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Abstract

It is widely expected that the quality of offspring will vary with the age of their parents and
that this variation should influence animals’ choice of mates. However, theoretical predic-
tions for age effects are contradictory and, to our knowledge, we do not know for any wild
animal how the quality of offspring is affected by both parents’ ages across their lifespans,
or whether mothers’ and fathers’ ages interact. We tackled this question using long-term
data on a highly philopatric, insular population of the blue-footed booby (Sula nebouxii). In
this species extra-pair paternity is most common in pairs of two young parents or two old
parents, implying that these age combinations might prejudice offspring quality. Analysis of
the viability of 3,361 offspring of parents up to 21 years old revealed that fledglings with two
young parents or two old parents were least likely to become breeders, whereas fledglings
with one young parent and one old parent were most likely to do so. For young parents of
either sex, offspring viability increased with age of the other parent; for very old parents, it
decreased. These effects could be mediated by parents flexibly modifying their investment
in offspring in response to their own and their partners” ages, but evidence for this was lack-
ing. In 5,343 breeding attempts, although mothers’ and fathers’ ages independently affected
four heavily care-dependent breeding traits at the clutch and nestling stages, their interac-
tion did not affect any trait. The effects of parental age combinations on viability could also
be mediated by genes: fledglings with one young parent and one old parent could benefit
from greater heterozygosity or better genes.

Introduction

It is now well documented that individual animals’ reproductive performance and breeding
success commonly improve in early life and decline in late life [1-3]. We have less of an idea
about how the viability of an animal’s progeny varies over its lifespan, even though this issue is
fundamental for understanding mate choice and modeling life histories. The last 15 years have
been characterized by increasing consensus around each of two contrary but non-exclusive
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theoretical predictions for genetically mediated effects of breeder age on offspring viability
[4-6]. On the one hand, differential survival of high quality males and females in wild popula-
tions is widely expected to generate a positive association between breeder age and the quality
of genes passed to progeny [7-9], although there are also life history arguments for expecting
this association to be negative [10,11]. On the other hand, decline over the lifetime is expected
in sperm traits of males and in the germline DNA of both sexes, especially males; and these
declines should lead to deficits, defects and diseases in offspring [12,13]. Studies have con-
firmed deterioration in sperm traits [12] and in germline DNA of males and females [14-17];
how these changes affect fertility and offspring viability is largely unresolved [6] but one study
has shown that deterioration in male germline DNA after maturity is associated with reduced
growth rates in offspring [18]. Furthermore, the viability of offspring can potentially vary with
age-related variation in parental investment and capacity for parental care. For example, paren-
tal care sometimes improves with age and experience in early life and declines with age and
senescence in later life [19-21], raising the possibility of reduced viability in offspring nurtured
by very young or very old parents.

Laboratory and field studies focused on either the mother s age or the father s age have
turned up a mixed bag of positive and negative effects on offspring quality. Advanced male age,
even in species with no parental care, is associated with reduced hatching success [11] and
poor larval and infant body mass and survival [22,23], as well as diminished activity and learn-
ing during infancy and adulthood [24]. However, in some cases superior phenotypes have been
observed in the progeny of males that are older [25,26] or middle-aged [27-29]. In inverte-
brates greater female age is associated with a decline in numerous preadult and adult traits of
progeny ([30,31] but see [32]). In birds it is associated with a decline in egg size and in the
growth, development and immunity of chicks [21,33], and with accelerated offspring reproduc-
tive senescence [34]. In mammals it is associated with negative effects on juvenile survival and
daughters’ milk yield [35,36]. However, improvement with age has been documented early in
females’ lives too: older mothers produced larger hatchlings in an arachnid [37], higher quality
or larger eggs in birds [21,38,39] and heavier offspring with faster reproductive development in
mammals [40,41]; and offspring of middle-aged lizards were most likely to survive the juvenile
period [28].

Recognition of parental age effects on offspring quality may have been hampered by two
nearly universal shortcomings of this literature. First, as noted by other authors [10,11], analy-
ses of offspring quality have largely failed to sample comprehensively across the natural age-
span, resulting in frequent confusion between middle age and old age. Often just two age cate-
gories are used (young and old) and their relationship to natural age-spans is seldom clear. Sec-
ond, possible interactions between male age and female age are virtually unexplored. In
humans such interactions can affect the probability of birth defects [42,43] and the genetic
quality of progeny [44]. In non-human animals, even long-term field studies are generally
unable to test for interactions because of the difficulty of obtaining adequate samples of pairs of
known-age parents encompassing the age-span, and because partners’ ages are often corre-
lated. In view of recently documented widespread effects of senescence on diverse reproductive
traits of wild animals of both sexes [45,34], inclusion of whole natural age-spans and male-
female age interactions is required to document age effects more comprehensively.

We analysed effects of male and female ages and interactions between them across their
age-spans on offspring viability in the blue-footed booby (Sula nebouxii), a socially monoga-
mous species with roughly symmetrical biparental care. The pattern of age-related sexual infi-
delity observed in these boobies was interpreted as possibly enabling young females to avoid
producing offspring that have two young biological parents, and old females to avoid produc-
ing offspring that have two old biological parents, because these two parental age combinations
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might generate poor quality offspring [46]. Extra-pair chicks occur in 11% of broods and the
tendency to produce extra-pair chicks increases in very young females (<4 years old) with
decreasing age of social partners, and in old females (>8 years old) with increasing age of social
partners. It is likely that female boobies exert considerable control over extra-pair paternity
because they are larger than males and control sexual access, and because extra-pair copula-
tions follow reciprocal courtship and are consensual [47]. Also, female birds can control fertili-
zation through postcopulatory mechanisms [48]. Effects of combined parental ages on
offspring have not been explored in this species, but reproductive traits of long-lived male and
female boobies improve in early life and show a senescent decline in later life. Their breeding
success peaks at ~10 years [49-51] and the viability of their fledglings (probability they will
recruit) plateaus when parents are 5-12 years old [52]. Documented traits that may partially
explain these patterns include an age-related decline in the quality of eggs and parental care of
females [21] and in the germ-line DNA of males [17].

Our test used a 25-year reproductive database for the insular booby population in which
parental ages interact to affect extra-pair paternity [46]. In this population annual survival of
male and female adults is roughly 80% [53] and average pair bond duration is only 1.7 years
[54,55], allowing pairing of different-aged males and females. Adults experience minimal
extrinsic mortality (negligible predation [56]) and, for recent fledgling cohorts, most parents’
exact ages are known [57]. Considering the age-related patterns of extra-pair paternity in this
population, we predicted that the probability of fledglings recruiting into the breeding popula-
tion should increase with age of the father for young females but decrease for old females. After
confirming this pattern, we tested whether it is due to age combination-related variation in
parental investment by asking whether combined parental ages similarly affected any of six
breeding traits that are heavily dependent on bi-parental care: clutch size, hatching success,
brood size, number of fledglings, fledging success and fledgling body condition.

Methods
Ethics Statement

This observational field study was carried out following the Animal Behavior Society's Guide-
lines for the Use of Animals in Research and in accordance with all Mexican legal requirements
for research in national parks and animal conservation and welfare. The study species is not
classified as endangered or protected by norm 059-2010 of the Secretaria del Medioambiente
y Recursos Naturales (SEMARNAT). The methods of monitoring of boobies in Parque Nacio-
nal Isla Isabel were approved by the Direccién General de Vida Silvestre, Secretaria de Gestion
para la Protecciéon Ambiental (SEMARNAT permits 517, 574, 5664, 10470, SGPA/DGVS/
01323, SGPA/DGVYS/3152, SGPA/DGVS/1543, SGPA/DGVS/0491, SGPA/DGVS/1547,
SGPA/DGVS/10832, SGPA/DGVS/01916,SGPA/DGVS/00733, SGPA/DGVS/00357, SGPA/
DGVS/00505, SGPA/DGVS/00091). During monitoring, adults were not captured or manipu-
lated; chicks were captured by hand after hatching and at fledging for banding and measuring,
which was carried out in the shade and took less than 4 min, then immediately returned to
their nests, where parents always immediately accepted them.

Recruitment

We monitored reproduction in a study area on Isla Isabel, off the Pacific coast of Mexico
(21°52'N, 105°54'W), during 5 months of each year between 1988 and 2012. Breeding of all
pairs of boobies in the study area was monitored by recording nest contents every 3-6 days,
banding chicks with plastic bands at hatching and steel bands at fledging (age 70 days), reading
bands of caretaking adults at each nest three times (without capturing them), and measuring
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body mass and ulna length at fledging (details in [57]). Sex of fledglings was unknown. We are
confident that this monitoring allowed detection of nearly all recruitment (first appearance
with a partner and clutch) of the focal fledglings through 2012. First, over a 19-year period
when 10,839 fledglings and 3,160 adults were banded, 40% of fledglings recruited into the
study area; and an intermittent study of booby populations in the Islas Marietas, Isla San Pedro
Martir and El Rancho island (130-903 km distant) provided resightings of only seven male
and six female fledglings breeding elsewhere than Isla Isabel [54]. Further, boobies that recruit
into the natal colony breed close to their natal site and then remain permanently faithful to
their first breeding site [54]. Second, unless they are abandoned, nests in the study area and
within 20 m of its borders cannot escape detection because every year two observers inspected
the whole of this greater area every 3-6 days, and in only one direction (South) is there any
scope for boobies to nest beyond its limits (and only within a 10-m corridor along the
shoreline).

For the first sample comprising seven cohorts (2002-2009 except 2003, from which no
fledglings recruited), we scored recruitment (1-0 variable) during the first six years of life up to
2012, and included the number of years during which each cohort was monitored (3-6 years)
as a covariate. More than 95% of fledglings recruit by an age of 6 years [57]. We complemented
this analysis with an analysis of early recruitment (during the first 4 years of life) in which
cohorts 2002-2008 (except 2003) were all monitored for the same number of years. The first
sample included 3,361 fledglings with mothers 2-20 years old (mean+SD = 8.28+3.19 years)
and fathers 1-21 years old (8.59+3.11 years); the second included 2,819 fledglings with mothers
2-20 years old (8.10+3.11 years) and fathers 1-20 years old (8.32+2.92 years). The first sample
was based on 915 individual mothers and 945 individual fathers; the second on 904 individual
mothers and 872 individual fathers. Parentage was known from routine monitoring of fledg-
lings " natal nests and associated caretaking adults.

Breeding traits

Males and females share all aspects of parental care, including territory defence, incubation
and brood care. For analysing the effects of fathers’ and mothers’ ages on clutch size, brood
size, number of fledglings, hatching success, fledging success and fledgling body condition, the
monitoring described above yielded a sample of 5,343 breeding events of known-age pairs in
the study area in the 11 years from 2002 to 2012. Mothers and fathers in this sample were 1-23
years old (8.05+3.87 years and 8.39+3.72 years, respectively).

Statistical analyses

We analysed effects of fathers’ and mothers’ ages on recruitment and breeding traits using gen-
eralized linear mixed models (GLMMs) including fathers’ and mothers’ ages, their quadratic
terms and the interaction between the mother’s and father’s linear ages; fledglings” hatch dates;
and hatch order in the natal brood of 1-4 chicks. Mothers’ and fathers’ recruitment ages were
not included because these are not related to fledgling recruitment [52], and their lifespans
were not included because for most young parents these were not known. To implement a
maximal model and reduce Type 1 error, we fitted the intercepts and slopes of the three ran-
dom variables: mother’s ID, father’s ID and cohort [58]. However, maximal models failed to
converge, even when the predictor variables were centered. This failure could not be satisfacto-
rily resolved by deleting males and females that were observed at only a single age because
these represented roughly 40% of individuals. Therefore for each model we removed, succes-
sively, the slopes for cohort, male ID and female ID until convergence was achieved. For analy-
ses of recruitment all resulting random structures included only the intercepts of random
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variables; for breeding traits all resulting structures included the intercepts for cohort, male ID
and female ID and also the slope for female ID. For hatching success and fledging success, the
additional random variable, nest ID, was represented only by its intercept.

To analyse the recruitment of fledglings, we used GLMM:s with binomial error distribution
and a logit link, including, for the first sample of breeding pairs only, number of years of moni-
toring as an additional covariate. Ages of male and female partners in the first and the second
samples were weakly correlated (R = 0.34, P =0.01, n = 3,361; R =0.31, P=0.01, n = 2,819;
respectively), but the Variance Inflation Factor showed no collinearity (GVIF: females,1.12;
males,1.13; GVIF: females,1.08; males,1.07; respectively).

To analyse clutch size, brood size and number of fledglings (count data), we used GLMMs
with negative binomial error distributions to account for overdispersion [59]. For hatching suc-
cess and fledging success we used GLMMs with binomial error distribution and a logit link, in
which each egg (or chick) was scored as hatching (or fledging) or not and nest ID was an addi-
tional random term. For fledgling body condition index, we used a GLMM with normal error
distribution and an identity link function; normality was confirmed by graphical analysis of
residuals (normal Q-Q plots [60]). For the index we used the residuals of the regression of log
body mass on log ulna length at 70 d (linear regression: F; 457, = 1946.23, P<0.0001, R*=0.28,
P<0.001) [61].

In each case, the full model was compared with a model lacking the fixed terms of interest
(Mother s age, Father s age, Mother s age®, Father s age’, Mother s age*Father 's age) using a
Likelihood Ratio Test. If significant (all were, except the models for clutch size and fledgling
body condition), we obtained a final model by deleting the non-significant quadratic and inter-
action terms. We used version 3.1.0 of R [62] with the glmmADMB library for count data [63]
and 3.1.5 of R with the Ime4 library for proportions and for index of body condition [64].

Results
Recruitment

For the first sample (scored over 6 years), the probability of recruitment of fledglings was
affected by the interaction of the mother’s and father’s linear ages (X?,=5.96, P=0.015;

Table 1). The interaction was due to offspring with two young parents or two old parents being
least likely to recruit, while those with one young parent plus one old parent were most likely
to recruit (Fig 1A). Offspring with a young or old parent of either sex were more likely to
recruit if their other parent was of the opposite age extreme. For offspring of very young moth-
ers (<4 years), probability of recruitment roughly doubled when their fathers were very old
(>13 years) rather than very young, whereas for offspring of very old mothers it increased by
more than half when their fathers were very young rather than very old (Fig 1B). Recruitment
prospects of the offspring of young versus very old fathers were affected by partner age in a
similarly contrasting pattern.

Neither the significant interaction nor the form of the surface in Fig 1 was due to small
unrepresentative samples for extreme parental ages: significance of the interaction of parental
linear ages was little affected by deleting the offspring of the 7 very old mothers paired to very
young fathers (B = -0.0125, SE = 0.0045, X°; = 7.79, P = 0.005) or the offspring of the 23 young
mothers paired to very old fathers ( = -0.0107, SE = 0.0047, X?,=5.23, P=0.022), the two
parental age combinations least represented in the sample. Sample sizes for parental age combi-
nations are shown in S1 Table.

Results for the second sample (scored over 4 years) were similar in every respect. Probability
of early recruitment was affected by the interaction of the mother’s and the father’s linear ages
(X?; = 4.68, P = 0.030, Table 1), and this effect remained significant after deleting the offspring
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Table 1. Final models for effects of parents' ages and interactions on the probability of recruitment of
fledglings. P-values for terms comprised in significant interactions are not shown because they are mean-
ingless. For random factors we show variances (and SD) of intercepts.

Fixed effects Estimate (SE) X2 P
First sample (scored over 6 years)

Intercept -2.7778 (1.7936)

Mother’s age 0.1403 (0.0417)

Father’s age 0.1145 (0.0405)

Laying date -1.4780 (0.1914) 59.07 <0.001
Status 17.20 <0.001
(a) Second chick -0.3465 (0.0927)

(b) Third chick -0.4894 (0.1918)

Years of monitoring 0.1226(0.3326) 0.14 0.714
Mother’s age * Father’'s age -0.0108 (0.0044) 5.97 0.015

0%ather 1 = 0.0610 (0.2470); 02 mother 10 = 0.0740 (0.2720); 02conor = 0.9480(0.9736); 0% esiqual = 1
Second sample (scored over 4 years)

Intercept -2.1032 (0.5582)

Mother’s age 0.1399 (0.0436)

Father’s age 0.1065 (0.0423)

Laying date -1.4817 (0.1971) 55.64 <0.001
Status 16.47 <0.001
(a) Second chick -0.3489 (0.0956)

(b) Third chick -0.4727 (0.1941)

Mother’s age * Father’'s age -0.0102 (0.0047) 4.68 0.030

0'Zfather o = 0.0047 (00686): szother o = 0.1500 (0-3873); o'2<:ohor‘( =1.0860 (1 -0400); 0'zresidual =1
doi:10.1371/journal.pone.0133213.t001

of very old mothers paired to very young fathers (n = 7) or very young mothers paired to very
old fathers (n = 22) (respectively: p = -0.0102, SE = 0.0050, X?; =4.682, P=0.031; B =-0.0102,
SE = 0.0050, X*; = 4.07, P = 0.043). Sample sizes for parental age combinations are shown in S1
Table.

Breeding traits

None of the six breeding traits was affected by the interaction of parents’ linear ages (Table 2)
although positive and quadratic effects of either male age or female age were common: hatch-
ing success, brood size and number of fledglings were affected by linear and quadratic terms
for female age, and fledging success was affected by the linear and quadratic terms for both
female and male age (Table 2, Fig 2).

Discussion

In the blue-footed booby, offspring viability, measured as probability of recruitment or early
recruitment into the breeding population, depends strongly on the combination of parental
ages. Fledglings with two very young parents (<4 years) or two very old parents (>13 years)
were the most likely to fail, whereas fledglings with one very young parent and one very old
parent were the most likely to succeed. For a young parent of either sex offspring viability
increased with age of the partner, while for a very old parent of either sex offspring viability
decreased with age of the partner. Failure to recruit could occur because fledglings died before
the age of recruitment or because they were insufficiently competitive adults to acquire a terri-
tory and partner and care for a clutch. The phenotypic traits of fledglings associated with this
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Fig 1. Effect of combined parental ages on estimated probability of recruiting into the breeding
population. (a) The surface, generated from a GLMM, is based on 3,361 fledglings (P = 0.015). (b) For
illustration, predictive curves were generated by GLMM estimates for very young mothers (<4 years; solid
line) and very old mothers (>13 years; dashed line).

doi:10.1371/journal.pone.0133213.g001

pattern were not identified; they may not include body condition at fledging because this vari-
able was not affected by a parental age interaction. Effects of combined parental ages across the
age-span on offspring quality have not, to our knowledge, been investigated in other non-
human species except in a study of semi-captive common lizards (Lacerta vivipara), where
parental ages did not interact to affect first-year survival [28].

Variation in viability of fledglings could be due to variation in parental investment. At the
oocyte/egg stage, female birds can influence diverse aspects of offspring development both epi-
genetically and by modifying hormone, carotenoid and antibody contents of yolk [65-67], and
both sexes can also influence development by adjusting their care of clutch and brood. Further-
more, in some circumstances female and male parents are expected to modify their investment
in progeny in response to the characteristics of their mates [68,69], including age [70]. Accord-
ing to one model, adjustments made by female animals in response to male quality can depend
on the female’s own age or body condition, for example with young females increasing invest-
ment when the male is of high quality and old females doing so when he is of low quality [71].
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Table 2. Final models for effects of parents' ages and interactions between them on breeding traits. P-values for terms comprised in significant inter-
actions are not shown because they are meaningless. For random factors we show variances (and SD) for slopes (S) and intercepts (I). Piecewise regression
on significant quadratic effects showed that all initial increases and final decreases with age were significant (P<0.05). Effects of ID may have been nonsignifi-
cant because individuals were observed with few repetitions; e.g., 2.87+2.37 repetitions for the 1,860 fathers and 3.00+2.58 repetitions for the 1,789 mothers
analysed for fixed effects of models 3 and 4.

Fixed effects n Estimate (SE) Deviance X2 P

1. Clutch size 5,343 ns

2. Hatching success 10,428

Intercept 1.6884 (0.4798)

Father’s age -0.0080 (0.0095) 0.63 0.426
Mother’s age 0.2049 (0.0375) 27.42 <0.001
Mother’s age? -0.0106 (0.0020) 25.38 <0.001
Laying date -4.9944 (0.1404) 1481.70 <0.001

szather ID,| = 0.1165 (0-3413); o-Zmother ID,l (mother’s age) = 0.5820 (0-7630); szother ID,S (mother’s age) = 0.0052 (0-0722);
Cl'2mother ID,I (father’s age) = 0.3584 (0-5987); 02mother ID,S (father’s age) = 0.0024 (00488):
02cohon,l =2.1928 (1 -4810); 02nest ID,1 = 0.876 (09361): o'2residual =1

3. Brood size 5,343

Intercept 0.0732 (0.1984)

Father’s age -0.0014 (0.0378) 0.12 0.729
Mother’s age 0.0740 (0.0156) 26.16 <0.001
Mother’s age® -0.0035 (0.0008) 18.36 <0.001
Laying date -1.1813 (0.0510) 555.82 <0.001

o'2father ID,| = 2.069e-09 (4-5499'05); szother ID,I (mother’s age) = 2.065e-09 (4.5449-05);
o'2mother ID,S (mother’s age) = 2.061e-09 (4-549'05); o'Zmother ID,| (father’s age) = 2.065e-09 (4.5446-05);
0% mother ID,S (fathers age) = 2.061€-09 (5.540-e-05); 6% gonort, = 0.3725 (0.6104)

4. No. fledglings 5,343

Intercept -0.3035 (0.2627)

Father’s age 0.0010 (0.0042) 0.66 0.817
Mother’s age 0.1131 (0.0179) 46.62 <0.001
Mother’s age® -0.0054 (0.0010) 34.26 <0.001
Laying date -1.4539 (0.0567) 686.06 <0.001

02father ID,| = 2.157e-09 (4-6449'05); szother ID,I (mother’s age) = 2.109e-09 (4.5929-05);
o'2mother ID,S (mother’s age) = 2.061e-09 (4-5406'05); c72mother ID,| (father’s age) = 2.209e-09 (4.709'05);
O'2m0ther ID,S (father’s age) = 2.209e-09 (4-706'05); 02cohor‘t,l =0.6799 (0-8245)

5. Fledging success 6,125

Intercept 1.2456 (0.4610)

Father’s age 0.1651 (0.0495) 8.89 0.011
Father’s age® -0.0077 (0.0024) 8.78 0.003
Mother’s age 0.1524 (0.0528) 6.19 0.045
Mother’s age? -0.0080 (0.0030) 6.01 0.014
Laying date -2.9791 (0.1828) 267.97 <0.001

czfather ID,| = 0.0818 (02860)1 0-2mother ID,l (mother’s age) = 0.8284 (091 01 ); czmother ID,S (mother’s age) = 0.0104 (01 020)1

02mother ID,| (father’s age) = 0.0000 (O-OOOO); 02mother ID,S (father’'s age) = 0.0011 (0-0327);

02cohort,| =1.4612 (1 .21 98); 02nest ID,| = 0.3086 (05555), 02residual =1

6. Fledgling body 4,873 ns
condition

doi:10.1371/journal.pone.0133213.1002

Consistent with this expectation, young female mallards (Anas platyrhynchos) laid larger eggs
when their partner was attractive [72] whereas old female mallards in another study laid larger
eggs when their partner was unattractive [73]. In theory then, the high viability of fledgling
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Fig 2. Significant quadratic effects of mothers’ and fathers’ ages (years) on breeding traits.
doi:10.1371/journal.pone.0133213.9002

boobies with dissimilar-aged parents could be explained by young mothers increasing invest-
ment in eggs or care of clutch and brood when paired with old males, and old mothers doing
so when paired with young males; or similar adjustments by fathers.

However, scrutiny of thousands of breeding attempts failed to provide any evidence that
parental ages interact to affect parental investment. Four of six breeding traits measured during
the period of parental care showed highly significant quadratic and linear effects of female age,
and fledging success also showed highly significant quadratic and linear effects of male age, but
none of the six was affected by the interaction of male and female ages (Fig 2, Table 2).Thus the
pattern of parental age effects at the egg and nestling stages did not anticipate the pattern of
their effects on fledgling recruitment. This implies that effects of parental age combination on
recruitment may not be mediated by their effects on parental investment. Further, although
age-sensitive adjustments in investment can potentially explain pairs of young or old breeders
producing low-viability fledglings, they cannot explain them producing a high proportion of
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extra-pair chicks [46]. The latter finding calls for an explanation by a genetic mechanism
because extra-pair fathers contribute no parental investment to offspring, only genes.

Identification of the benefits of extra-pair behaviour to female birds has been troublesome
[74], but there are good grounds for believing that they sometimes accrue through pairing
females’ genes with male genes that complement them better than those of their social partners
[48]. It is possible that very old female boobies most frequently produce extra-pair chicks when
paired to very old males, and young females when paired to young males, in order to avoid sad-
dling their progeny with the gene combinations brought about by those age pairings [46]. If we
assume that a genetic mechanism underlies the pattern of parental age-related fledgling viabil-
ity, then by obtaining extra-pair sires for their offspring that are an average of 6.3 years older
than their social partners [46], young females could increase their fledglings’ chances of recruit-
ing by roughly 50% (estimated from Fig 1B).

Interacting effects of parental ages on offspring quality have been reported in humans, and
genetic or gene-environment causes are suspected. Offspring of old fathers are more likely to
have diseases of genetic origin [75], and the probability of birth defects of known or suspected
genetic origin varies in complex ways with the combination of maternal and paternal ages
[42,44]. We speculate that the high viability of fledglings with dissimilar-aged parents could
derive from increased heterozygosity or high quality genes. In populations with overlapping
generations, great environmental fluctuations such as those of El Nifio Southern Oscillation
can maintain variation in genes, including genes of large effect [76,77], and nestlings whose
parents belong to temporally distant birth cohorts exposed to different selection regimes over
different periods of time may be more heterozygous. Alternatively, high genetic quality could
be favored in offspring of dissimilar-aged parents by the two age-related mechanisms most
widely expected to affect viability of animal offspring: increase in the average genetic quality of
surviving breeders [7-9] and decrease in the integrity of adult germ line DNA [12,13]. Assum-
ing damage to DNA is greater in the germ line of males than females [78,79], and that the
capacity of oocytes to repair DNA damage in male sperm declines with female age [13,80],
superior viability could be shown by (1) offspring of young female/old male matings because of
old males’ high genetic quality coupled with young females’ ability to repair their damaged
DNA, and (2) offspring of old female/young male matings because of old females’ high genetic
quality and relatively undamaged DNA. Fledglings derived from young/old parent matings
could be the most viable because they are the only ones to receive high quality genes with rela-
tively undamaged or substantially repaired DNA from one parent along with undamaged DNA
from the other parent.

If the observed pattern of variation in offspring viability is due to genetic effects, then our
analyses may well underestimate the impact of parental age combinations on offspring viabil-
ity, because our sample of fledglings surely included a proportion of individuals sired by
females’ extra-pair partners. Based on rates of extra-pair paternity observed in this population
[46], an estimated 20.3% of fledglings with two very young parents and 20.8% of fledglings
with an old mother (>8 years) and a very old father were probably sired by males of less
extreme age than the social father. Such extra-pair fledglings should inflate the model’s esti-
mates for recruitment of offspring from those two parental age combinations because they
derive from more favorable combinations. A quite different interpretation is that the low aver-
age viability of offspring of two old parents or two young parents is due to the relatively high
incidence of extra-pair individuals, if we assume that extra-pair individuals have low viability.
However, it is implausible that female boobies would allow, let alone foster, extra-pair fertiliza-
tions that greatly reduce the viability of their progeny.

We should seek parental age combination effects in other species and explore their conse-
quences for mating systems. Although they can be large (Fig 1), combination effects may have
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gone undetected because of the difficulty of obtaining adequate samples, particularly of old
individuals paired with variably aged partners. Wherever there is an effect of parental age com-
bination on progeny, whether due to variation in parental investment or in offspring genomes,
females’ and males’ own ages are likely to affect their preferences among breeding partners of
different ages. Where combination effects are due to offspring genomes, the particular age
combination of a breeding pair could potentially affect both partners’ extra-pair behaviour and
their willingness to invest in their shared offspring. For example, suboptimal age combinations
could favor females seeking extra-pair sires of ages that combine better with their own ages

(cf. [46]), and males increasing their relative investment in extra-pair versus within-pair
reproduction.

Supporting Information

S1 Table. Sample sizes for analysis of recruitment of fledglings with different combinations
of mothers’ and fathers’ ages.
(XLS)
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