size

Complete
Phase
Space

Limit
Cycles

Update Schemes Number of Vertex
Functions

Functional
Equivalence

Cycle
Equivalence

Type of
System

GSDC � 2 yes yes synchronous,
sequential, block
sequential

15 families, all
deterministic

yes yes online
collaborative
environment

ADAM [52] � 2 yes yes synchronous,
sequential (for PDS
only)

user-specified
polynomials with logical
operations;
deterministic and
stochastic

no no online individual
user

FiatLux [40] 2 no no synchronous,
sequential

12 no no individual user;
Java app.

DDLab [43] � 2 yes yes synchronous,
sequential

many (tabular data) yes, in CA yes, in CA individual user;
C

BNS [41] 2 no yes synchronous many NA NA individual user

RBNLab
[45]

� 2 yes yes various sequential
schemes

many no no individual user;
Java app

Matlab
RBN [44]

2 yes yes synchronous,
asynchronous,
sequential

many (tabular data) no no individual user;
Matlab

BoolNet R
Package
[49]

2 yes yes synchronous,
sequential

many (tabular data) no no run within R

GINsim [30,
53, 54]

2 yes yes synchronous,
sequential

Boolean formulas with
boolean operators

no no individual user;
Java app

Chem-
Chains [56]

2 yes yes synchronous,
sequential

Boolean functions as
truth table

no no individual user;
C++

JCASim
[62]

� 2 yes yes synchronous,
sequential, block
sequential

many no no individual user;
Java

GenYsis
[60]

2 yes yes synchronous,
sequential

many no no individual user;
C++

lnet [61] 2 yes yes sequential Boolean functions as
binary decision diagram

no no individual user;
C

doi:10.1371/journal.pone.0133660.t001

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 17 / 24

cell in a grid. As originally conceived, the cell state space was Boolean and the update scheme
was synchronous. The local rule of a cell, analogous to a vertex function, computes the cell’s
next state.

A Boolean network (BN), as originally conceived, is a dynamical system that is similar to a
CA except that the regular grid is replaced by a graph where each vertex serves the role of a cell
of a CA, and each vertex is connected to any number of the n graph vertices (including self-
loops). Each vertex’s function is based on the number of edges incident on it, but as the name
implies, the vertex state set is Boolean.

A random Boolean network (RBN) is a dynamical system that is random in two senses.
First, the dependency graph (also called a wiring diagram) consists of directed edges (u, v)
having the meaning that the state of vertex u is an input to the vertex function for v. Edges in
the graph are specified randomly, but each vertex has the same in-degree din, and hence the
same number of function arguments. Second, the vertex function of each vertex is assigned
randomly. Functions are assigned once and remain fixed through computations of dynamics
[19]. A common approach is to use elementary cellular automata (ECA) rules, where each
function has three inputs [36]. There are many variants of this basic model [33]. Once the
graph and vertex functions are assigned, the dynamics are subsequently deterministic.

A probabilistic Boolean network (PBN) is a dynamical system in which there are multiple
vertex functions specified for each vertex, and at each time (in a forward trajectory) one func-
tion is selected for execution according to its associated probability [11]. The selected functions
may be executed synchronously or sequentially.

A polynomial dynamical system (PDS) is a discrete dynamical system wherein each vertex
function consists of polynomials in the vertex states (operations are typically addition, multi-
plication, and exponentiation) [37]. These types of systems, while some of the most common,
are not the only types of dynamical systems; other dynamical systems can be defined to suit
particular needs.

Sampling of Dynamical Systems Tools
Table 1 summarizes selected properties of some of the tools discussed herein. We first describe
some stand-alone (desktop) tools, focusing on CA, BNs, and RBNs. Mathematica [38] has CA
capabilities. Tools such as Dynamica [39] have been built on top of Mathematica. FiatLux [40]
is a CA simulator that sits on top of Ptolemy. It is used to study system robustness. It provides
ten graph types and 12 dynamics models that are applied uniformly to vertices. Sequential and
synchronous update schemes are available. BNS (Boolean Networks with Synchronous update)
[41] uses update functions that are given as truth tables. However, this flexibility comes at a
cost; the size of each truth table is exponential in the number of inputs to the function. It com-
putes attractors (i.e., limit cycles), with a technique that does not compute all state transitions.

Another CA and RBN tool is DDLab [42, 43]. This tool can evaluate a variety of functions,
including elementary cellular automata (ECA) rules, and includes sequential and synchronous
update schemes. A discriminating and impactful feature of this stand-alone code is the plots that
it generates. To the best of our knowledge, its visualizations are well beyond those of most other
systems (including GDSC) and include state-time and Derrida plots, as well as 3-dimensional
graphics. It has additional features, such as the ability to run some dynamical systems backwards;
to determine predecessors of particular states; to compute functional and cycle equivalence on
CA; and to compute attractor graphs. It directly computes phase space for networks with 30 or
fewer vertices, and (statistically) computes limit cycles and transients for larger networks.

An RBN toolkit for Matlab that will handle synchronous and sequential update is available
[44]. It uses tables to specify vertex functions. It also has significant visualization capabilities.

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 18 / 24

Furthermore, it implements many of the variant RBN models described in [33], as well as oth-
ers. Another RBN software is RBNLab [45]. It, too, implements a wide range of RBNs, well
beyond the classic RBN described earlier [46]. GDSC, by comparison, implements CA and
BNs. It can also execute some RBNs (e.g., where each vertex has in-degree three), but the speci-
fication of random edges and the assignment of random vertex functions must be done outside
of GDSC.

There are other stand-alone software systems focused on PBNs. There are toolkits within
Matlab [47] that are useful in analyzing particular dynamical systems; e.g., the Probabilistic
Boolean Network toolkit developed by I. Shmulevich’s research team [48]. The BoolNet tool
[49] is a package that works within the R statistical software. It evaluates synchronous and
asynchronous Boolean networks and PBNs. Vertex functions are based on logical rules (using
AND, OR, and NOT). Interestingly, it will also (re)construct (approximately) a graph that
gives rise to a specified time series of state transitions. GDSC currently does not implement
PBNs; we have a different software tool for stochastic systems.

All tools mentioned thus far are open-source software packages, or add-ons to commercial
products, that run on a user’s machine, and in this sense are stand-alone applications.

We mention in passing that the Ptolemy project at UC-Berkeley has developed software to
model large physical systems [50] used in signal processing, telecommunications, network
design, investment management, and can analyze both continuous and discrete systems [51].

ADAM [52] is a web-based application. It is tailored for biological networks, and provides
several of these, but can work with other types of networks. Among its models are Petri nets
and PBNs. Its novelty, with respect to dynamical systems, is the use of PDSs, where vertex func-
tions are polynomials in the vertex states. PDSs use both synchronous and sequential update.
Functions are entered in symbolic format, so there is considerable flexibility in vertex functions
(as long as they are polynomial in the inputs). For PDS, ADAM computes the entire phase
space for graphs up to 20 vertices, and computes only limit cycles for larger graphs. However,
the system supports about 100 state values for each node. Their BN permits synchronous
update; the vertex functions are combinations of logical operators (AND, OR, NOT). The
entire phase space is computed for BNs.

GINsim [30, 53, 54] is a Java application for simulating (regulatory) networks that use two
types of graphs: logical regulatory graphs and state transition graphs for the analysis of logical
models. The vertex state set can be of any size, based on the number of expression levels [30].
GINsim can perform asynchronous and synchronous updates with multivalued logical
functions.

Cell Collective [55] is a web-based tool that simulates biochemical processes. That is, it com-
putes forward trajectories of successive system states from a provided initial state. It promotes
collaboration among scientists for building large scale biological models (e.g., models with
thousands of nodes). There are several features, such as a Knowledge Base that includes a
model repository for public use, and Bio-Logic Builder to build models, that enable researchers
to explore different models and test hypotheses. The Cell Collective uses the ChemChains sim-
ulation engine [56].

We briefly mention several other tools. CellNetAnalyzer (CNA) [57] is a MATLAB
toolbox for understanding structural and functional properties of metabolic, signaling, and reg-
ulatory networks. CNA is the extension of FluxAnalyzer [58] (originally developed for meta-
bolic network and pathway analysis). MaBoSS [59] is a C++ tool that models biological
networks using continuous time Markov processes applied on a Boolean state space. MaBoSS
provides a high level language to describe Boolean equations. GenYsis [60] is another tool for
analyzing the steady states of biological (gene regulatory) networks. Its vertex functions include
logical operators. lnet [61] is another tool for Boolean networks that enumerates fixed points

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 19 / 24

and limit cycles for up to 20 vertices; it performs approximate computations for networks of up
to 70 vertices. JCASim [62] is a general-purpose Java simulator in Java. It supports different lat-
tice structures (1-D, 2-D square, hexagonal, triangular, 3-D), neighborhoods, and boundary
conditions, and can display the cells using colors, text, or icons. NetBuilder [63] offers capabili-
ties to simulate and analyze regulatory networks. It represents networks using Petri nets and
uses a genetic algorithm to evolve genetic regulatory networks (GRNs) needed for specific
behavior. Pybool [64] is a Python-based tool for simulation. It helps biologists to define restric-
tions and conditions to limit the space of networks to ones that are most promising for further
experimentation. Pybool uses the IPython package for parallelization. Golly [65] is a tool that
simulates Conway’s Game of Life and many other types of cellular automata. Ready [66] is a
tool that is used for continuous and discrete cellular automata. Ready supports 1D, 2D, 3D,
polygonal and polyhedral meshes. Ready relies on OpenCL [67] as a computation engine.

GDSC is a web-based application and a modeling environment. That is, besides alleviating
the need to compile code and maintain it, or purchasing third-party software such as Matlab,
we store results on our clusters so users need not concern themselves with data storage, which
can be a significant concern since a result file for one analysis can be gigabytes in size. Our
post-processing capabilities for functional and cycle equivalences are somewhat unique,
although software systems such as DDLab generate these plots for CA, as well as Derrida and
other plots. We produce an XML output file of all results, which can be used by other software
systems to generate Derrida and other results.

With respect to dynamical systems capabilities, we also have discriminating features. To our
knowledge, GDSC is the only system that incorporates the block sequential update scheme and
unfair word ordering (in addition to synchronous and sequential disciplines). Furthermore,
vertex functions can be any functional form that can be coded in a high level programming lan-
guage (i.e., C++). This means, for example, that we need not use functions that result in Mar-
kovian processes, where the next state of a vertex depends only on the current state of vertices.
That is, we can introduce history dependence. However, functions must be coded by a GDSC
team member and compiled into the code; users cannot currently specify vertex functions on-
the-fly, which is another limitation. We provide 15 families of vertex functions from which a
user chooses.

Conclusions
An open access, distributed web-based application, GDSC, has been described in terms of its
mathematical foundations, and illustrative research-driven examples have been presented to
demonstrate its utility. Our current focus is phase space computations, since these results facili-
tate our mathematical work on dynamical systems. The system complements other dynamical
systems software tools by providing features that other systems do not—and other tools have
features that GDSC does not possess.

Supporting Information
S1 File. Supporting information: compilations of input and output files of analyses con-
ducted with GDSC.
(PDF)

S2 File. Archive file containing GDSC input and output files for analyses using the nor ver-
tex functions.
(GZ)

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 20 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133660.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133660.s002

S3 File. Archive file containing GDSC input and output files for analyses using dependency
graphs in the form of trees.
(GZ)

S4 File. Archive file containing GDSC input and output files for analyses where the vertex
state set is K = {0,1,2}.
(GZ)

S5 File. Archive file containing GDSC input and output files for analyses using bithreshold
vertex functions to compute a phase space and an attractor graph.
(GZ)

S6 File. Archive file containing GDSC input and output files for analyses used to determine
ergodic sets.
(GZ)

S7 File. Archive file containing GDSC input and output files for analyses used to determine
phase spaces of a biological network.
(GZ)

Acknowledgments
We thank the anonymous reviewers for their useful comments and suggestions. We thank our
external collaborators and members of the Network Dynamics and Simulation Science Labora-
tory (NDSSL). We thank Persistent Systems Ltd. This work was partially supported by DTRA
Grant HDTRA1-11-1-0016, DTRA CNIMS Contract HDTRA1-11-D-0016-0001, NIH
MIDAS Grant 5U01GM070694-11, NSF NetSE Grant CNS-1011769, and NSF SDCI Grant
OCI-1032677.

Author Contributions
Conceived and designed the experiments: SHEA CJK MVMHSM SSR. Performed the experi-
ments: SHEA CJK HSM. Analyzed the data: SHEA CJK HSM. Contributed reagents/materials/
analysis tools: SHEA CJK HSM. Wrote the paper: SHEA CJK MVMHSM SSR.

References
1. Epstein J (2002) Modeling civil violence: An agent-based computational approach. PNAS 99: 7243–

7250. doi: 10.1073/pnas.092080199 PMID: 11997450

2. Valente TW (2012) Network interventions. Science 337: 49–53. doi: 10.1126/science.1217330 PMID:
22767921

3. Hatfield E, Cacioppo JT, Rapson RL (1994) Emotional Contagion. Cambridge University Press.

4. Ugander J, Backstrom L, Marlow C, Kleinberg J (2012) Structural diversity in social contagion. Pro-
ceedings of the Naitonal Academy of Sciences (PNAS 2012) 109: 5962–5966. doi: 10.1073/pnas.
1116502109

5. Demongeot J, Goles E, Morvan M, Noual M, Sene S (2010) Attraction basins as gauges of robustness
against boundary conditions in biological complex systems. PLoS One 5: e11793–1–e11793–18. doi:
10.1371/journal.pone.0011793

6. Nier E, Yang J, Yorulmazer T, Alentorn A (2007) Network models and financial stability. Journal of Eco-
nomic Dynamics and Control 31: 2033–2060. doi: 10.1016/j.jedc.2007.01.014

7. Macauley M, Mortveit H (2009) Cycle equivalence of graph dynamical systems. Nonlinearity 22: 421–
436. doi: 10.1088/0951-7715/22/2/010

8. Kuhlman CJ, Mortveit HS, Murrugarra D, Kumar VSA (2011) Bifurcations in Boolean networks. Discrete
Mathematics and Theoretical Computer Science: 29–46.

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 21 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133660.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133660.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133660.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133660.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133660.s007
http://dx.doi.org/10.1073/pnas.092080199
http://www.ncbi.nlm.nih.gov/pubmed/11997450
http://dx.doi.org/10.1126/science.1217330
http://www.ncbi.nlm.nih.gov/pubmed/22767921
http://dx.doi.org/10.1073/pnas.1116502109
http://dx.doi.org/10.1073/pnas.1116502109
http://dx.doi.org/10.1371/journal.pone.0011793
http://dx.doi.org/10.1016/j.jedc.2007.01.014
http://dx.doi.org/10.1088/0951-7715/22/2/010

9. Kuhlman CJ, Mortveit HS (2014) Attractor stability in nonuniform Boolean networks. Theoretical Com-
puter Science: 20–33. doi: 10.1016/j.tcs.2014.08.010

10. Kuhlman CJ, Mortveit HS (Accepted) Limit sets of generalized, multi-threshold networks. Journal of
Cellular Automata.

11. Shmulevich I, Dougherty ER, ZhangW (2002) From boolean to probabilistic boolean networks as mod-
els of genetic regulatory networks. Proceedings of the IEEE 90: 1778–1792. doi: 10.1109/JPROC.
2002.804686

12. Barrett C, Hunt III H, Marathe M, Ravi S, Rosenkrantz D, Stearns R (2006) Complexity of reachability
problems for finite discrete dynamical systems. Journal of Computer and System Sciences 72: 1317–
1345. doi: 10.1016/j.jcss.2006.03.006

13. Teeni D, Carey J, Zhang P (2007) Human Computer Interaction. Wiley.

14. Beaudouin-Lafon M (2006) Human-computer interaction. In: Interactive Computations: The New
Paradigm. pp. 227–254. doi: 10.1007/3-540-34874-3_10

15. (2014). GDSCalc. http://taos.vbi.vt.edu/gdscalc/welcome.html

16. Kules B, Kang H, Plaisant C, Rose A, Shneiderman B (2004) Immediate usability: a case study of public
access design for a community photo library. Interacting with Computers 16. doi: 10.1016/j.intcom.
2004.07.005

17. Kuhlman CJ (2013) High Performance Computational Social Science Modeling of Networked Popula-
tions. Ph.D. thesis, Virginia Tech.

18. Mortveit H, Reidys C (2007) An Introduction to Sequential Dynamical Systems. New York, NY:
Springer.

19. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. Journal
of Theoretical Biology 22: 437–467. doi: 10.1016/0022-5193(69)90015-0 PMID: 5803332

20. Granovetter M (1978) Threshold models of collective behavior. American Journal of Sociology 83:
1420–1443. doi: 10.1086/226707

21. Macy M (1991) Chains of cooperation: Threshold effects in collective action. American Sociological
Review 56: 730–747. doi: 10.2307/2096252

22. Centola D, Macy M (2007) Complex contagions and the weakness of long ties. American Journal of
Sociology 113: 702–734. doi: 10.1086/521848

23. Watts D (2002) A simple model of global cascades on random networks. Proceedings of the National
Academy of Sciences (PNAS) 99: 5766–5771. doi: 10.1073/pnas.082090499

24. Goles E, Martinez S (1990) Neural and Automata Networks. Dordrecht, The Netherlands: Kluwer Aca-
demic Publishers.

25. Ruz GA, Goles E (2012) Reconstruction and update robustness of the mammalian cell cycle network.
In: Comptuational Intelligence in Bioinformatics and Computational Biology (CIBCB 2012). pp. 397–
403. doi: 10.1109/CIBCB.2012.6217257

26. Hermans M, Schrauwen B, Bienstman P, Dambre J (2014) Automated design of complex dynamic sys-
tems. PLoS One 9: e86696–1–e86696–11. doi: 10.1371/journal.pone.0086696

27. Melnik S, Ward JA, Gleeson JP, Porter MA (2013) Multi-Stage Complex Contagions. Chaos: 013124–
1–013124–13.

28. Elster J (1989) The Cement of Society. Cambridge University Press.

29. Thomas R (1991) Regulatory networks seen as asynchronous automata: A logical description. Journal
Theoretical Biology 153: 1–23. doi: 10.1016/S0022-5193(05)80350-9

30. Gonzalez AG, Naldi A, Sanchez L, Thieffry D, Chaouiya C (2006) GINsim: A software suite for the quali-
tative modelling, simulation and analysis of regulatory networks. BioSystems 84: 91–100. doi: 10.
1016/j.biosystems.2005.10.003 PMID: 16434137

31. Luo JX, Turner MS (2012) Evolving sensitivity balances boolean networks. PLoS One 7: e36010. doi:
10.1371/journal.pone.0036010 PMID: 22586459

32. Liu YY, Slotine JJ, Barabasi AL (2011) Controllability of complex networks. Nature 473: 167–173. doi:
10.1038/nature10011 PMID: 21562557

33. Gershenson C (2002) Classification of random Boolean networks. In: Artificial Life VIII:Proceedings of
the Eight International Conference on Artificial Life. pp. 1–8.

34. Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous versus asynchronous
modeling of gene regulatory networks. Bioinformatics 24: 1917–1925. doi: 10.1093/bioinformatics/
btn336 PMID: 18614585

35. Wolfram S (1983) Statistical mechanics of cellular automata. Reviews of Modern Physics 55: 601–
644. doi: 10.1103/RevModPhys.55.601

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 22 / 24

http://dx.doi.org/10.1016/j.tcs.2014.08.010
http://dx.doi.org/10.1109/JPROC.2002.804686
http://dx.doi.org/10.1109/JPROC.2002.804686
http://dx.doi.org/10.1016/j.jcss.2006.03.006
http://dx.doi.org/10.1007/3-540-34874-3_10
http://taos.vbi.vt.edu/gdscalc/welcome.html
http://dx.doi.org/10.1016/j.intcom.2004.07.005
http://dx.doi.org/10.1016/j.intcom.2004.07.005
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://www.ncbi.nlm.nih.gov/pubmed/5803332
http://dx.doi.org/10.1086/226707
http://dx.doi.org/10.2307/2096252
http://dx.doi.org/10.1086/521848
http://dx.doi.org/10.1073/pnas.082090499
http://dx.doi.org/10.1109/CIBCB.2012.6217257
http://dx.doi.org/10.1371/journal.pone.0086696
http://dx.doi.org/10.1016/S0022-5193(05)80350-9
http://dx.doi.org/10.1016/j.biosystems.2005.10.003
http://dx.doi.org/10.1016/j.biosystems.2005.10.003
http://www.ncbi.nlm.nih.gov/pubmed/16434137
http://dx.doi.org/10.1371/journal.pone.0036010
http://www.ncbi.nlm.nih.gov/pubmed/22586459
http://dx.doi.org/10.1038/nature10011
http://www.ncbi.nlm.nih.gov/pubmed/21562557
http://dx.doi.org/10.1093/bioinformatics/btn336
http://dx.doi.org/10.1093/bioinformatics/btn336
http://www.ncbi.nlm.nih.gov/pubmed/18614585
http://dx.doi.org/10.1103/RevModPhys.55.601

36. Macauley M, McCammond J, Mortveit H (2008) Order independence in asynchronous cellular autom-
ata. Journal of Cellular Automata 3: 37–56.

37. Stigler B (2006) Polynomial dynamical systems in systems biology. In: Proceeding of Symposia in
Applied Mathematics. pp. 59–84.

38. (2012) Mathematica. Wolfram Research, Inc. Edition 9.0.

39. Kulenovic MR, Merino O (2002) Discrete Dynamical Systems and Difference Equations with Mathema-
tica. Chapman-Hall.

40. Fates N (2013). Fiatlux. URL http://fiatlux.loria.fr/

41. Dubrova E (2013). Bns (boolean networks with synchronous update). URL http://web.it.kth.se/
˜dubrova/bns.html

42. Wuensche A (2011) Exploring Discrete Dynamics. Luniver Press.

43. Wuensche A (2014) DDLab. URL http://www.ddlab.org

44. (2007) MATLAB Random Boolean Network Toolkit. MathWorks, Inc. URL http://www.teuscher-
research.ch/rbntoolbox/

45. Gershenson C (2014) RBNLab. URL http://turing.iimas.unam.mx/˜cgg/rbn/

46. Gershenson C (2004) Introduction to random Boolean networks. In: Workshop and Tutorial Proceed-
ings, Ninth International Conference on the Simulation and Synthesis of Living Systems (Artificial Life
IX). pp. 160–173. ArXiv: http://arxiv.org/pdf/nlin/0408006.pdf

47. (2012) MATLAB and Statistics Toolbox Release 2012b. MathWorks, Inc.

48. Shmulevich I (2014) PBN. URL http://shmulevich.systemsbiology.net/

49. Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet–an R package for generation, reconstruction and
analysis of boolean networks. Bioinformatics 26: 1378–1380. doi: 10.1093/bioinformatics/btq124
PMID: 20378558

50. Ptolemaeus C (2013) System Design, Modeling, and Simulation using Ptolemy II. lulu.com.

51. Lee EA, Zheng H (2005) Operational semantics of hybrid systems. In: 8th International Workshop on
Hybrid Systems: Computation and Control (HSCC). pp. 25–53.

52. Hinkelmann F, Brandon M, Guang B, McNeill R, Vines P, Blekherman G, et al. (2011) Adam: Analysis
of discrete models of biological systems using computer algebra. BMC Bioinformatics 12: 1–11. doi:
10.1186/1471-2105-12-295

53. Chaouiya C, Nadli A, Thieffry D (2012) Logical modeling of gene regulatory networks with GINsim. In:
Bacterial Molecular Networks: Methods and Protocols, volume 804. pp. 463–479. doi: 10.1007/978-1-
61779-361-5_23

54. De Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. Journal of
Computational Biology 9: 67–103. doi: 10.1089/10665270252833208 PMID: 11911796

55. Helikar T, Kowal B, McClenathan S, Bruckner M, Rowley T, Madrahimov A, et al. (2012) The Cell Col-
lective: Toward an open and collaborative approach to systems biology. BMC Systems Biology 6: 1–
14. doi: 10.1186/1752-0509-6-96

56. Helikar T, Rogers JA (2009) ChemChains: A platform for simulation and analysis of biochemical net-
works aimed to laboratory scientists. BMC Systems Biology 3: 1–15. doi: 10.1186/1752-0509-3-58

57. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks
with CellNetAnalyzer. BMC Systems Biology 1: 1–2. doi: 10.1186/1752-0509-1-1

58. Klamt S, Stelling J, Ginkel M, Gilles ED (2003) FluxAnalyzer: exploring structure, pathways, and flux
distributions in metabolic networks on interactive flux maps. Bioinformatics 19: 261–269. doi: 10.1093/
bioinformatics/19.2.261 PMID: 12538248

59. Stoll G, Viara E, Barillot E, Calzone L (2012) Continuous time Boolean modeling for biological signaling:
application of Gillespie algorithm. BMC Systems Biology 6: 116–1–116–18. doi: 10.1186/1752-0509-6-
116

60. Garg A, Xenarios I, Mendoza L, DeMicheli G (2007) An efficient method for dynamic analysis of gene
regulatory networks and in silico gene perturbation experiments. In: Research in Computational Molec-
ular Biology. Springer, pp. 62–76.

61. Berntenis N, Ebeling M (2013) Detection of attractors of large boolean networks via exhaustive enumer-
ation of appropriate subspaces of the state space. BMC bioinformatics 14: 361. doi: 10.1186/1471-
2105-14-361 PMID: 24330355

62. Freiwald U, Weimar JR (2002) The Java based cellular automata simulation system–JCASim. Future
Generation Computer Systems 18: 995–1004. doi: 10.1016/S0167-739X(02)00078-X

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 23 / 24

http://fiatlux.loria.fr/
http://web.it.kth.se/˜dubrova/bns.html
http://web.it.kth.se/˜dubrova/bns.html
http://www.ddlab.org
http://www.teuscher-research.ch/rbntoolbox/
http://www.teuscher-research.ch/rbntoolbox/
http://turing.iimas.unam.mx/˜cgg/rbn/
http://arxiv.org/pdf/nlin/0408006.pdf
http://shmulevich.systemsbiology.net/
http://dx.doi.org/10.1093/bioinformatics/btq124
http://www.ncbi.nlm.nih.gov/pubmed/20378558
http://dx.doi.org/10.1186/1471-2105-12-295
http://dx.doi.org/10.1007/978-1-61779-361-5_23
http://dx.doi.org/10.1007/978-1-61779-361-5_23
http://dx.doi.org/10.1089/10665270252833208
http://www.ncbi.nlm.nih.gov/pubmed/11911796
http://dx.doi.org/10.1186/1752-0509-6-96
http://dx.doi.org/10.1186/1752-0509-3-58
http://dx.doi.org/10.1186/1752-0509-1-1
http://dx.doi.org/10.1093/bioinformatics/19.2.261
http://dx.doi.org/10.1093/bioinformatics/19.2.261
http://www.ncbi.nlm.nih.gov/pubmed/12538248
http://dx.doi.org/10.1186/1752-0509-6-116
http://dx.doi.org/10.1186/1752-0509-6-116
http://dx.doi.org/10.1186/1471-2105-14-361
http://dx.doi.org/10.1186/1471-2105-14-361
http://www.ncbi.nlm.nih.gov/pubmed/24330355
http://dx.doi.org/10.1016/S0167-739X(02)00078-X

63. Wegner K, Knabe J, Robinson M, Egri-Nagy A, Schilstra M, Nehaniv C (2007) The Netbuilder project:
Development of a tool for constructing, simulating, evolving, and analysing complex regulatory net-
works. BMC Systems Biology 1: 1–2. doi: 10.1186/1752-0509-1-1

64. Reid J (2011). Pybool: A Python package to infer Boolean networks under constraints.

65. Trevorrow A, Rokicki T (2009). Golly: open source, cross-platform application for exploring Conways
Game of Life and other cellular automata. URL http://golly.sourceforge.net/

66. Hutton T, Munafo R, Trevorrow A, Rokicki T, Wills D. Ready, a cross-platform implementation of various
reaction-diffusion systems. URL https://github.com/GollyGang/ready

67. Stone JE, Gohara D, Shi G (2010) OpenCL: A parallel programming standard for heterogeneous com-
puting systems. Computing in Science & Engineering 12: 66–73. doi: 10.1109/MCSE.2010.69

GDSCalc

PLOS ONE | DOI:10.1371/journal.pone.0133660 August 11, 2015 24 / 24

http://dx.doi.org/10.1186/1752-0509-1-1
http://golly.sourceforge.net/
https://github.com/GollyGang/ready
http://dx.doi.org/10.1109/MCSE.2010.69

