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Abstract
Expression of the MADS domain transcription factor Myocyte Enhancer Factor 2 (MEF2) is

regulated by numerous and overlapping enhancers which tightly control its transcription in

the mesoderm. To understand howMef2 expression is controlled in the heart, we identified

a late stageMef2 cardiac enhancer that is active in all heart cells beginning at stage 14 of

embryonic development. This enhancer is regulated by the NK-homeodomain transcription

factor Tinman, and the GATA transcription factor Pannier through both direct and indirect

interactions with the enhancer. Since Tinman, Pannier and MEF2 are evolutionarily con-

served from Drosophila to vertebrates, and since their vertebrate homologs can convert

mouse fibroblast cells to cardiomyocytes in different activator cocktails, we tested whether

over-expression of these three factors in vivo could ectopically activate known cardiac

marker genes. We found that mesodermal over-expression of Tinman and Pannier resulted

in approximately 20% of embryos with ectopic Hand and Sulphonylurea receptor (Sur)
expression. By adding MEF2 alongside Tinman and Pannier, a dramatic expansion in the

expression of Hand and Sur was observed in almost all embryos analyzed. Two additional

cardiac markers were also expanded in their expression. Our results demonstrate the ability

to initiate ectopic cardiac fate in vivo by the combination of only three members of the con-

served Drosophila cardiac transcription network, and provide an opportunity for this genetic

model system to be used to dissect the mechanisms of cardiac specification.

Introduction
Human heart defects are the most common form of congenital birth defects, and a leading con-
tributor to morbidity and mortality in later life [1,2]. A detailed understanding of the molecular
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events that control the specification and formation of the circulatory system is critical to defin-
ing the mechanisms of such diseases, and their potential therapies.

Research over the last 20 years has identified a detailed transcriptional regulatory network
that controls the formation of the mammalian heart, where there is extensive auto- and cross-
regulation of component transcription factor genes [3]. Importantly, key factors in the regula-
tory network are now known to be encoded by genes for which mutations cause heart defects
in humans. Such network components include the NK homeodomain factor NKX2.5, with
mutations leading to malformed cardiac structures, cardiomyopathy and irregular conduction
[4–9]; the GATA factor GATA4, with mutations leading to septal defects [10]; and the MADS
domain transcription factor Myocyte enhancer factor-2 (MEF2), with mutations leading to
inherited coronary artery disease [11]. Clearly, defining transcriptional networks for complex
biological processes provides important insight into the mechanisms of diseases affecting that
process.

In the cardiac tissue, a knowledge of the regulatory network controlling cardiac formation
can also be exploited for therapeutic purposes. One potent avenue for treatment of heart dis-
ease is to supply therapeutic cells to repair the damaged tissue [12–16]. Source cells for such
treatment could include fibroblasts from the host that have been induced to a cardiac fate by
expression of cardiac specification transcription factors. Indeed, several recent studies have
identified cocktails of regulatory factors that can promote cardiac fate in fibroblasts. Moreover,
many of the successful studies include expression of the central cardiac regulatory factors
NKX2.5, GATA4 and MEF2 [17–21].

The cardiac regulatory network is also strongly conserved across evolution, with many of
the component genes and regulatory pathways present in Drosophila [3]. This makes the sim-
pler Drosophila system, that has less genetic redundancy amongst cardiac regulatory factors,
an important model for defining basic regulatory interactions in cardiac development. In Dro-
sophila, the heart is comprised of two distinct cells types that can be characterized by their
mutually exclusive expression of the NK-homeodomain transcription factor Tinman or the
orphan steroid hormone receptor Seven-up. Whereas Tin and Svp cell types perform distinct
function in the mature organ, the cells are still contractile, and express similar groups of con-
tractile protein isoforms [22–24]. Accordingly, both cardiac cell types expressMef2, which is
required for muscle protein gene expression in all contractile heart cells [25–26].

Previous studies have identified direct regulatory interactions, at least in a subset of cardial
cells, between the NKx2.5 ortholog Tinman (Tin), the GATA4 ortholog Pannier (Pnr), and
Drosophila MEF2 [27–30]. In particular, three enhancers have been identified that regulate
Mef2 transcription in the heart. The first enhancer is active early, by stage 11 of embryogenesis,
and controls expression in Tinman-expressing dorsal mesodermal cells and cardiac precursors
[27, 30]. This enhancer is activated by Tinman and the zinc finger transcription factor Pannier,
which maintain enhancer activity through the end of embryogenesis. A second enhancer con-
trolsMef2 expression in Seven-up expressing cells [31], and a third enhancer becomes active in
the somatic mesoderm and both cardiac cell types at stage 14 of embryogenesis [32]. A portion
of the third enhancer responsible for somatic mesodermal expression was found to be regulated
by a member of the Gli superfamily of transcription factors, named Lame duck [33–34]. While
this latter enhancer was also recently shown to bind Tinman in chromatin immunoprecipita-
tion assays [35], sequences critical to its regulation have yet to be investigated.

Here, we have identified the transcription factors that regulate the cardiac expression of this
thirdMef2 cardiac enhancer. The regulation of this enhancer is unique in that it is active in Tin
plus Svp cell types of the heart, whereas the previous enhancers were active either in the Tin-
man expressing cardiac cells or the Seven-up expressing cardiac cells. Our data demonstrate
that the enhancer is activated directly by Tinman and Pannier. These findings support the idea
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that proper heart development requires the fine-tuning of MEF2 protein expression before
hatching to the larval stage. In addition, we also demonstrate that Tin and Pnr can work with
MEF2 protein to activate downstream genes in the cardiac program, similar to the roles of
their mammalian counterparts in conversion of fibroblasts to a cardiac fate. Our in vivo studies
underline the potent cardiogenic activities of these factors, and uncover the potential of Dro-
sophila to define mechanisms by which naïve cells can be converted into cardiomyocytes.

Materials and Methods

Generation of promoter-lacZ constructs
The 345bp enhancer was PCR-amplified using the forward primer (5’-CCTCTCTTTTGGCA
GAAAGTCG-3’) and reverse primer (5’-AAACTCATCTCCACGCCACTGC-3’). The product
was cloned into the vector pLacZattb and injected into flies using phiC31 integrase at the land-
ing site 86Fb [36]. Mutation of the Tinman and Lame duck consensus sequences was carried
out by PCR site directed mutagenesis [37]. Primers for each of the constructs were designed to
contain an EcoRI site in place of the consensus binding sequences. Primary PCR amplification
products using the original forward primer/reverse mutated primer and the original reverse
primer/mutated forward primer were used as templates in a secondary PCR amplification of
the full-length enhancer. The forward Tinman mutant primer was (5’GAGTCGAAAT
GAATTCGCTGAACTGAACTTC3’) and the reverse Tinman mutant primer was (5’GAAGT
CAGTTCAGCGAATTCATTTCGACTC3’). The forward Lame duck mutant primer was
(5’TTTGAATGAGATTTATGAAAGAATTCAAAACATCATC’3) and the reverse Lame duck
mutant primer was (5’- GATGATGTTTTGAATTCTTTCATAAATCTCATTCAAA-3’). The
introduced EcoRI sites are in italics. Generation of transgenic flies carrying the mutated
enhancers was carried out as previously described [38].

Immunohistochemistry
Embryos were collected and fixed according to [39]. We used the antibodies described in
Table 1.

In situ hybridization
Embryos were prepared according to [41] until the hybridization step, after which the Wata-
kebe et al. (2010) protocol was followed for labeling and hybridization. PCR primers were used
to amplify, from y w embryo cDNA, portions of each transcript to be analyzed. PCR products
were cloned into the pGEM-T Easy vector (Promega). Insert orientation was determined by
sequencing. Plasmids were then linearized at the 5’ end of the transcript and the appropriate
RNA polymerase (either T7 or SP6) was used to generate an anti-sense FITC RNA probe to
each transcript according the protocol in [42]. Primers used are described in Table 2.

Electrophoretic mobility shift assay
Complementary DNA oligonucleotides were ordered from Sigma-Aldrich (St. Louis, MO) to
generate double stranded DNAmolecules with 5’ GG overhangs. The oligonucleotides were
radioactively labeled with 32P-dCTP (Perkin Elmer, Waltham, MA) using Klenow enzyme
(New England Biolabs, Beverly, MA). The sequence tested was Tin1 5’-GG-GAGTCGAAAT
CACTTGAGCTGAACTGA-3’. Mutant Tin competitor oligonucleotides were the same as wild
type, but with the EcoRI site replacing the Tin site, and used for mutagenesis. Tinman protein
was synthesized in vitro from pBSK-Tin [43] using T3 polymerase in the Promega TNT Cou-
pled Reticulocyte Lysate System (Promega, Madison, WI),
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Cell culture co-transfection assay
Tinman and Pannier cDNAs were cloned into the pPacPl plasmid, and the late stage enhancer
was cloned into CHAB [44]. Drosophila Schneider’s line 2 cells (SL2 or S2; Drosophila Geno-
mics Resource Center) cells were grown in Schneider’s medium supplemented with 10% fetal
bovine serum (Invitrogen Corp., Carlsbad, CA) at 25°C. Transfections were carried out with
TransIT Transfection Reagent (Mirus, Madison, WI) according to the manufacturer’s direc-
tions. Experiments were carried out in triplicate and the average activation fold, standard error
and t-tests were calculated to assess significance.

Fly stocks and crosses
The 69B-gal4 line and UAS-pnr lines were obtained from the Bloomington Stock Center. The
UAS-tin line was described previously [45]. The UAS-tin and UAS-pnr transgenes are both on
chromosome 2, therefore the UAS-tin UAS-pnr line was generated by recombination. We
incorporated our enhancer line, which is located on the third chromosome, into this stock
using standard genetic techniques.

Results

Mef2 contains a cardiac enhancer expressed in all cell types of the
cardiac tube
We have worked to isolate the cardiac specific portion of the large late stage enhancer first
identified by Nguyen and Xu [32], which lies more proximal to the transcription start site of
theMef2 gene than the previously identified cardiac enhancers (Fig 1A and S1 Fig). We gener-
ated PCR fragments from this region, cloned them into a plasmid containing a lacZ reporter
gene and generated transgenic flies that contained theMef2-lacZ constructs. Embryos from
these lines were stained with an antibody against β-Galactosidase to visualize activity of the
enhancer. The smallest enhancer fragment with complete activity in both cardiac cell types lies

Table 1. Antibodies used in this study, their sources and dilution.

Primary Antibody Dilution Source Secondary Antibody Dilution Source

Mouse anti- β-
galactosidase

1:400 Promega (Madison, WI) Vector anti-mouse
(Vectastain Elite Kit)

1:500 Vector Laboratories
(Burlingame, CA)

Mouse anti-β-
galactosidase

1:400 Promega (Madison, WI) Alexa 488 anti-mouse 1:2000 Molecular Probes (Eugene,
OR)

Rabbit anti-MEF2 1:1000 Lilly et al., 1995 Alexa 568 anti-rabbit 1:2000 Molecular Probes (Eugene,
OR)

Mouse anti-Fasciclin
III

1:500 Developmental Studies Hybridoma Bank
(University of Iowa)

Alexa 488 anti-mouse 1:2000 Molecular Probes (Eugene,
OR)

Mouse anti-Pericardin 1:50 Developmental Studies Hybridoma Bank
(University of Iowa)

Alexa 568 anti-mouse 1:2000 Molecular Probes (Eugene,
OR)

Guinea pig anti-H15 1:2000 [40] Alexa 488 anti-guinea pig 1:2000 Molecular Probes (Eugene,
OR)

doi:10.1371/journal.pone.0132965.t001

Table 2. Sequences of oligonucleotide primers used to amplify cDNA for the indicated genes.

Transcript Forward primer 5’-3’ Reverse primer 5’-3’

Hand ATGTTTAAGAATTCCGTTGCC CGTGCGGCCCTTGGTCG

Sur CCGCCATTTCGTGTGTTTGT GTGGTTGCCTCATAGTGCCT

doi:10.1371/journal.pone.0132965.t002

Transcriptional Regulation of Drosophila Heart Specification

PLOS ONE | DOI:10.1371/journal.pone.0132965 July 30, 2015 4 / 18



Fig 1. Identification of a proximalMef2Cardiac Enhancer. (A)Diagram of theMef2 gene and its cardiac enhancers. The most distal enhancer (-6877/-
6388) refers to the Seven-up cell enhancer. -5903/-5667 represents the Tinman-dependent enhancer and the red box (-2775/-2432) is the late stage cardiac
and somatic mesodermal enhancer characterized here. (B) Activity ofMef2 cardiac enhancers fused to lacZ reporters. The embryos were stained for β-Gal
accumulation. Top row, the -5903/-5667 enhancer was active earliest in development, and reporter activity was detected until stage 16. Middle row, the
-2775/-2432 enhancer became active at stage 13 in cardiac cells (arrow) and skeletal myoblasts, and was active in all cardiac cells by stage 16. Bottom row,
when the two enhancers were fused, there was reporter expression in all cardiac cells during embryogenesis. Arrows indicate heart cells. Bar, 100μm. (C)
Alignment of the proximal enhancer sequence with four Drosophila species. A conserved Tinman binding site is marked by a blue box, Pannier sites are
marked with red boxes, and the proposed Lame duck binding site identified by Duan et al [33] is marked with a green box.

doi:10.1371/journal.pone.0132965.g001
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at -2432/-2775 relative to theMef2 transcription start site. This 345-bp fragment also contained
the 170bp mesodermal enhancer characterized by Duan et al [33] and a portion of the meso-
dermal enhancer characterized by Busser et al ([34] that had additional regulatory regions
lying downstream of our enhancer. Attempts to separate the cardiac and somatic enhancer
activities by 5’ or 3’ deletions resulted in loss of activity from both the cardiac cells and somatic
mesoderm (data not shown). This observation indicated that certain enhancer sequences are
utilized in both cardiac and skeletal muscle tissues.

The previously characterized -5903/-5667 Tin-responsive enhancer becomes active early in
development when the cardiac cells are becoming specified at stage 11 [27,30]. Its activity
becomes restricted to the Tin expressing cells by stage 14 and remains active until the end of
embryogenesis (Fig 1B, row 1). By contrast, the enhancer characterized here becomes active in
cardiac cells at stage 14 and remains active until the end of embryogenesis (Fig 1B, row 2).
Interestingly, when we fused the -2432/-2775 late stage enhancer to the early Tin specific
enhancer, we observed that the combined enhancer completely recapitulated MEF2 expression
in the heart from the earliest stages to the end of embryogenesis in all cardiac cell types (Fig 1B,
row 3).

To gain insight into how expression ofMef2 is regulated via the late enhancer, we analyzed
the sequence for known transcription factor binding sites, and observed consensus sequences
for Tin and Pnr (Fig 1C). These two factors have already been shown to activateMef2 in the
heart via the -5903/-5667 enhancer, and their consensus binding sites have also been shown to
cluster together within numerous cardiac gene promoters [35]. We therefore tested the ability
of Tin and Pnr to activate the enhancer in vitro.

Tinman and Pannier activate the enhancer in vitro, and Tinman is
capable of binding to its consensus sequence within the enhancer
To test the ability of candidate factors to regulate theMef2 enhancer, we transfected Drosophila
S2 cells with the enhancer fused to a lacZ reporter gene, along with plasmids containing the
cDNAs of either tin, or pnr, or both factors. After incubation for 48hr, cell lysates were pre-
pared and reporter activity was determined using a quantitative ßGal assay. There was moder-
ate but significant activation of theMef2-lacZ construct by Tin, while Pnr on its own was
unable to significantly activate the enhancer. When Tin and Pnr were combined, activation
was more than additive, suggesting that the two factors might work synergistically to activate
Mef2 in the heart (Fig 2A).

Next, we tested the ability of Tin to bind to theMef2 enhancer in an electrophoretic mobility
shift assay, using in vitro translated protein and radioactively labeled DNA. Tin bound to the
consensus site within the enhancer robustly, as visualized by the presence of a protein plus
probe complex in the assay (Fig 2B). The interaction with Tin was specific, because unlabeled
wild-type competitor was able to compete away binding, while unlabeled mutant competitor
(that had the consensus site replaced with an EcoRI site) was unable to reduce binding. Pnr was
unable to activate the enhancer on its own in cell culture and we were also unable to detect an
interaction in our binding assays (data not shown), which initially suggested to us that Pnr
might not bind to the enhancer directly.

The Tinman and Pannier binding sites are required for complete
enhancer activity in vivo
Having determined that Tin could bind to the consensus site in the enhancer, we next deter-
mined if the site was required for enhancer activity. Using site-directed mutagenesis, we
mutated the Tin consensus site within the context of the full-length enhancer, fused the
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mutated enhancer to a lacZ reporter, and generated transgenic flies carrying this construct. We
analyzed reporter expression in transgenic embryos of the wild-type construct (Fig 3A–3F) rel-
ative to the Tin-mutant construct. We noted that lacZ reporter activity of the mutant construct
was slightly reduced in the somatic mesodermal cells, but still present. However, reporter
expression was lost from all cells of the heart (Fig 3G–3L). This loss of enhancer activity was
apparent at early and late stages of cardiogenesis, suggesting that Tin is a direct and essential
activator of this enhancer in vivo during the embryonic stage. In addition, we mutated the
three Pnr consensus sites and assessed enhancer-lacZ activity in vivo. Here, we saw a reduction
of reporter activity in the heart cells (Fig 3M–3R), which suggested that Pnr does have direct
interaction with its consensus sites and contributes to enhancer robustness as seen in our cell
culture experiments. We were unable to observe a direct interaction between Pnr protein and
the enhancer in vitro; however, the mutation of the consensus binding sites in vivo clearly
diminished enhancer activity and the synergistic activation of the enhancer with Tinman was
robust, suggesting the Pnr does in fact interact directly. In the Pnr-mutant enhancer-lacZ lines,
we also saw an expansion of enhancer activity in the amnioserosa. We hypothesize that while
the Pnr consensus sites are required for full activation of the enhancer in cardiac cells, the sites
are also required for repression ofMef2 in the amnioserosa, as Pnr has been shown previously
to act as a repressor of transcription [46].

Fig 2. Tinman and Pannier activate the enhancer in vitro and Tinman is capable of binding to its consensus sequence within the enhancer. (A)
Activation of the -2775/-2432Mef2-lacZ in S2 cells by Tin, Pnr or Tin combined with Pnr. Tin activated the reporter moderately, while activation by Pnr was
not significantly above negative controls. When combined, activation of the reporter was increased significantly above that achieved by Tin alone. (B)
Electrophoretic mobility shift assay to determine if Tin and Pnr could bind to consensus sites. Free probe had a high mobility when combined with
unprogrammed lysate (Un). A complex of probe plus protein was formed in the presence of Tin lysate, which was competed by 300X excess of
nonradioactive wild-type sequence (wt comp) but not by 300X excess of nonradioactive mutant sequence (mut comp).

doi:10.1371/journal.pone.0132965.g002
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Ectopic expression of Tinman and Pannier results in expansion of
enhancer activity
To further test the hypothesis that Tin and Pnr are direct and positive activators ofMef2
expression via this enhancer, we determined if ectopic expression of Tin could expand the
activity of our enhancer in embryos. To achieve this, we initially generated embryos carrying
the ectodermal, amnioserosal [47] and nervous system Gal4 driver 69B-Gal4, plus UAS-tin and
theMef2 enhancer-lacZ. This combination directed expression of Tin in the ectoderm and ven-
tral nerve cord. If Tin was a direct activator of the enhancer, we predicted that these embryos
should show lacZ expression in the ectoderm and/or nerve cord. Since the mesodermal expres-
sion of the enhancer is quite robust, we directed our attention to the ventral nerve cord to look
for expansion of expression of the enhancer, but failed to see any reporter activity in this tissue.

Fig 3. Mutation of the Tinman consensus site in the -2775/-2432 enhancer results in loss of enhancer activity in cardiac cells. (A-F)-2775/-2432
Mef2-lacZ embryos at stages 14 (A-C) and 16 (D-F). (A,D)Antibody stain against MEF2. MEF2 could be detected in all cells of the heart and throughout the
somatic mesoderm. (B,E)Antibody stain against β-Galactosidase. Activity of the late stage enhancer was almost identical to that ofMef2 expression. In (B),
the enhancer is just becoming active in the heart cells, therefore a few cells lacked activity at this stage. By stage 16 (E) all cardiac cells showed ßGal
accumulation. (C)Merge of (A) and (B); (F)Merge of (D) and (E). (G-L)Embryos carrying the -2775/-2432Mef2-lacZ enhancer with the Tinman consensus site
mutated, at stages 14 (G-I) or 16 (J-L). (G,J)Antibody stain against MEF2. MEF2 marks all cells of the heart and the somatic mesoderm. (H,K)Antibody stain
against β-Galactosidase. Activity of the mutated enhancer was completely lost from the cardiac cells, and was slightly reduced in the somatic mesoderm. (I)
Merge of (G) and (H). (L)Merge of (J) and (K). Arrows point to MEF2 positive cardiac cells, arrowheads point to the same cells lacking β-Galactosidase. (M-R)
Embryos carrying the -2775/-2432Mef2-lacZ enhancer with the three Pannier consensus sites mutated, at stages 14 (M-O) or 16 (P-R). (O)Merge of (M) and
(N). (R) Merge of (P) and (Q). Arrows point to cardiac cells, arrow heads point to cells that have lost enhancer activity. Asterisk denotes activity in the
amnioserosa. Bar, 100μm.

doi:10.1371/journal.pone.0132965.g003
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We hypothesized that there might be expansion of the enhancer in other areas of the ectoderm
that might be difficult to discern, given the intensity of the underlying mesodermal activity of
the enhancer.

To reduce the skeletal muscle-specific enhancer activity, we mutated a site previously
shown to be required for high levels of somatic mesoderm enhancer activity, and thought to
interact with the zinc finger transcription factor Lame duck (Lmd, indicated in Green in Fig 1)
[33]. Whether it is Lmd that interacts with this sequence has recently been called into question,
since Busser et al [34] identified three Lmd binding sites in this region of the genome, none of
which corresponded to the site of Duan et al [33]. Instead, they proposed that a Forkhead
domain factor most likely interacts with the sequence that we mutated. In either scenario, our
goal was to reduce the overall somatic muscle activity of the enhancer, in order that we could
more effectively assess the abilities of Tin and/or Pnr to activate the enhancer.

We generated transgenic flies carrying this mutated construct, and found that LacZ expres-
sion was reduced in the somatic mesoderm, but not completely lost. This result was consistent
with the identification by Busser et al [34] of the Lmd binding sites, since the most promoter-
distal Lmd site is retained in the -2432/-2775 enhancer, and could contribute to enhancer activ-
ity in the somatic mesoderm. However, the activity of the mutated enhancer was sufficiently
reduced to enable clear visualization of cardiac enhancer-lacZ expression. Interestingly, at
stage 16, the cardiac cell activity of the enhancer became inconsistent, with random groups of
cells losing expression (Fig 4A–4C compared to Fig 3B). This patchy enhancer activity was
consistent with an experiment where we tried to remove the 3’ 170 bp of sequence from the
enhancer, that included the site mutated here, and we lost all enhancer activity (data not
shown), suggesting that 3’ sequences are critical to enhancer activity.

When we ectopically expressed pnr in the ectoderm of these transgenic embryos, there was
relatively little impact upon the pattern of lacZ reporter expression (Fig 4D–4F). We next
repeated the ectopic Tin expression experiment with this new transgenic line, and saw repro-
ducible ectopic expression of lacZ in the ectoderm and amnioserosa, demonstrating that Tin
could activate the enhancer-lacZ in vivo outside of the mesoderm (Fig 4G–4I). Since Pnr and
Tin collaborated to activate theMef2-lacZ in tissue culture cells, we also tested whether Tin
required Pannier for more robust ectopic activation of the enhancer. We generated embryos
carrying UAS-tin, UAS-pnr, 69B-Gal4, and the mutated enhancer-lacZ line. Ectopic enhancer
activity was again observed in the ectoderm and amnioserosa at more robust levels than in the
cardioblasts (Fig 4J–4L). We suspect this is due to higher levels of induced tin and pnr expres-
sion in the ectoderm compared to the lower endogenous levels in the mesoderm. We con-
firmed that this expanded activity was ectodermal, by co-staining with the ectodermal marker
Fasciclin III and imaging a single confocal Z-slice to confirm co-localization (S2 Fig). In addi-
tion, we observed ectodermal expression of the endogenousMef2 gene in many of these
embryos (Fig 4J inset), as well as robust expansion of enhancer activity (Fig 4K and 4K inset).
These data further supported the hypothesis that Tin and Pnr collaborate in activatingMef2
via this enhancer.

Tinman and Pannier activate Hand and Sur transcription
Tin and Pnr working together to activate our enhancer was consistent with several accounts in
the literature of their collaboration in activation of Drosophila genes [29,48–50] and collabora-
tion of their vertebrate homologs Nkx2.5 and GATA4 [51–54]. Additionally, recent studies in
vertebrates have demonstrated that the Tin, Pnr and MEF2 homologs collaborate, alongside
other factors, to convert mouse fibroblast cells to cardiac cells [17,19]. We wondered if we
could use the Drosophila in vivo system in order to investigate this phenomenon further. First,
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we tested our system by analyzing the effects of only Tin and Pnr over-expression. It had been
documented that these factors activate the enhancers of Hand and Sur [48–49,55] therefore we
over-expressed tin and pnr throughout the mesoderm, and assessed whether they were able to
activate transcription ofHand and Sur compared to the expression of these genes in control
embryos (Fig 5A and 5B). In approximately 20% of the embryos, we observed ectopic accumu-
lation of Hand or Sur transcripts (Fig 5C and 5D). These studies demonstrated that cardiac
marker gene expression could be modestly expanded upon over-expression of tin plus pnr.

Tinman, Pannier and MEF2 work in collaboration to activate the cardiac
program
We next investigated the effect upon marker gene expression of adding a third factor used in
vertebrate conversion experiments, namely MEF2. With the addition of MEF2 to embryos
over-expressing Tin and Pnr, the patterns of Hand and Sur transcripts were dramatically
expanded in 100% of embryos analyzed, in a thickening expanse of cells adjacent to where the
cardiac tube lies, as well as elsewhere in the mesoderm (Fig 5E and 5F). We also wanted to
determine if visceral mesoderm fate was also being expanded in these embryos, since Tin is
required for visceral mesoderm specification [43]. To do this, we used an antibody against

Fig 4. Ectopic expression of tinman and pannier results in expansion of enhancer activity. All embryos are stage 13–14 embryos carrying the -2775/-
2432Mef2-lacZ with the Lame duck consensus site mutated. (Left column) accumulation of MEF2; (center column) accumulation of ß-Gal; (right column)
merge of prior two channels. Embryos have ectopic ectodermal expression of the following genes: (A-C)no additional genes expressed, note that activity of
the enhancer can be seen in all cells of the heart (arrows), but the somatic mesodermal stain is reduced; (D-F)ectopic pnr expression, stains are similar to
(A-C); (G-I) ectopic tin expression, note that activity of the enhancer is expanded in the ectoderm and amnioserosa (arrowheads). Arrow indicates cardiac
cells. (J-L) ectopic tin and pnr expression, note that the enhancer is more robustly activated in the ectoderm and amnioserosa when compared to (H), which
can been seen more dramatically in the inset, and ß-Gal accumulation co-localizes with the MEF2 expression seen in (J). Arrow indicates to cardiac cells.
Scale bar, 100μm.

doi:10.1371/journal.pone.0132965.g004
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Fig 5. Over-expression of tinman, pannier andMef2 in the mesoderm results in expansion of the expression of cardiac factors. (A-F) Stage 14
embryos of the indicated genotypes stained for Hand expression (left column) or Sur expression (right column). (A,B)Wild-type expression of Hand and Sur.
(C,D)24B+twi>tin+pnr embryos. Note that most embryos show normal expression of the cardiac markers, but that a small subset (insets) show expanded
expression. (E,F)24B+twi>tin+pnr+Mef2 embryos. EctopicHand and Sur transcripts were observed in nearly 100% of embryos. Arrows point to wild type
expression in the heart, and arrowheads point to expanded expression ofHand and Sur transcripts in the somatic mesoderm. Bar, 100μm. G: Quantification
of effects of over-expression of cardiac transcription factors. Note that expression of tin plus pnr results in ~20% of embryos showing ectopic marker gene
expression, and addition ofMef2 expression results in almost 100% of embryos showing ectopic cardiac marker expression.

doi:10.1371/journal.pone.0132965.g005
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Fasciclin III, which is expressed in the visceral mesoderm precursors at early embryonic stages.
At stage 10, there was a slight expansion of FasIII expression compared to controls (Fig 6A and
6B), however this expansion did not persist into later stages (data not shown). We conclude
that the predominant activation of cell fate in these embryos is the activation of cardiac fate.

To further determine if Tin, Pnr and MEF2 were specifically activating the cardiac program,
we studied the pericardial cell marker Pericardin (Prc) and an additional cardiac specific
marker, H15. Here, we found that Prc and H15 also had expanded expression. This expansion
of Prc and H15 was similar to, but not as broad as, the expansion of Hand and Sur transcripts
(Fig 6C–6F). We interpret these results to indicate that MEF2 can potentiate the cardiogenic
effects of tin and pnr in the mesoderm.

To determine if Tin, Pnr and MEF2 can potentiate the cardiac phenotype outside of the
mesoderm, we tested whether they could activate the cardiac program in the ectoderm, using
the 69B-gal4 driver line. We found that, when we used Hand as a marker of heart fate, a little
over 50% of the embryos stained had ectopic stain; and when Sur was used as a cardiac marker,

Fig 6. Pericardin andH15 are activated by the over-expression of tinman, pannier andMef2 in the mesoderm. (A,C and E) Control embryos. (B,D and
F): 24B+twi>tin+pnr+Mef2 embryos. (A,B) Antibody stain against Fasciclin III which marks the visceral mesoderm at stage 10. (C,D) Antibody stain against
Pericardin which marks the pericardial cells. (E,F) Antibody stain against H15 which is a cardiac-specific T box transcription factor. Arrows point to normal
expression and arrowheads point to expanded expression. Bar, 100μm.

doi:10.1371/journal.pone.0132965.g006
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30% of the embryos had ectopic expression in ectodermal tissues (Fig 7A and 7B). Sur expres-
sion was only narrowly expanded to what appeared to be malformed salivary glands, which
arise from ectodermal cells. In addition, there was no expansion of FasIII accumulation in
stage 12 embryos, indicating no expansion of visceral mesoderm fate in these embryos (Fig 7D
and 7E). These results suggested that conversion to a cardiac fate requires either some thresh-
old level of activation by the converting factors that may or may not be met when utilizing an
ectodermal driver; or, there are additional mesodermal factors with which Tin, Pnr and MEF2
collaborate to activate the myogenic program.

Fig 7. Expression of tinman, pannier andMef2 in the ectoderm results in an expansion of cardiac gene expression. (A,B) 69B>tin+pnr+Mef2
embryos at stage 14, stained for Hand expression (A) or Sur expression (B). (A) ~ 50% of embryos had expandedHand expression (arrowhead) with the rest
demonstrating normal expression in the heart (inset, arrow). (B) ~70% of embryos had normal Sur expression in the heart (arrow), with a subset showing
expanded Sur expression in the nervous system (inset, arrowhead). Bar, 100μm. (C) Quantification of effects of over-expression of cardiac transcription
factors. (D,E) Antibody stain against Fasciclin III. (D) shows normal FasIII accumulation in a stage 9 control embryo. (E) shows similar levels of accumulation
in a 69B>tin+pnr+Mef2 embryo.

doi:10.1371/journal.pone.0132965.g007
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Discussion

Activation ofMef2 transcription by Tin and Pnr
In this paper, we characterize aMef2 enhancer that becomes active late in embryogenesis in all
cells of the heart. We show that its activity is dependent upon a single Tin consensus binding
site which is capable of binding to the Tin protein in vivo, confirming the ChIP-sequencing
observations of Jin et al. indicating that this region ofMef2 is responsive to Tin [35]. We fur-
ther show that Tin can activate the enhancer in cell culture, and when the GATA transcription
factor Pnr is added, there is synergistic activation of the enhancer. Similarly, ectopic expression
of Tin in the ectoderm results in expansion of enhancer activity, while combined ectopic
expression of Tin and Pnr dramatically expands enhancer activity as well as MEF2 expression
in the ectoderm. Our results demonstrate the power of Tin and Pnr to activateMef2 transcrip-
tion, and the importance of maintaining MEF2 at high levels in the heart through the end of
embryogenesis by having duplicate enhancers with similar activity. It is interesting to note that
while we did not observe a direct interaction between Pnr and the enhancer through DNA
binding assays, Pnr nevertheless potentiated activation of the enhancer by Tin. This is similar
to the observation of Akasaka et al [48] for activation of Sur by Tin and Pnr without direct
binding of Pnr. However, in this instance, we did see a modest reduction in enhancer activity
when we mutated the Pnr binding sites. Mechanistically, the synergistic activity probably arises
from a direct interaction between Tin and Pnr that was documented by Gajewski et al [29] and
can also be seen in the collaboration and direct binding of the Tin and Pnr vertebrate homo-
logs, Nkx2.5 and GATA-4. These two transcription factors synergistically activate vertebrate
cardiac enhancers independently of GATA-4 DNA binding [52–53]. The reduction of activity
we saw with the mutated Pnr consensus sites suggests that Pnr may weakly interact directly
with the enhancer, but the inability to demonstrate an interaction in vitro along with the above
mentioned studies, leads us to hypothesize that direct interaction with Tinman is likely more
important for the synergistic activation of the enhancer.

Activity of thisMef2 enhancer in the cardiac tube is broad, including both Tin and Svp car-
diac cell types. A role for Tin regulation of this enhancer might therefore seem counter-intui-
tive, since the enhancer is ultimately active in the Tin-negative Svp cells. A solution to this
potential contradiction is that the enhancer is first active at a time when all cardiac cells are still
Tin-positive, and thus Tin might function early in the activity of the enhancer to enable other
cardiac factors to interact with the DNA. At later stages, when Tin is not present in all cells
where the enhancer is active, the attracted factors must be able to function in activation of gene
expression after Tin is no longer present. Some support for this model comes from work dem-
onstrating that Nkx2.5 interacts with p300, a bridge to the basal transcriptional complex,
which also possesses histone acetyltransferase activity. Together, p300 and Nkx2.5 synergisti-
cally activate enhancers that have been shown to be regulated by Nkx2.5 [56]. We hypothesize
that recruitment of p300 and basal machinery by Tin in the early heart cells is maintained
through the end of embryogenesis independently of Tin.

Mef2 cardiac enhancers have overlapping activities
A number of developmentally important genes, such asMef2, contain multiple enhancers,
often with overlapping activities. Duplicate enhancers were identified when looking for targets
of Dorsal in the Drosophila embryo. The genes brinker and sog, for which Dorsal-dependent
enhancers had already been described, were each found to have secondary enhancers in distant
locations, one of which was in the intron of another gene [57]. In another example, duplicate
enhancers in the snail (sna) gene were shown to work equally well when they were the only
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regulatory element controlling sna expression. At elevated temperatures however, there was a
reduction in sna expression and disruptions in gastrulation when only one enhancer was sup-
porting sna transcription [58], suggesting that the redundancy provides developmental insur-
ance for the embryo during stressful environmental situations.

Given the importance ofMef2 expression to heart muscle differentiation, it might be pre-
dicted thatMef2 contains multiple enhancers active in the developing cardiac mesoderm.
Indeed, the enhancer that we describe here is the third cardiac enhancer described for Drosoph-
ila Mef2, and the second to respond to Tin and Pnr. The partial temporal and spatial overlaps
in enhancer activity with otherMef2 cardiac enhancers could allow for robustness inMef2
transcription in the heart, essentially functioning as a shadow enhancer.

The roles of Tin, Pnr and MEF2 in controlling cardiac fate
Vertebrate studies aimed at transforming fibroblasts into cardioblasts have relied upon cock-
tails of factors, in several cases of which the orthologs of Tin, Pnr and MEF2 were used [17–
21]. Our data demonstrating that Tin and Pnr regulateMef2 expression through multiple
enhancers led us to hypothesize that these factors might work together to activate the cardiac
program in Drosophila. Prior studies in Drosophila have demonstrated that cardiac fate in the
embryo can be broadened by ectopic expression of signaling factors that specify cardiac fate,
including the WNT molecule Wingless, and the BMP protein Dpp [59]. These manipulations
resulted in partial expansion of cardiac fate. When cardiac transcription factors were ectopi-
cally expressed, tin plus pnr expanded the expression ofHand, although not in all embryos
[49]. Here, we demonstrate that addition of MEF2 to Tin plus Pnr significantly potentiates the
activation of cardiac marker gene expression. In the case of Sur, a broad swath of cells is
induced to express Sur, even though Sur is not thought to respond to activation by MEF2.
Expression of the T-box gene H15 and the pericardial specific gene, Pericardin, were also
expanded. These studies support mammalian conversion experiments indicating that MEF2
can play an important role in conversion of fibroblasts to myoblasts [17–20].

It is interesting to note that MEF2 potentiates expansion of cardiac marker gene expression
in the mesoderm, whereMef2 is already broadly expressed. This result could be explained by
the need for high levels of MEF2 expression to promote cardiac fate, and the levels in the gen-
eral mesoderm might not be sufficiently high to achieve conversion to cardiac fate in the
absence of added MEF2. Some support for this explanation comes from the work of Gunthorpe
et al [60], who showed that the differentiating heart was the most sensitive mesodermal struc-
ture to the levels of MEF2 activity, and that even slightly reduced MEF2 function resulted in a
failure of normal heart differentiation.

More broadly, our data demonstrate that cardiac makers can be induced in the Drosophila
system using a similar set of cardiac transcription factors that function in vertebrates. Our data
further support the homology in function for cardiac factors across large evolutionary distance.
In addition, our findings demonstrate that the Drosophila system can be used to unravel mech-
anisms of cardiac fate determination and conversion.

Supporting Information
S1 Fig.Mef2 genetic locus, known cardiac enhancers and their regulators. (A) GBrowse
image (from FlyBase.org) of theMef2 gene span. Known cardiac enhancers are shown as black
or red boxes upstream of the A-D isoforms. (B) The cardiac cells in which each enhancer is
active, known activators, and references for each enhancer.
(EPS)
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S2 Fig. Expression of tinman and pannier in the ectoderm results in expansion of aMef2
cardiac enhancer in the ectoderm. (A-D) 69B>tin+pnr embryo carrying the -2775/-2432
Lmd_mut-lacZ enhancer. A single confocal Z-slice was taken and the boxed area in (A) is enlarged
in (B-D). (B) is Fasciclin III expression, (C) is β-Galactosidase expression and (A,D) are merges.
(EPS)
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