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Abstract
Due to the advancement in sensor technology, the growing large medical image data have

the ability to visualize the anatomical changes in biological tissues. As a consequence, the

medical images have the potential to enhance the diagnosis of disease, the prediction of

clinical outcomes and the characterization of disease progression. But in the meantime, the

growing data dimensions pose great methodological and computational challenges for the

representation and selection of features in image cluster analysis. To address these chal-

lenges, we first extend the functional principal component analysis (FPCA) from one dimen-

sion to two dimensions to fully capture the space variation of image the signals. The image

signals contain a large number of redundant features which provide no additional informa-

tion for clustering analysis. The widely used methods for removing the irrelevant features

are sparse clustering algorithms using a lasso-type penalty to select the features. However,

the accuracy of clustering using a lasso-type penalty depends on the selection of the pen-

alty parameters and the threshold value. In practice, they are difficult to determine.

Recently, randomized algorithms have received a great deal of attentions in big data analy-

sis. This paper presents a randomized algorithm for accurate feature selection in image

clustering analysis. The proposed method is applied to both the liver and kidney cancer his-

tology image data from the TCGA database. The results demonstrate that the randomized

feature selection method coupled with functional principal component analysis substantially

outperforms the current sparse clustering algorithms in image cluster analysis.

Introduction
Image clustering is to cluster the objects into groups such that the objects within the same
group are similar, while the objects in different groups are dissimilar [1, 2]. Image clustering is
a powerful tool to better organize and represent the images in image annotation, image
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indexing, image segmentation and subtype disease identification. Dimension reduction of the
original images is an essential to the success of the image clustering analysis.

Feature extraction and feature selection are two popular methods for dimension reduction.
A widely used method for feature extraction is the principal component analysis (PCA). How-
ever, PCA does not explore the spatial information within the image. It takes a set of spectral
images as an unordered set of high dimensional pixels [3]. Spatial information is an important
component for image cluster and classification analysis. To overcome the limitations of PCA
and to utilize spatial information of the image signals, the functional expansion of the images
based on Fourier and wavelet transform are proposed as a useful tool for image feature extrac-
tion and data denoising [4]. Recently, wavelet PCA which is based on the principal components
for a set of wavelet coefficients is proposed [3] to explore both the spatial and the spectral infor-
mation. The wavelet PCA improves the efficiency of image feature extractions, but does not
explicitly consider smoothing image signals over space. To overcome this limitation and fully
utilize both the spatial and spectral information, we extend one dimensional functional princi-
pal component analysis (FPCA) to high dimensional FPCA.

Traditional statistical methods for image clustering and classification analysis often fail to
obtain accurate results because of the high dimensional nature of the images [5]. Noisy and
irrelevant features might result in over-fitting. The high dimensionality reduces the time effi-
ciency of the clustering algorithms [6]. As a result, the high dimensionality of images provides
a considerable challenge for designing efficient clustering algorithms [6]. Removing noisy,
redundant and irrelevant features while retaining a minimal feature subset will dramatically
improves the accuracy of image cluster analysis [7]. The sparse algorithm is a widely used
method for feature selection in which a lasso-type penalty provides a general framework to
simultaneously find the clusters and the important clustering features in image cluster analysis
[8, 9]. Although the sparse clustering methods can improve the accuracy, it may fail to generate
reasonable clusters when the data include a few outliers. In practice, the performance of sparse
clustering depends on the selection of penalty parameters and threshold for the cutting off fea-
tures. However, the selections of penalty parameters and the threshold have been proved to be
difficult.

Alternatively, a randomized method is proved to be useful when the number of features is
prohibitively large [10]. An efficient randomized feature selection method for k-means cluster-
ing randomly selects the features with probabilities that are calculated via singular value
decomposition of the data matrix [6, 11]. This algorithm has a very useful property that can
theoretically guarantee the quality of the clusters. To the best of our knowledge, this efficient
and provable accurate randomized feature selection algorithm has not been applied to the
image cluster analysis.

Although feature selection and feature extraction are widely used to reduce the dimension-
ality of the image, we have observed very few practices to combine feature selection and feature
extraction together for dimension reduction. We can expect that applying feature selection
algorithm to select extracted features from a set of artificial features that are computed via fea-
ture extraction will improve the accuracy of image clustering.

The purpose of this paper is to develop a comprehensive sparse clustering algorithm with
four components for image cluster analysis. The first component is to use high dimensional
FPCA as a feature extraction technique. The second component includes a theoretically prov-
able accurate randomized feature selection algorithm. The third component is to combine fea-
ture selection and feature extraction together for dimensionality reduction. The fourth
component is spectral clustering with low rank matrix decomposition that can effectively
remove noises and ensure the robustness of the algorithms. To evaluate its performance for
image cluster analysis, the proposed method is applied to 176 ovarian cancer histology images
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with the drug response status (106 images with positive drug response and 70 images with drug
resistance) and 188 kidney histology images (121 images from tumor samples and 67 images
from normal samples) from the TCGA database. Our results strongly demonstrate that the
proposed method for feature selection substantially outperforms other existing feature selec-
tion methods in the image clustering analysis. The R packages for implementing the proposed
methods can be downloaded from our website http://www.sph.uth.tmc.edu/hgc/faculty/xiong/
index.htm.

Materials and Methods

Two dimensional functional principal component analysis
One dimensional functional principal component analysis (FPCA) has been well developed
[12]. Now we extend one dimensional FPCA to two dimensional FPCA. In a two dimensional
region, s and t denote the coordinates in the s axis and t axis, respectively. Let x(s, t) be a cen-
tered image signal located at s and t of the region. The signal x(s, t) is a function of locations s
and t.

A linear combination of functional values can be expressed as:

f ¼
ð
S

ð
T

bðs; tÞxðs; tÞdsdt; ð1Þ

where β(s, t) is a weight function. To capture the variations in the random functions, we chose
the weight function β(s, t) to maximize the variance of f. By the formula for the variance of sto-
chastic integral [13], we have

varðf Þ ¼
ð
S

ð
T

ð
S

ð
T

bðs1; t1ÞRðs1; t1; s2; t2Þbðs2:t2Þds1dt1ds2t2; ð2Þ

where R(s1, t1, s2, t2) = cov(x(s1, t1), x(s2, t2)) is the covariance function of the image signal x(s,
t). Since multiplying β(s, t) by a constant will not change the selected features, Var(f), we
impose a constraint to make the solution unique:ð

S

ð
T

b2ðs; tÞdsdt ¼ 1 ð3Þ

Therefore, to find the weight function, we seek to solve the following optimization problem:

max
ð
S

ð
T

ð
S

ð
T

bðs1; t1ÞRðs1; t1; s2; t2Þbðs2; t2Þds1dt1ds2t2

s:t:
ð
S

ð
T

b2ðs; tÞdsdt ¼ 1:

ð4Þ

Using the Lagrange multiplier, we reformulate the constrained optimization problem Eq (4)
into the following non-constrained optimization problem:

max
b

1
2

ð
S

ð
T

ð
S

ð
T

bðs1; t1ÞRðs1; t1; s2; t2Þbðs2; t2Þds1dt1ds2t2 þ
1

2
lð1�

ð
S

ð
T

b2ðs1; t1Þds1dt1Þ; ð5Þ

where λ is a penalty parameter.
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By variation calculus [14], we define the functional

J½b� ¼ 1
2

ð
S

ð
T

ð
S

ð
T

bðs1; t1ÞRðs1; t1; s2; t2Þbðs2; t2Þds1dt1ds2t2 þ
1

2
lð1�

ð
S

ð
T

b2ðs1; t1Þds1dt1Þ: ð6Þ

Its first variation is given by

dJ½h� ¼ d
dε

J½bðs; tÞ þ εhðs; tÞ�

¼
ð
S

ð
T

½
ð
S

ð
T

½Rðs1; t1; s2; t2Þbðs2; t2Þds2t2 � lbðs1; t1Þ�hðs1; t1Þds1dt1 ¼ 0:

ð7Þ

Since the expression above should be 0 at the maximizer for arbitrary h(s, t), and h(s, t) can

be replaced by that certain form. Replacing h(s, t) by
ð
S

ð
T

Rðs1; t1; s2; t2Þbðs2; t2Þds2t2 � lbðs1; t1Þ

in the above equation, we obtain

dJ½h� ¼
ð
S

ð
T

½
ð
S

ð
T

Rðs1; t1; s2; t2Þbðs2; t2Þds2t2 � lbðs1; t1Þ�2ds1dt1 ¼ 0; ð8Þ

which implies the following integral equation
ð
S

ð
T

Rðs1; t1; s2; t2Þbðs2; t2Þds2dt2 ¼ lbðs1; t1Þ ð9Þ

with an appropriate eigenvalue λ. The left side of the integral Eq (9) defines a two dimensional
integral transform R of the weight function β. Therefore, the integral transform of the covari-
ance function R(s1, t1, s2, t2)is referred to as the covariance operator R. The integral Eq (9) can
be rewritten as

Rb ¼ lb; ð10Þ

where β(s, t) is an eigenfunction and referred to as a principal component function. Eq (10) is
also referred to as a two dimensional eigenequation. Clearly, the eigenequation Eq (10) looks
the same as the eigenequation for the multivariate PCA if the covariance operator and eigen-
function are replaced by the covariance matrix and eigenvector.

Since the number of the functional values is theoretically infinite, we may have an infinite
number of eigenvalues. Provided the functions Xi and Yi are not linearly dependent, there will
be only N—1 nonzero eigenvalues, where N is the total number of sampled individuals (N = nX
+ nY), where nX and nY are sample sizes for X and Y, respectively. The eigenfunctions satisfying
the eigenequations are orthonormal [12]. In other words, Eq (10) generates a set of principal
component functions

Rbk ¼ lkbk; with l1 � l2 � � � � : ð11Þ

These principal component functions satisfy

1.
ð
S

ð
T

b2kðs; tÞdsdt ¼ 1 and

2.
ð
S

ð
T

bkðs; tÞbmðs; tÞdsdt ¼ 0; for all m < k:
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The principal component function β1 with the largest eigenvalue is referred to as the first
principal component function and the principal component function β2 with the second largest
eigenvalue is referred to as the second principal component function, etc.

Computations for the principal component function and the principal
component score
The eigenfunction is an integral function and difficult to solve in a closed form. A general strat-
egy for solving the eigenfunction problem in Eq (9) is to convert the continuous eigen-analysis
problem to an appropriate discrete eigen-analysis task [12]. In this paper, we use basis function
expansion methods to achieve this conversion.

Let {ϕj(t)}bea series of Fourier functions. We expand each image signal function xi(s, t) as a
linear combination of the basis function ϕj:

xiðs; tÞ ¼
XK

k¼1

XK
l¼1

cðiÞkj ϕkðsÞϕlðtÞ: ð12Þ

Let Ci ¼ ½cðiÞ11; . . . ; cðiÞ1K ; cðiÞ21; . . . ; cðiÞ2K ; . . . ; cðiÞK1; . . . ; cðiÞKK �T and ϕ(t) = [ϕ1(t),. . .,ϕk(t)]
T. Then, Eq

(12) can be rewritten as

xiðs; tÞ ¼ CT
i ðϕðsÞ � ϕðtÞÞ; ð13Þ

where� denotes the Kronecker product of two matrices.
Define the vector-valued function X(s, t) = [x1(s, t), . . ., xN(s, t)]

T. The joint expansion of all
N random functions can be expressed as

Xðs; tÞ ¼ CðϕðsÞ � ϕðtÞÞ ð14Þ
where the matrix C is given by

C ¼
CT

1

..

.

CT
N

2
664

3
775

:

In the matrix form, the variance-covariance function of the image signal function can be
expressed as

Rðs1; t1; s2; t2Þ ¼
1

N
XTðs1; t1ÞXðs2; t2Þ

¼ 1

N
½ϕTðs1Þ � ϕTðt1ÞCTC½ϕðs2Þ � ϕðt2Þ�:

ð15Þ

Similarly, the eigenfunction β(s, t) can be expanded as

bðs; tÞ ¼
XK
j¼1

XK

k¼1

bjkϕjðsÞϕkðtÞ

or

bðs; tÞ ¼ ½ϕTðsÞ � ϕTðtÞ�b ; ð16Þ
where b = [b11,. . ., b1K,. . ., bK1,. . ., bKK]

T
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Substituting expansions Eqs (15) and (16) of the variance-covariance R(s1, t1, s2, t2) and
eigenfunction β(s, t) into the functional eigenequation Eq (9), we obtain

½ϕTðs1Þ � ϕTðt1Þ�
1

N
CTCb ¼ l½ϕTðs1Þ � ϕTðt1Þ�b: ð17Þ

Since Eq (17) must hold for all s and t, we obtain the following eigenequation:

1

N
CTCb ¼ lb: ð18Þ

Solving eigenequation Eq (18), we obtain a set of orthonormal eigenvectors bj. A set of
orthonormal eigenfunctions is given by

bjðs; tÞ ¼ ½ϕTðsÞ � ϕTðtÞ�bj; j ¼ 1; . . . ; J: ð19Þ

The random functions xi(s, t) can be expanded in terms of eigenfunctions as

xiðt; sÞ ¼
XJ

j¼1

xijbjðs; tÞ; i ¼ 1; . . . ;N; ð20Þ

where

xij ¼
ð
S

ð
T

xiðt; sÞbjðs; tÞdsdt:

Randomized feature selection for k—means clustering
The most widely used clustering method in practice is k-means algorithm. However, using k
means to cluster millions or billions of features is not simple and straightforward [11]. An
attractive strategy is to select a subset of features and optimize the k-means objective function
on the low dimensional representation of the original high dimensional data. A natural ques-
tion is whether the feature selection will lose valuable information by throwing away potentially
useful features which could lead to a significantly higher clustering error. Here, we introduce a
randomized feature selection algorithm with provable guarantees [6].

For the self-contain, we begin with a linear algebraic formulation of k-means algorithm
[11]. If we assume there exists a set ofm points, AT = [P1,. . ., Pm] 2 Rn×m, a k partition of these
m points is a collection of k non-empty pairwise disjoint sets, S = {S1, S2,. . ., Sk}, which covers
the entire dataset. The objective of k-means clustering is to minimize the within-cluster sum of
squares. Let sj = |Sj|, be the size of Sj. For each Sj, its centroid (the mean of data points within
the set Sj) is defined as:

mj ¼
1

sj

X
pi2Sj

Pi ð21Þ

Then k-means objective function is written as

FðP; SÞ ¼
Xm
i¼1

jjPi � mðPiÞjj22; ð22Þ

where μ(Pi) is the centroid of the cluster to which Pi belongs.
The k-means objective function can be transformed to a more convenient linear algebraic

formulation. A k-means clustering S of A can be represented by its clustering indicator matrix
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X 2 Rn×m. Specifically, its element Xij is defined as

Xij ¼
1ffiffiffisjp Pi 2 Sj

0 otherwise:

ð23Þ

8><
>:

Each row of X has one non-zero element, corresponding to the cluster to which the data
point belongs. Each column has sj non-zero elements, which denotes if the data points belong
to cluster Sj. The linear algebraic formulation of the k-means objective function can be
expressed as

FðA;XÞ ¼ jjA� XXTAjj2F
¼

Xm
i¼1

jjPT
i � XiX

TAjj22

¼
Xm
i¼1

jjPT
i � mðPiÞT jj22;

ð24Þ

where jjWjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðWTWÞp

is the Frobenius norm of a matrixW, Xi is the ith row of X,

XTA ¼ ½mT
1 ; . . . ; m

T
k �T and XiX

TA = μ(Pi)
T.

Our goal is to find an indicator matrix Xopt which minimizes jjA� XXTAjj2F :

Xopt ¼ argmin
X2Rm�k

jjA� XXTAjj2F: ð25Þ

Define

Fopt ¼ jjA� XoptX
T
optAjj2F: ð26Þ

It is noted that XoptX
T
optA has rank at most k. The singular value decomposition of the matrix

A is given by

A ¼ UkSkV
T
k þ Ur�kSr�kV

T
r�k; ð27Þ

where ρ�min(m, n) is the rank of the matrix A. Uk 2 Rm×k and Uρ-k 2 Rm×(ρ-k) contain the
left singular vectors of A. Vk 2 Rn×k and Vρ-k 2 Rn×(ρ-k) contain the right singular vectors. Sin-
gular values σ1 � σ2 �. . .�σρ > 0 are contained in the matrices Sk 2 Rk×k and Sρ-k 2 R(ρ-k)(ρ-

k). Then we can further have Ak ¼ UkSkV
T
k ¼ AVkV

T
k and Ar�k ¼ Ur�kSr�kV

T
r�k ¼ A� Ak.

Since Ak is the best rank k approximation to A and XoptX
T
optA has rank at most k, we obtain

jjA� Akjj2F � jjA� XoptX
T
optAjj2F � Fopt: ð28Þ

The feature selection for k-means clustering algorithm is to select a subset of r columns C 2
Rm×r from A, which is a representation of them data points in the low r-dimensional selected
feature space. Then, the goal of the k-means clustering algorithm in the selected feature space

is to find partition ofm which minimizes jjC � XXTCjj2F :
~Xopt ¼ argmin

X2Rm�k

jjC � XXTCjj2F: ð29Þ

Randomized Image Cluster Analysis
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Therefore, feature selection is to seek selection of features such that

jjA� ~Xopt
~XT

optAjj2F � gjjA� XoptX
T
optAjj2F: ð30Þ

The basic idea of randomized feature selection is that any matrix C which can be used to
approximate matrix A can also be used for dimensionality reduction in the k-means cluster
analysis [11, 15]. We seek the matrix C that minimizes

jjA� ~Xopt
~XT

optAjj2F ¼ jjAk � ~Xopt
~XT

optAkjj2F þ jjAr�k � ~Xopt
~XT

optAr�kjj2F
¼ jjAVkV

T
k � ~Xopt

~XT
optAVkV

T
k jj2F þ jjAr�k � ~Xopt

~XT
optAr�kjj2F

¼ jjAVk � ~Xopt
~XT

optAVkjj2F þ jjAr�k � ~Xopt
~XT

optAr�kjj2F

ð31Þ

Let C = AVk. Then, Ak ¼ CVT
k . The minimization problem Eq (31) can be reduced to mini-

mizing jjC � XXTCjj2F .
The calculation of the matrix C requires the usage of the entire dataset A. However, our goal

is to select columns of the matrix A to approximate C. We denote the sampling matrix
O ¼ ½ei1 ; . . . ; eir � 2 Rn�r , where ei are the standard basis vectors with its ith element being one

and all other elements being zeroes. Let S 2 Rr×r be a diagonal rescaling matrix. And we further
define C = AOS. The matrices O and S can be generated by randomized sampling. Since singu-
lar value decomposition of a large matrix Amay be difficult, we will also use a sampling algo-
rithm to generalize a matrix Z which approximates Vk. Thus, the matrix A can be decomposed

to A = AZZT + E, where the matrix E 2 Rm×n. We still use ~Xopt to denote the output cluster indi-

cator matrix of some γ—approximation matrix on (C, k). Then, we can estimate the upper

bound of the clustering error jjA� ~Xopt
~XT

optAjj2F as follows [6].

jjA� ~Xopt
~XT

optAjj2F ¼ jjðIm � ~Xopt
~XT

optÞAZZT þ ðIm � ~Xopt
~XT

optÞEjj2F: ð32Þ

Because ZTET = 0k×m we have

ððIm � ~Xopt
~XT

optÞAZZTÞððIm � ~Xopt
~XT

optÞEÞT ¼ 0m�m: ð33Þ

Consequently, Eq (32) can be reduced to

jjA� ~Xopt
~XT

optAjj2F ¼ jjðIm � ~Xopt
~XT

optÞAZZT jj2F þ jjðIm � ~Xopt
~XT

optÞEjj2F
� jjðIm � ~Xopt

~XT
optÞAZZT jj2F þ jjEjj2F

ð34Þ

Given O and S, we have [6]

AZZT ¼ AOSðZTOSÞþZT þ Y ð35Þ

where Y 2 Rm×n is a residual matrix and (.)+ denotes the pseudo-inverse of a matrix. It is noted

that ||AB||F�||A||F||B||F, jjWZT jjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðWZTZWÞp ¼ jjWjjF and for any two matrices,

jjY1 þ Y2jj2F � 2jjY1jj2F þ 2jjY2jj2F .
Then, the first term in Eq (34) can be further bounded by

jjðIm � ~Xopt
~XT

optÞAZZT jj2F � 2jjðIm � ~Xopt
~XT

optÞAOSðZTOSÞþZT jj2F þ 2jjY jj2F
� 2jjð Im � ~Xopt

~XT
optÞAOSjjFjjðZTOSjjF þ 2jjY jjF

ð36Þ
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Using Eq (30), we obtain

jjðIm � ~Xopt
~XT

optÞAZZT jjF � 2gjjðIm � XoptX
T
optÞAOSjj2FjjðZTOSÞþjj2F þ 2jjY jj2F

� 2g
jðIm � XoptX

T
optÞAOSjj2F

s2
kðZTOSÞ þ 2jjY jj2F

ð37Þ

Since rank (ZTOS) = k, we have ZTOS(ZTOS)+ = Ik and AZZ
T—AZZTOS(ZTOS)+ZT = 0m×n,

which implies that

Y ¼ AZZT � AOSðZTOSÞþZT

¼ AZZT � AZZTOSðZTOSÞþZT � ðA� AZZTÞOSðZTOSÞþZT

¼ � ðA� AZZTÞOSðZTOSÞþZT :

ð38Þ

Therefore, we have

jjY jj2F ¼ jjðA� AZZTÞOSðZTOSÞþZT jj2F
� jj ðA� AZZTÞOSjj2FjjðZTOSÞþZT jj2F
� jjðA� AZZTÞOSjj2FjjðZTOSÞþjj2F

¼ jjðA� AZZTÞOSjj2F
s2
kðZTOSÞ :

ð39Þ

Combining Eqs (37) and (39), we obtain:

jjðIm � ~Xopt
~XT

optÞAZZT jj2F � 2g
jðIm � XoptX

T
optÞAOSjj2F

s2
kðZTOSÞ þ 2jjY jj2F

� 2
gjðIm � XoptX

T
optÞAOSjj2F þ 2jjðA� AZZTÞOSjj2F

s2
kðZTOSÞ

� 2
gjjðIm � XoptX

T
optÞAOSjj2F þ jjEOSjj2F

s2
kðZTOSÞ

ð40Þ

Combining Eqs (34) and (40) we obtain the following upper bound:

jjA� ~Xopt
~XT

optAjj2F � 2
gjðIm � XoptX

T
optÞAOSjj2F þ jjEOSjj2F
s2
kðZTOSÞ þ jjEjj2F: ð41Þ

The upper bound provide information about how to choose Z, O and S. We chose Z to
make the residual E small. Several terms in the upper bound can be used to guide the selection
of the sampling and rescaling matrices O and S. The first term in the numerator of the upper
bound is the clustering error of the input partition in the reduced dimension space. We chose
O and S to make this clustering error small. The residual E is involved in the second term of the
numerator and final term in the inequality Eq (41). We chose O and S such that they will not
substantially increase the size of the residual E. The term in the denominator involves Z,O and
S. Therefore, the selected O and S do not significantly change the singular structure of the pro-
jection matrix Z and ensure that s2

kðZTOSÞ is large. Under these guidances, the following ran-
domized feature selection algorithm can be developed.
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Randomized feature selection algorithms

Let k be the number of clusters and ε be the errors that are allowed. Set r ¼ kþ k
ε
þ 1

� �
as the

number of features being selected [16]. Consider data matrix A ¼
a11 � � � a1n

..

. � � � ..
.

am1 � � � amn

2
664

3
775. Let i

denote the index of the individual sample and j be the index of feature. We intend to select r
features.

Procedures of algorithms are given as follows.

1. Generate an n×r standard Gaussian matrix G, with Gij ~ N(0,1).
2. Let Y = AR 2 Rm×r.
3. Orthonormalize the columns of the matrix Y, which leads to the matrix Q 2
Rm×r.
4. Singular value decomposition of the matrix QTA: QTA = UΣVT.
Let Z 2 Rn×k be the top k right singular vectors of QTA, i.e., Z = [V1,. . ., Vk].
5. Calculate the sampling probability:

qi ¼ jjZðiÞ jj22
jjZjj2F

; i ¼ 1; . . . ; n;
Xn

i¼1

PRi ¼ 1, where Z(i) is the i-th row of the matrix Z and

jjZjj2F ¼ trðZZTÞ.
6. Initiate Ω = 0n×r and S = 0r×r.
For t = 1,. . ., r, pick an integer it from the set {1,2,. . ., n} with probability qit
and replacement, set Ω(it, t) = 1 and Sðt; tÞ ¼ 1ffiffiffiffiffi

rqit
p .

End
7. Return C = AΩS 2 Rm×r.

Results
We tested our algorithm on two distinct cancer histology image datasets downloaded from the
TCGA database (https://tcgadata.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/
tumor/ov/bcr/intgen.org/diagnostic_images/ and https://tcgadata.nci.nih.gov/tcgafiles/ftp_auth/
distro_ftpusers/anonymous/tumor/kirc/bcr/intgen.org/diagnostic_images/). The first dataset is
an ovarian cancer dataset, which includes 176 histology images taken from 106 drug sensitive
and 70 drug resistant tissue samples. The second dataset is a kidney cancer histology dataset
which includes 188 histology images. 121 of these histology images are taken from kidney renal
clear cell carcinoma (KIRC) samples and the rest of them are from the normal samples.

We compared the performance of our algorithm with the standard k-means and regulariza-
tion-based sparse k-means clustering algorithms [8]. We also compared the performance of
the two dimensional FPCs with the Fourier expansions and SIFT descriptors. We use the clus-
tering accuracy (ACC) which is defined as the proportion of correctly clustered images, cluster-
ing sensitivity which is defined as the proportion of correctly clustered drug sensitive or tumor
samples, and clustering specificity which is defined as the proportion of correctly clustered
drug resistant or normal samples, for performance evaluation in this study.

Comparison of two dimensional FPCA with Fourier expansion and SIFT
descriptor
To intuitively illustrate the power of FPCs in the dimension reduction of image data, we first
presented Fig 1 which showed the original and reconstructed the KIRC tumor cell images. We
observed that the reconstructed the KIRC tumor cell images using only 133 FPCs are very close
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to the original images. However, even when we used the 4,357 terms in the Fourier expansion
to reconstruct KIRC cell images, the reconstructed images were still unclear. Then, we com-
pared the accuracies of the standard k-means algorithms and randomized sparse k-means algo-
rithms for clustering ovarian cancer and KIRC tissue samples using FPC scores (188
components), Fourier expansion coefficients (65025 components), SIFT descriptors, GPCA
(http://cran.r-project.org/web/packages/sGPCA/index.html), MPCA (http://cran.r-project.
org/web/packages/rTensor/index.html) as image features. The results were summarized in
Table 1. From Table 1 we can see that the cluster analysis using FPC scores as features has a
higher accuracy than using Fourier expansion coefficients, SIFT descriptors, GPCA and MPCA

Fig 1. (a) Original image of one of the 121 histology images of the kidney cancer cells which were
downloaded from the TCGA database, (b) reconstruction of the original histology images of kidney cancer
cells by using its 133 FPCA scores, (c) reconstruction of the original kidney histology image by using its first
133 Fourier expansion coefficients, (d) reconstruction of the original kidney histology image by using its first
4,357 Fourier expansion coefficients.

doi:10.1371/journal.pone.0132945.g001

Table 1. Performance of standard and randomized sparse k-means clustering algorithm for FPCA, MPCA, GPCA, SIFT and Fourier expansion.

Methods Feature Ovarian Cancer KIRC

Extraction Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Standard FPCA 0.570 0.660 0.400 0.809 0.917 0.612

k-means MPCA 0.529 0.538 0.522 0.803 0.901 0.627

GPCA 0.522 0.519 0.529 0.787 0.901 0.582

SIFT 0.557 0.547 0.547 0.681 0.587 0.701

Fourier 0.557 0.557 0.557 0.803 0.917 0.597

Randomized FPCA 0.653 0.793 0.486 0.835 0.926 0.672

sparse MPCA 0.539 0.538 0.543 0.819 0.918 0.642

k-means GPCA 0.527 0.538 0.507 0.803 0.918 0.597

SIFT 0.608 0.708 0.457 0.729 0.818 0.567

Fourier 0.608 0.679 0.500 0.814 0.884 0.687

doi:10.1371/journal.pone.0132945.t001
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image feature extraction for both the standard k-means and randomized sparse k-means and
both the ovarian cancer and KIRC datasets.

Performance of standard k-means clustering algorithm, sparse k-means
clustering algorithm and randomized sparse k-means clustering
algorithm
We compared the performance of the standard k-means clustering algorithm, the sparse k-
means clustering algorithm and randomized sparse k-means clustering algorithm in both the
ovarian and KIRC cancer studies. The “SPARCL” package was used for implementing the
sparse k-means clustering algorithm [8]. The SIFT descriptor [17] was used as another tool for
image representation. The images in the ovarian cancer study were taken before any treatment.
Therefore, the images were used to predict the drug response. The results were summarized in
Table 2. Table 2 showed that the randomized k-means clustering algorithms used significantly
fewer features, but achieved higher accuracy than both the standard k-means and sparse k-
means algorithms.

Performance of standard k-means, sparse k-means and randomized
sparse k-means clustering algorithms using FPC scores
We studied the performance of standard k-means, sparse k-means and randomized sparse k-
means clustering algorithm using the FPC scores as the image features. The results of the per-
formance for different clustering algorithms to the two cancer imaging datasets were summa-
rized in Table 3. Again, the randomized sparse k-means algorithms used the smallest number
of FPC scores, but had the highest clustering accuracy, followed by sparse k-means clustering
algorithms. The standard k-means clustering algorithms used the largest number of FPC
scores, but achieved the lowest clustering accuracy. Comparing Table 3 with Table 2, we found
that FPCA substantially improved clustering accuracy. Specifically, for the KIRC dataset we
observed that replacing the SIFT descriptor with FPC scores increased the clustering accuracies
of the stand k-means, sparse k-means and randomized sparse k-means from 68.09% to 80.85%,
58.51% to 81.91%, and 72.87% to 83.51%, respectively.

Table 2. Performance of standard K-means, sparse K-means and randomized K-mean clustering algorithm using the SIFT descriptor clustering
algorithm using the SIFT descriptor.

Ovarian Cancer KIRC

Features Accuracy Sensitivity Specificity Features Accuracy Sensitivity Specificity

K-means 2,560 0.547 0.547 0.547 2,560 0.681 0.587 0.701

Sparse K-means 574 0.545 0.472 0.657 597 0.585 0.62 0.522

Randomized K-means 70 0.608 0.708 0.457 100 0.729 0.818 0.567

doi:10.1371/journal.pone.0132945.t002

Table 3. Performance of standard k-means, sparse k-means and randomized sparse k-means clustering algorithms using FPC scores.

Ovarian Cancer KIRC

Features Accuracy Sensitivity Specificity Features Accuracy Sensitivity Specificity

K-means 176 0.574 0.660 0.400 188 0.809 0.917 0.612

Sparse K-means 81 0.585 0.670 0.457 92 0.819 0.819 0.642

Randomized sparse K-means 23 0.653 0.793 0.486 5 0.835 0.926 0.672

doi:10.1371/journal.pone.0132945.t003

Randomized Image Cluster Analysis

PLOS ONE | DOI:10.1371/journal.pone.0132945 July 21, 2015 12 / 17



Performance of standard spectral, sparse K-means, and randomized
sparse spectral clustering algorithms using Fourier expansion
coefficients
To further evaluate the performance of randomized sparse clustering algorithm, we used three
algorithms: standard spectral, sparse k-means and randomized spectral clustering algorithms
with Fourier expansion coefficients to conduct clustering analysis for the ovarian cancer and
KIRC datasets. Table 4 was presented to summarize the results. The performances of the three
clustering algorithms using Fourier expansion coefficients as imaging features were the same as
that using other features. Sparse algorithms will improve cluster accuracy and randomized
sparse clustering algorithms had the highest accuracy among the three clustering algorithms.
We also observed that in general, using Fourier expansion coefficients as imaging features had
less accuracy than using FPC scores as features.

Multiple cluster analysis
Generally, a population can be divided into two groups: normal and patient groups. However,
the patients’ subpopulation is highly heterogeneous and has complex structures. Patients need
to be further divided into several more homogeneous groups. Table 5 presented results of three
clustering algorithms for multiple cluster analysis in the KIRC studies where tumor cells were
partitioned into three groups. Neoplasm histologic grade which is based on the microscopic
morphology of a neoplasm with hematoxylin and eosin (H&E) staining (G1, G2, G3 and G4)
was selected as the prognostic factors of survival [18]. In the present analysis, the patients of
G1 and G2 were regrouped as group 1 patients. Patients of G3 were regrouped as group 2

Table 4. Performance of standard spectral, sparse K-means clustering and sparse spectral with randomized feature selection clustering algo-
rithms with Fourier expansion.

Ovarian Cancer KIRC

Features Accuracy Sensitivity Specificity Features Accuracy Sensitivity Specificity

Spectral clustering 65025 0.557 0.557 0.557 65025 0.803 0.917 0.597

Sparse K-means 959 0.545 0.500 0.614 161 0.819 0.917 0.642

Randomized Spectral clustering 100 0.642 0.576 0.743 10 0.835 0.926 0.672

doi:10.1371/journal.pone.0132945.t004

Table 5. Performance of standard k-means, sparse k-means and randomized k-means algorithms for clustering KIRC tumor cell grades.

TRUE
Method Assigned Group1 Group 2 Group 3

Group 1 17 (58.6%) 15 (53.6%) 7 (50.0%)

K-means Group 2 12 (41.4%) 12 (42.9%) 7 (50.0%)

Group 3 0 1 (3.4%) 0

Accuracy 40.80%

Group 1 10 (34.5%) 6 (21.4%) 3 (21.4%)

Group 2 13 (44.8%) 17 (60.7%) 7(50.0%)

Sparse K-means Group 3 6 (20.7%) 5 (17.9%) 4 (28.6%)

Accuracy 43.70%

Group 1 14 (48.3%) 4 (14.3%) 2 (14.3%)

Randomized sparse K-means Group 2 8 (27.6%) 20 (71.4%) 8 (57.1%)

Group 3 7 (24.1%) 4 (14.3%) 4 (28.6%)

Accuracy 53.50%

doi:10.1371/journal.pone.0132945.t005
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patients and patients of G4 were regrouped as group 3 patients. Table 5 suggested that the ran-
domized sparse k-means had the highest accuracy for clustering KIRC tumor cell grades, fol-
lowed by sparse k-means and standard k-means clustering algorithms, where the accuracy was
defined as the proportion of individuals who were correctly assigned to the groups. As shown
in Fig 2, clustering tumor cells has a close relationship with cell pathology which characterizes
progressing and development of tumors. In Fig 2a, morphology of nucleus that was represented
by black circles changed slowly. When disease proceeds nucleus became large and expanded
(Fig 2b). When tumors proceeded to the final stage, the nucleus was metastated and became
blur (Fig 2c).

Robustness of the proposed random sparse k-means clustering
algorithms
To evaluate the robustness of the proposed sparse k-means for clustering analysis, we per-
formed simulations. We repeated the randomized sparse k-means clustering for 100 times
using two dimensional FPC and the KIRC data. We selected 5 features from a total of 188 FPC
features each simulation. The results were summarized in Tables 6 and 7. We observed that the
same 5 features were selected in more than 94% of simulations and we can reach 83.5% cluster-
ing accuracy in more than 93% of simulations. The results showed that the proposed random
sparse k-mean clustering methods were very stable.

Discussion
In this paper, we proposed to combine feature extraction and feature selection for cluster analy-
sis of the imaging data and developed FPCA-based randomized sparse clustering algorithms.
Because the image data are always of high dimension, the dimension reduction is a key to the

Fig 2. Historic pathology images. (a) Pathology grades 1 and 2, (b) pathology grade 3 and (c) pathology
grade.

doi:10.1371/journal.pone.0132945.g002

Table 6. Percentage of the simulations sharing the same FPC features in KIRC study.

Number of Features 2 1 2 1 1 1 1

Percentage of simulation sharing same features 100% 96% 94% 7% 5% 3% 1%

doi:10.1371/journal.pone.0132945.t006

Table 7. Stability of the estimated accuracy using the randomized sparse k-means clustering and FPC in KIRC study.

Percentage Accuracy Sensitivity Specificity

93% 0.835 0.926 0.672

6% 0.824 0.909 0.672

1% 0.819 0.917 0.642

doi:10.1371/journal.pone.0132945.t007
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success of imaging cluster analysis. To successfully perform image cluster analysis, we
addressed several issues for dimensional reduction in the sparse image cluster analysis.

The first issue we addressed is the applications of the feature extraction technique to the
image data dimension reduction. In other words, we construct a small set of new artificial fea-
tures that are often linear combinations of the original features and then the k-means method
is used to cluster the constructed features. A variety of methods for feature extraction has been
developed such as PCA or FPCA. However, FPCA is developed for one dimensional data and
cannot be simply applied to two or three dimensional imaging data. Here we extended FPCA
from one dimension to two or three dimensions and applied it to extract the features from
image data. Real histology imaging cluster analysis showed that the FPCA for imaging dimen-
sion reduction substantially outperformed the SIFT descriptor and Fourier.

The second issue is to develop a sparse clustering algorithm which attempts to identify the
features underlying the clusters and remove noise and the irrelevant variables. Generally, there
are two types of sparse clustering algorithms. One type of the algorithms is to optimize
weighted within-cluster sum of squares by using the lasso type penalty to select the weights and
the features. The difficulty with this type of constrained based sparse clustering algorithms is
the determination of the threshold which is used to remove the redundant features. In theory,
the features with non-zero weights are selected for clustering analysis. However in practice, all
the weights vary continuously. The determination of an appropriate threshold to cut off the
irrelevant features is a big challenge. An alternative approach is to randomly and directly select
a small subset of the actual features which can ensure to approximately reach the optimal k-
means objective value. Both mathematical formulations of the k-means objective function and
sampling algorithms to optimize objective function have well been developed. We can expect
that the randomized sparse k-means clustering algorithms can work very well. By applying the
sparse clustering algorithms to the real cancer histology image data, we showed that both ran-
domized k-means clustering and lasso-type k-means clustering algorithms substantially out-
performed the standard k-means algorithm, and the performance of the randomized k-means
sparse clustering algorithm was better than that of the lasso type sparse k-means clustering
algorithms.

The third issue is to combine feature extraction and feature selection. Feature extraction
and feature selection are two major tools for dimension reduction. In imaging cluster analysis,
feature extraction and feature selection are often used separately for data reduction. The main
strength of our approach is to integrate feature extraction and feature selection into a dimen-
sion reduction tool before clustering the images. We first performed two dimensional FPCA of
images as a feature extraction tool to extract group structure information of the images. The
resulting vectors of FPC scores which contain image group information were used to represent
the features of the images. Then, we designed a random matrix column selection algorithm to
select some components of the vector of FPC scores for further cluster analysis. Finally, the k-
means method was used to cluster the selected FPC scores. We showed that k-means method
with feature extraction and feature selection as dimension reduction had the highest cluster
accuracy in two real cancer histology images clustering studies.

Appropriate usage of feature extraction and feature reduction may substantially improve
the performance of clustering algorithms. This conclusion does not depend on which clustering
algorithms are selected. We demonstrated that cluster accuracies of both sparse k-means and
sparse spectral clustering were higher than standard k-means and spectral clustering.

The proposed method provides a powerful approach to image cluster analysis, but some
challenges still remain. The randomized feature selection algorithms have deep connections
with the objective function of k-means clustering and low-rank approximations of the data
matrix. However, the solutions to optimize the objective function of k-means clustering may
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not correspond to the true group structure of the image data well. The selection of the number
of features also depends on the accuracy of low-rank approximation. Although we can provide
theoretic calculation of the number of selected features, in practice we need to automatically
calculate it by iterating the feature selection algorithm from the data, which requires heavy
computation for large datasets. The randomized feature selection for multiple groups clustering
still has serious limitation. Clustering images into multiple groups is an important, but a chal-
lenge problem. The main purpose of this paper is to stimulate the discussion about what are
the optimal strategies for high dimensional image cluster analysis. We hope that our results
will greatly increase confidence in applying the dimension reduction to image cluster analysis.

Conclusions
We extended one dimensional FPCA to the two dimensional FPCA and develop novel sparse
cluster analysis methods which combine two dimensional FPCA with randomized feature
selection to reduce the high dimension of imaging data. We used stochastic calculus to derive
the formula for the calculation of the variance of integral of weighted linear combination of
two dimensional signals of the images. We formulated two dimensional FPCA as a maximiza-
tion of this variance with respect to weight function (functional components) of two variants
and used variation of theory to find solutions that are the solutions to the integral equations
with two variants. We used functional expansion to develop computational methods for solv-
ing integral equations with respect to functional components and finding FPC scores which are
taken as features for cluster analysis.

Followed the approach of [6] we explored matrix approximation theory and a technique of
[19] to design a randomized method to select FPC scores as features for cluster analysis with
probability that are correlated with the right singular vectors of the FPC score matrix. In the-
ory, we can prove that the randomized feature selection algorithm guarantees the quality of the
resulting clusters. The developed randomized algorithms which integrate FPC scores as fea-
tures for dimension reduction can be applied to k-means and spectral clustering algorithms.
Results on clustering histology images in the ovarian cancer and KIRC cancer studies showed
that the randomized k-means and spectral clustering algorithms integrating FPCA substan-
tially outperform other existing clustering algorithms with and without feature selections. The
randomized sparse clustering algorithms integrating FPCA is a choice of methods for image
clustering analysis.

Supporting Information
S1 Table. The computational cost of the standard k-means and randomized sparse k-means
clustering algorithms using four feature extraction methods.
(XLSX)
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