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Abstract
Ulmus pumila tree-dominated temperate savanna, which is distributed widely throughout the

forest-steppe ecotone on the Mongolian Plateau, is a relatively stable woody-herbaceous

complex ecosystem in northern China. Relatively more attention has been paid to the degra-

dation of typical steppe areas, whereas less focus has been placed on the succession of this

typical temperate savanna under the present management regime. In this study, we estab-

lished 3 sample plots 100 m×100m in size along a gradient of fixed distances from one herd-

er’s stationary site and then surveyed all the woody plants in these plots. A spatial point

pattern analysis was employed to clarify the spatial distribution and interaction of these

woody plants. The results indicated that oldU. pumila trees (DBH� 20 cm) showed a random

distribution and that mediumU. pumila trees (5 cm� DBH < 20 cm) showed an aggregated

distribution at a smaller scale and a random distribution at a larger scale; few or no juvenile

trees (DBH < 5 cm) were present, and seedlings (without DBH) formed aggregations in all 3

plots. These findings can be explained by an alternate seasonal grazing-mowing regime

(exclosure in summer, mowing in autumn and grazing in winter and spring); the shrubs in all 3

plots exist along a grazing gradient that harbors xerophytic and mesophytic shrubs. Of these

shrubs, xerophytic shrubs show significant aggregation at a smaller scale (0-5.5 m), whereas

mesophytic shrubs show significant aggregation at a larger scale (0-25 m), which may be the

result of the dual effects of grazing pressure and climate change. Medium trees and seedlings

significantly facilitate the distributions of xerophytic shrubs and compete significantly with

mesophytic shrubs due to differences in water use strategies. We conclude that the imple-

mentation of an alternative grazing-mowing regime results in xerophytic shrub encroachment

or existence, breaking the chain of normal succession in aU. pumila tree community in this

typical temperate savanna ecosystem. This might eventually result in the degradation of the

original tree-dominated savanna to a xerophytic shrub-dominated savanna.
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Introduction
In the early 1980s, the Livestock and Rangeland Double-Contract Responsibility System
(LRDCRS) was implemented in the pastoral regions of Northern China, with strong expecta-
tions of increasing livestock productivity and rehabilitating degraded rangeland[1, 2]. This
measure was followed by the establishment of fixed and exclusive resource boundaries and
the adoption of alternating seasonal grazing (winter and spring) and mowing (autumn)
regimes as a commonly accepted management tool[1, 3]. However, some research shows
that rangeland degradation was never halted[4–7]. This continued degradation has been
attributed to climatic change, such as long-term and high frequent drought, or human activi-
ties, such as overgrazing and overexploitation [8–10]. Shrub encroachment into grassland
has also been considered an obvious indicator of rangeland degradation in the pastoral
regions of northern China[11, 12]. As a common tree species distributed widely throughout
the forest-steppe ecotone on the Mongolian Plateau[13, 14], in association with grasses,
Ulmus pumila trees form a stable savanna-like woody-herbaceous complex ecosystem in the
Horqin Sandy Land, the Otindag Sandy Land and the Hulunbeier Sandy Land of northern
China[15, 16]. Sparse U. pumila trees within the savanna have ecological significance in sand
stabilization and small-habitat provision for livestock[17]. However, although it represents
an important consideration for the steppe in this region, the degradation of this temperate
savanna, especially the sparse U. pumila tree pattern in recent years, has attracted little atten-
tion from the public or scientists [18, 19]. A small number of studies have shown that, com-
pared with other species, U. pumila has faced a major regeneration challenge [20–23]. U.
pumila seedlings often suffer from severe water stress during dry summers is caused by
repeated cycles of drying in the upper soil layers [24, 25]. Wang et al. [22] noted that more
than 90% of the current-year seedlings in fenced plots died because of their vulnerability to
drought. Jiang et al. [23] discussed the effect of vegetation cover on the recruitment of U.
pumila, finding that the highest initial seed density was found under the highest vegetation
cover.

Spatial pattern analysis is an important method for studying the interactions and relation-
ships among different plant populations and their environments [26, 27]. The analysis of a spe-
cies’ spatial pattern will help us to understand both the ecological process that forms the
pattern (such as seed dispersal, intra- and inter-specific competition, interference, and environ-
mental heterogeneity) and the ecophysiological traits of the plant species, including the rela-
tionship between these plants and the environment[28–30]. The spatial pattern of species and
the spatial correlation between species have a significant impact on growth, reproduction,
death, resource utilization and gap formation among species [29, 31]. Recently, a spatial pat-
tern analysis method has been used for clarifying the vegetation degradation processes underly-
ing the individual pattern in semi-arid and arid areas [32–35].

In this study, we selected 3 fixed sample plots 100 m×100 m in size along a predetermined
grazing gradient (distance from the herder's stationary site), and the spatial pattern of the
individual woody plants (including U. pumila trees and shrubs) and interactions among
these woody plants were analyzed using the spatial point pattern method. Two key points are
discussed: (1) whether an alternating seasonal grazing-mowing regime affects the pattern of
elm trees and shrub occurrence or presence, and (2) whether alternating seasonal grazing-
mowing management reduces recruitment of the U. pumila trees. This study will be helpful
for a better understanding of the degradation processes affecting a U. pumila-dominated
savanna.
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Materials and Methods

Ethics Statement
The study site is located in the Otindag Sandy Land. It is administered by the Sanggendalai
township of the Xilinguole League, Inner Mongolia (115°16'E, 42°50'N). The study was con-
ductedon private land. We paid the owner of the land for permission to conduct the study on
this site. No rare or endangered wild animals or plants were collected in this experiment. Per-
mit restrictions also required the experiment to be conducted without the use of open flame to
prevent forest fires and without the cutting of tall trees to protect the forest ecosystem from
damage. In addition, the samples consisted of common tree species and shrubs, so sampling
had no direct impact on vertebrate survival. This experiment did not use wild animals or plants
as research objects and did not pose a threat to the environment.

Study site
The study site is located in the Otindag Sandy Land (Fig 1). It is administered by the Sanggen-
dalai township of the Xilinguole League, Inner Mongolia (115°16'E, 42°50'N). The elevation is
approximately 1320 m. The local climate is continental, with hot summers, long and cold win-
ters, and a mean annual precipitation of 250–350 mm, more than 70% of which occurs from
June to August. The annual mean temperature is 1.7°C, the extreme minimum temperature is
-38°C, and the annual accumulated temperature (≧10°C) is 2000°C. The frostless period is
approximately 105 days, the annual sunshine duration is greater than 1000 h, the annual mean
wind speed is 4 m/s, and the wind level exceeding a Beaufort scale value of 8 is 90 days per
year. The main soil types are aeolian sandy soil with a mean depth of 200 cm and a calcic hori-
zon occurring at a depth of 30–100 cm. This horizon is extremely hard and does not allow
plant roots to penetrate it.

The local herders currently select alternating seasonal grazing (winter and spring) and mow-
ing (autumn) regimes, whereas annual grazing was previously implemented. The area’s grazing
livestock are primarily cattle. To prevent grassland degradation, grazing is prohibited during the
growing season of the grasses (summer), and the herders mow grass to reserve food for animals
in winter. Both grazing and mowing occur every year. No fire has happened in this study site.

Study species
Trees. U. pumila: This tree can survive to an age of more than 40 years. The species can

grow to a height of more than 10 m. U. pumila seeds are wind-dispersed and can be dispersed
to a great distance from their parents during the windy season.

Shrubs. Xerophytic shrubs: Caragana microphylla Lam is a long-lived shrub with multiple
stems bearing thorns and compound leaves. Flowering occurs in May and lasts approximately
20 days. Seeds ripen in July, and seed germination is triggered by summer rainfall. Shoots usu-
ally grow out at the end of the flowering period. Spiraea aquilegifolia Pall is a long-lived shrub.
Flowering occurs in May-July, and seeding occurs in August-September; Ribes diacanthum is a
long-lived shrub. Flowering occurs in May-June, and seeding occurs in July-August; Salix line-
aritipularis is a long lived shrub.

Mesophytic shrubs: Betula fruticosa Pall is a long-lived shrub. Seeds are dispersed by animals.

Data collection
A fenced rangeland tract (approximately 50 ha), typical of U. pumila-dominated savanna and
contracted by a herder family, was selected as the study site. The site was placed under alterna-
tive seasonal grazing and mowing management in approximately the year 2000. Seasonal
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grazing occurred in the winter and spring, and mowing was implemented in autumn with a
small tractor mower. In August of 2014, 3 sample plots 100 m×100 m in size were established
at fixed distances from the herder’s stationary site (numbered as plot 1, plot 2 and plot 3 from
near to far). Plot 1 was 1 km distant from the herder’s stationary site, plot 2 was 2 km distant,
and plot 3 was 3 km distant. All the 3 plots have basically identical natural conditions (such as
soil types, geomorphology, rainfall). Each plot (100 m × 100 m) was divided into 400 contigu-
ous 5 m × 5 m plots, and the name, diameter (DBH or collar diameter), height and spatial coor-
dinates of all the woody plants (trees and shrubs) were recorded in each plot. All individual
woody plants in the three plots were mapped using a total station transit (model GTS-3B, Top-
con, Paramus, New Jersey, USA) with an accuracy of approximately 1 cm.

All the U. pumila trees were classified into 4 categories according to their DBH, namely, old
adult trees (DBH� 20 cm), medium adult trees (5 cm� DBH< 20 cm), juvenile trees
(DBH< 5 cm) and seedlings (without DBH), a classification that is consistent with previous
research results [36]. Shrubs were also classified into two categories according to their ecophys-
iological traits[37], namely, xerophytes, including Caragana microphylla Lam, Spiraea aquilegi-
folia Pall, Ribes diacanthum and Salix linearitipularis, and mesophytes, including Betula
fruticosa Pall. (Table 1; Fig 2). As few individuals in the juvenile tree category were found, this
category was not included in the spatial pattern analysis.

Data analysis
Ripley’s K-function and the pair-correlation g-function are common techniques for univariate
and bivariate point-pattern analysis. The function K(r) is the expected number of points in a
circle of radius r centered at an arbitrary point (which is not counted), divided by the intensity
λ of the pattern.

The alternative pair correlation function g(r), which arises if the circles of Ripley’s K-function
are replaced by rings, gives the expected number of points at distance r from an arbitrary point,
divided by the intensity λ of the pattern. The function g(r) has the additional advantage that it is
a probability density function with the interpretation of a neighborhood density, which is more
intuitive than an accumulative measure[38]. Therefore, the pair-correlation function g(r) is

Fig 1. Map of the Otindag Sandy Land and the location site of the study region.

doi:10.1371/journal.pone.0133277.g001
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especially sensitive to small-scale effects. In this study, we used univariate and bivariate pair cor-
relation functions g(r) and g12(r) to quantify the spatial pattern of individual woody plants and
interactions among them. For univariate analysis, the formula used[31, 39–41] is as follows:

gðtÞ ¼ 1

2pt
A2

n2

Xn

i¼1

Xn

i¼1
j 6¼1

w�1
ij khðt � jxi � xjjÞ;

where A is the plot area, n is the total number of plants and wij is a weighting factor correcting
for edge effects. kh is a kernel function, which is a weighting function applying maximum weight
to point pairs with a distance exactly equal to t but incorporating point pairs at an approximate
distance t with reduced weight. This weight falls to zero if the actual distance between the points
differs from t more than h, the so-called bandwidth parameter. At a given distance r, values of g
(r)> 1 indicate that interpoint distances around r are relatively more frequent than they would
be under complete spatial randomness (CSR). If this is the case for small values of r, there is typi-
cally clustering. Conversely, values of g(r)< 1 indicate that interpoint distances around r are rel-
atively less frequent than they would be under CSR. If this is the case for small values of r, the
pattern shows regularity.

For bivariate analysis, the formula used[39–41] is as follows:

g12ðtÞ ¼
1

2pt
A2

n1n2

Xn1

i¼1

Xn2

i¼1

w�1
ij khðt � jxi � xjjÞ;

where xi, i = 1,. . ., n1, and yj, j = 1,. . ., n2 are the points of groups 1 and 2, respectively, with the
same weights wij and kernel function kh as above. At a given distance r, values of g12 (r)> 1
indicate that species 2 is positively associated with species 1 at distance r. Values of g12 (r) = 1
indicate that there is no interaction between species 1 and 2. Values of g12 (r)<1 indicate that
species 2 is negatively associated with species 1.

The keys for successful application of the g function are the selection of an appropriate null
model that responds to the specific biological question asked and the correct interpretation of a
given departure of data from the null model [40]. In this study, we used the null model of com-
plete spatial randomness (CSR) as a null hypothesis for the univariate analyses of three tree

Table 1. Classification ofU. pumila trees and shrubs and their basic parameters.

species Category* Plot 1 Plot 2 Plot 3

N H N H N H

U. pumila trees Old 40 7.4±0.94 63 7.3±1.53 47 7.6±1.23

Medium 50 5.3±0.93 85 5.1±1.27 68 5.5±0.86

Juvenile 2 1.7±0.30 2 2.4±0.22 16 2.3±0.30

Seedling 53 0.23±0.16 108 0.28±0.22 214 0.30±0.21

xerophytic shrubs CaraMicr 58 0.41±0.13 27 0.39±0.10 / /

SpirAqui 215 0.42±0.17 158 0.41±0.15 / /

RibeDiac / / 12 0.31±0.10 / /

SaliLine / / 17 2.0±0.21 / /

mesophytic shrubs BetuFrut / / 46 2.2±0.35 21 2.4±0.13

* Latin name abbreviations: CaraMicr- Caragana microphylla Lam., SpirAqui- Spiraea aquilegifolia Pall, RibeDiac- Ribes diacanthum, SaliLine- Salix
linearitipularis, BetuFrut- Betula fruticosa Pall.

doi:10.1371/journal.pone.0133277.t001
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categories (old trees, medium trees and seedlings), and for two shrub categories (xerophytes,
mesophytes).

For the bivariate analyses, two cases were considered. In the first case, the relationship
between small and large trees was considered. Because large trees may impact the distribution
pattern of small trees within their area of influence (competition), we conducted a bivariate g
function analysis for these two size classes using both the toroidal shift and the antecedent con-
dition null model options[40]. This tests whether the patterns of distribution of small and large
trees were generated by independent processes. The antecedent condition model tests whether
one pattern (small trees) is influenced by a second pattern (large trees), assessing whether there
are more (or fewer) small trees in the neighborhood of large trees than expected under a ran-
dom distribution of small trees [39]. The second case concerns the interaction between trees
and shrubs. Because the spatial distributions of plants in plots seem to be affected significantly
by drought stress and habitat heterogeneity (e.g., soil patch and microtopography), we exam-
ined the spatial association between the two species with the independent null model [40].

To assess the significance of the test function under the null model, we generated an approx-
imate (two-sided) 95% simulation envelope by calculating for each distance r the 5th lowest
and highest values of the summary statistic from 199 Monte Carlo simulations of the null
model. All analyses were performed using the software Programita for point pattern analysis
[40].

Results

Univariate analysis of U. pumila trees
As shown in Fig 3(see S1 Fig), old U. pumila trees were randomly distributed at all scales within
all 3 plots, medium U. pumila trees exhibited a significant aggregated trend within 0–2.5 m in
all 3 plots, and seedlings were significantly aggregated within 0–3.5 m in plot 1, within a 0–18.5
m scale in plot 2 and within 0–6.5 m in plot 3. All 3 tree categories were randomly distributed
at other scales within all 3 plots.

The univariate analysis of shrubs
As shown in Fig 4(see S2 Fig), xerophytic shrubs were significantly aggregated within 0–5.5 m
in plot 1, within 0–6.5 m in plot 2, and mesophytic shrubs showed a tendency for a significant

Fig 2. Distribution map of the woody plants in three surveyed plots.● U. pumila-old trees,○U. pumila-medium trees,▼ U. pumila-juvenile trees,4 U.
pumila-seedlings,■ xerophytic shrubs, and□mesophytic shrubs.

doi:10.1371/journal.pone.0133277.g002
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or insignificant aggregation within 0–23.5 m in plot 2 and within 0–29.5 m in plot 3. The two
shrub categories were randomly distributed at other scales within all 3 plots.

Bivariate spatial analysis of three U. pumila tree categories
As shown in Fig 5(see S3 Fig), old trees and medium trees showed a significant positive correla-
tion within 0–4 m in plot 1 and plot 2 and weak positive correlation within 4–20 m and within
0–45 m in plot 2 and plot 3, respectively. Old trees and seedlings showed a significant positive
correlation within 0–2 m in plot 1 and a significant negative correlation within 3–10 m and
within 0–10 m in plot 2 and plot 3, respectively. However, they did not show a significant cor-
relation at other scales. Medium trees and seedlings showed a significantly positive correlation
within 0–3 m and within a 1–6 m scale in plot 1 and plot 2 and a significant negative correla-
tion within 1–11 m in plot 3.

Fig 3. Univariate spatial patterns of threeU. pumila tree categories with the null model of CSR.

doi:10.1371/journal.pone.0133277.g003
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Bivariate spatial analysis of U. pumila tree categories and shrub
categories
As shown in Fig 6(see S4 Fig), old trees and xerophytic shrubs had a significant negative corre-
lation within 5–10 m and a significant positive correlation within 3–11 m in plot 1 and plot 2,
respectively; medium trees and xerophytic shrubs had a significant positive correlation within
0–10 m only in plot 1, and seedlings and xerophytic shrubs had a significant positive correla-
tion within 0–2 m and 0–7 m in plot 1 and plot 2, respectively.

As shown in Fig 7(see S4 Fig), old trees and mesophytic shrubs had a significant negative
correlation within 0–20 m and within 1–15 m in plot 2 and plot 3, respectively. Medium trees
and mesophytic shrubs had a significant negative correlation within 0–20 m and 0–40 m in
plot 2 and plot 3, and seedlings and mesophytic shrubs had a significant negative correlation
within 0–20 m and 0–19 m in plot 2 and plot 3, respectively.

Discussion

Spatial patterns of woody plants and their mechanism of formation
U. pumila trees. Tree species show different spatial patterns in their different growth

stages and among the different age classes. These patterns are closely related to the self-thin-
ning process, to the disturbance pattern(such as fire, grazing and so on) and to environmental
change[42]. Analyzing the spatial patterns of different growth stages can yield information

Fig 4. Univariate spatial patterns of two shrub categories with the null model of CSR.

doi:10.1371/journal.pone.0133277.g004
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about the regeneration of new individuals, the morality of adults, and the overall demographics
of a population following natural or human disturbance[43]. In general, young individuals
aggregate, and adult individuals are randomly or uniformly distributed within a species [44].
In this study, old trees showed a random distribution, and medium U. pumila trees showed an
aggregated distribution (0–2.5 m) in the smaller scales and a random distribution in the larger
scales among all 3 plots. These patterns may result from the patchiness of water and soil
resources at smaller scales in a semi-arid area[45]; however, these adult trees have formed a rel-
atively stable structure in this type of temperate savanna despite differences in grazing intensity
among the 3 plots, and their existence does not reduce the productivity of the herbaceous com-
munities under their canopy [46]. These trees can, in turn, provide a shady resting habitat for
domestic livestock during hot grazing seasons [47]. According to the results of Peng [36], two
categories of old and medium adult trees have grown for more than 15 years; that is, the occur-
rence of these individuals, prior to the implementation of the alternative seasonal grazing-
mowing regime, is a result of interactions among year-round free grazing and abiotic factors
(such as climate, soil and microgeomorphology)[48]. There are fewer juvenile trees in all 3
plots, therefore their spatial pattern have not been analysed in this study (Table 1; Fig 8 and S5
Fig), the individual age of the juvenile tree category is less than 15 years old, which coincides

Fig 5. Bivariate spatial association between threeU. pumila tree categories with both the toroidal shift and antecedent condition null models.

doi:10.1371/journal.pone.0133277.g005
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with the implementation period of the alternative seasonal grazing-mowing regime to a great
extent; it can be deduced that the majority of one-year or multiyear seedlings that remained
and grew from juveniles to adults[49, 50] during the year-round free grazing procedure due to
selective feeding of livestock, might be harvested by the nonselective mowing activity in
autumn[51–54]. This deduction can better explain why numerous seedlings (germinated

Fig 6. Bivariate spatial association betweenU. pumila trees and xerophytic shrubs in plot 1 and plot 2 with the independent null model.

doi:10.1371/journal.pone.0133277.g006
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Fig 7. Bivariate spatial association betweenU. pumila trees andmesophytic shrubs in plot 2 and plot 3 with the independent null model.

doi:10.1371/journal.pone.0133277.g007
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mostly in the current year) existed in aggregations in our August investigation. This phenome-
non interrupted the chain of normal regeneration of U. pumila trees. This severe human-
caused disturbance, which may eventually result in the breakdown of the U. pumila tree com-
munity in the savanna ecosystem.

Shrubs. In arid and semi-arid systems, Shrubs layers are often dominant [55–57], species
rich, and are planted for revegetation in bare sand or less-covered soil surfaces in arid and semi-
arid areas of China [58–60]. However, shrub encroachment into rangeland has been considered
an obvious degradation indicator around the world for more than 20 years[61–65], despite
some arguments appearing in recent years[66, 67]. In this study, shrubs occurred in theU.
pumila-dominated savanna along the grazing gradient as xerophytic shrubs only in plot 1, as
both xerophytic shrubs and mesophytic shrubs in plot 2, and as mesophytic shrubs only in plot
3. Additionally, the xerophytic shrubs showed significant aggregations at a smaller scale (0–8 m)
in plot 1 and plot 2, while the mesophytic shrubs showed significant or insignificant aggrega-
tions at a larger scale (0–25 m) in plot 2 and plot 3. We are not sure when these shrubs
encroached on the savanna, whether before or after the implementation of the newmanagement
regime (alternative seasonal grazing-mowing regime), but it can be deduced from related studies
that their encroachment resulted from the grazing pressure on the one hand and from long-
term climate change on the other hand [68–71]. Mowing operations can obviously cut shrub
saplings and seedlings while also cuttingU. pumila seedlings, as noted above, but the sprouting
traits of some shrubs can facilitate their existence in a human-disturbed habitat [72–74]. Based
on this phenomenon, we may deduce that Betula fruticosa, the only mesophytic and nonsprout-
ing shrub in the study site, might have been established before the implementation of the new
management regime, while most of the observed xerophytic shrubs with sprouting traits might
have encroached on the savanna after the implementation of the new management regime.

Spatial interactions among woody plants
Among these three tree categories, there was a relatively weak positive correlation between old
and medium trees in all 3 plots. Between the medium trees and seedlings, there was significant
facilitation on a smaller scale in plot 1 and plot 2, which may result from wind-dispersed seed

Fig 8. The proportion of different age-class categories of aU. pumila tree.

doi:10.1371/journal.pone.0133277.g008
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deposition around medium trees and better micro-habitat provision for seed germination and
seedling growth by medium trees[75, 76]. In plot 3, significant competition at the 1–11 m scale
occurred between medium trees and seedlings. This pattern may be the result of the occurrence
of more seedlings around the medium trees due to the occurrence of less livestock trampling,
associated with low grazing pressure [77–79].

Except in the case of the comparison between old trees and xerophytic shrubs in plot 1, facili-
tative relationships were significant between medium trees or seedlings and xerophytic shrubs in
plot 1 and plot 2 (Fig 6). Significant competitive relationships were found among old trees,
medium trees or seedling and mesophytic shrubs in plot 2 and plot 3 (Fig 7). These findings may
esult entirely from the exploitation of soil and water by plants with different ecophysiological
traits [80–82]. For the former, medium trees may act as nurse plants for xerophytic shrubs and
seedlings, and xerophytic shrubs may also act as nurse plants for seedlings, in agreement with the
“nurse plant syndrome” [83–86]; for the latter, their similar ecophysiological traits require them
to maintain competitive relationships under the influence of climate change [87–89].

In conclusion, the implementation of a new management regime resulted in xerophytic
shrub encroachment or existence, which may result from a dual effect of seasonal grazing and
climate change, and broke the chain of normal succession of a U. pumila tree community in
this typical temperate savanna ecosystem. Clearly, a new, commonly used (active or passive)
management regime was used to replace the older traditional management regime. The new
management regime might eventually result in the degradation of original tree-dominated
savanna to xerophytic shrub-dominated savanna.

More field experiments should be undertaken to reveal underlying ecological processes (e.g.
changes of soil and water) that gave rise to plant spatial pattern and to prove our deduction
from pattern, and a more scientific and effective management regime should be studied to
maintain the stability and sustainability of this typical tree-dominated savanna ecosystem in
the present and near future.

Supporting Information
S1 Fig. This dataset contains a univariate analysis of the U. pumila tree and of shrubs.
(XLSX)

S2 Fig. This dataset contains a univariate analysis of shrubs.
(XLSX)

S3 Fig. This dataset contains a bivariate spatial analysis including three U. pumila tree cate-
gories.
(XLSX)
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