
RESEARCH ARTICLE

elPrep: High-Performance Preparation of
Sequence Alignment/Map Files for Variant
Calling
Charlotte Herzeel1,5☯*, Pascal Costanza2,5☯, Dries Decap3,5, Jan Fostier3,5,
Joke Reumers4,5

1 Imec, Leuven, Belgium, 2 Intel Corporation, Leuven, Belgium, 3 Department of Information Technology,
Ghent University—iMinds, Ghent, Belgium, 4 Janssen Research & Development, a division of Janssen
Pharmaceutica NV, Beerse, Belgium, 5 ExaScience Life Lab, Leuven, Belgium

☯ These authors contributed equally to this work.
* Charlotte.Herzeel@imec.be

Abstract
elPrep is a high-performance tool for preparing sequence alignment/map files for variant

calling in sequencing pipelines. It can be used as a replacement for SAMtools and Picard

for preparation steps such as filtering, sorting, marking duplicates, reordering contigs, and

so on, while producing identical results. What sets elPrep apart is its software architecture

that allows executing preparation pipelines by making only a single pass through the data,

no matter how many preparation steps are used in the pipeline. elPrep is designed as a mul-

tithreaded application that runs entirely in memory, avoids repeated file I/O, and merges the

computation of several preparation steps to significantly speed up the execution time. For

example, for a preparation pipeline of five steps on a whole-exome BAM file (NA12878), we

reduce the execution time from about 1:40 hours, when using a combination of SAMtools

and Picard, to about 15 minutes when using elPrep, while utilising the same server

resources, here 48 threads and 23GB of RAM. For the same pipeline on whole-genome

data (NA12878), elPrep reduces the runtime from 24 hours to less than 5 hours. As a typical

clinical study may contain sequencing data for hundreds of patients, elPrep can remove

several hundreds of hours of computing time, and thus substantially reduce analysis time

and cost.

Introduction
DNA sequence analysis generally consists of a mapping phase followed by an analysis phase
(Fig 1). In the mapping phase, the reads sequenced in the wet lab are mapped to a known refer-
ence genome via an alignment tool, such as BWA [1]. Afterwards, the mapped reads are pro-
cessed by an analysis tool, for example for variant detection, such as GATK [2]. A large variety
of alignment and analysis tools exist, each with their specific use cases.

PLOSONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 1 / 16

OPEN ACCESS

Citation: Herzeel C, Costanza P, Decap D, Fostier J,
Reumers J (2015) elPrep: High-Performance
Preparation of Sequence Alignment/Map Files for
Variant Calling. PLoS ONE 10(7): e0132868.
doi:10.1371/journal.pone.0132868

Editor: Christophe Antoniewski, CNRS UMR7622 &
University Paris 6 Pierre-et-Marie-Curie, FRANCE

Received: April 1, 2015

Accepted: June 18, 2015

Published: July 16, 2015

Copyright: © 2015 Herzeel et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work is funded by Intel, Janssen
Pharmaceutica, and by the Institute for the Promotion
of Innovation through Science and Technology in
Flanders (IWT): IWT O&O Project 130406. Charlotte
Herzeel is an employee of IMEC vzw, Belgium;
Pascal Costanza is an employee of Intel Corporation
NV/SA, Belgium; Dries Decap and Jan Fostier are
employees of iMinds vzw, Ghent, Belgium; Joke
Reumers is an employee of Janssen Pharmaceutica
NV/SA, Belgium. All authors are also affiliated with
ExaScience Life Lab which is a consortium of

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0132868&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Alignment and analysis tools communicate via sequence alignment/map (SAM) files, a
standardised file format for storing mapped reads [3], or the compressed variants thereof
(BAM/CRAM) [4, 5]. A SAM file is a tab-separated file that stores information about the reads
generated by the sequencer, such as their query template names and their segment sequences,
as well as information generated by the alignment tool, for example the positions where the
reads map to the reference genome, and the CIGAR strings that describe how well the reads
map to these positions [6]. The SAM format is a very flexible semi-structured format that
allows storing optional and tool-specific information.

In practice, different alignment tools produce slightly different outputs, and different analy-
sis tools depend on slightly different SAM structures to work properly. For example, some
analysis tools require optional information to be present, or require the reads to be filtered, for
example to remove unmapped reads, or only work if the reads are stored in a particular order,
and so on. This is why in practice, there are typically a number of steps in between the align-
ment and analysis tools to rewrite the SAM file into a form that is accepted by the analysis tool
(Fig 2). For example, the GATK Best Practices [7] and the bcbio-nextgen project [8] give rec-
ommendations on which SAMmanipulation tools need to be called to successfully combine
different alignment and analysis tools.

SAMtools [3] and Picard (http://picard.sourceforge.net/) are arguably the most widely used
tools for manipulating SAM files. They are command-line tools with commands for sorting
and filtering reads, for adding optional information, for marking polymerase chain reaction
(PCR) duplicates based on mapping positions, and so on. A pipeline script calls several of these

Fig 1. The computational phases of DNA sequencing. First, the reads produced by the wet lab (in FastQ format) are aligned against a reference genome,
producing a sequence alignment map file (SAM). Then this SAM file is processed so that it can be used by an analysis tool to produce a VCF file.

doi:10.1371/journal.pone.0132868.g001

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 2 / 16

companies and universities. These companies
provided support in the form of salaries for these
authors but did not have any additional role in the
study design, data collection and analysis, decision to
publish, or preparation of the manuscript. The specific
role of each author is articulated in the “author
contributions” section.

Competing Interests: The authors have the
following interests: This work is funded in part by Intel
and Janssen Pharmaceutica. Charlotte Herzeel is an
employee of IMEC vzw, Belgium; Pascal Costanza is
an employee of Intel Corporation NV/SA, Belgium;
Dries Decap and Jan Fostier are employees of
iMinds vzw, Ghent, Belgium; Joke Reumers is an
employee of Janssen Pharmaceutica NV/SA,
Belgium. All authors are also affiliated with
ExaScience Life Lab which is a consortium of
companies and universities. There are no patents,
products in development or marketed products to
declare. This does not alter the authors’ adherence to
all the PLOS ONE policies on sharing data and
materials.

http://picard.sourceforge.net/

commands one after the other, each call creating an intermediate SAM file, to eventually end
up with a SAM file that is passed as input to the analysis tool.

The computation time spent on preparation steps is not negligible. For example, running a
five-step preparation pipeline used at Janssen Pharmaceutica on a whole-exome BAM file takes
about 1:40 hours on a standard 24-core server. Since a typical clinical experiment easily consists
of several hundreds of BAM files to process, the compute time spent on preparation steps easily

Fig 2. BAM processing: standard practice (top) versus elPrep (bottom). The standard practice is calling a (different) preparation tool for each step, which
leads to repeated file I/O, as well as repeated traversal of the same SAM file. To use elPrep, one instead issues a single command that lists the preparation
steps to be applied to a SAM file. elPrep internally combines the execution of the different preparation steps, resulting in a single pass over the SAM file, and
avoiding repetitive file I/O.

doi:10.1371/journal.pone.0132868.g002

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 3 / 16

adds up to a couple of hundred hours, which incurs a significant waiting time and/or a signifi-
cant cost, for example for renting the necessary compute nodes in the cloud. The computa-
tional challenge for whole-genome data is even more pressing, as BAM files are ten to twenty
times larger than exome files. We show that there are opportunities to redesign the software to
drastically reduce this runtime and the associated costs.

Problem statement
The standard practice of creating preparation pipelines by calling multiple command line tools
one after the other, has the following drawbacks from a performance perspective (Fig 2):

1. There is repeated file I/O between the steps, including BAM/CRAM compression/decom-
pression, as each command line invocation generates a new SAM file.

2. There are multiple traversals of the same incrementally modified data, as each preparation
tool iterates over entire SAM files representing that data to perform its particular
computation.

3. Parallelisation opportunities are limited as each tool invocation introduces a synchronisa-
tion point.

We propose a software architecture where the execution of a preparation pipeline, indepen-
dent of which preparation steps are used, requires only a single pass through the SAM file. We
have implemented this architecture in the form of a concrete tool called elPrep. With elPrep, a
user issues only a single command that lists all preparation steps to be applied. The software
internally takes care of merging and parallelising the execution of the different steps. This elim-
inates the end user’s need for naming and organising the storage for intermediate files, for
understanding advanced concepts like Unix pipes and when they are applicable or not, and
ultimately reduces the runtime and the associated costs.

Implementation
elPrep is developed and maintained at the ExaScience Life Lab (http://www.exascience.com)
for the Linux operating system. End users either use elPrep directly as a command line tool, or
can use Python for scripting. All relevant configuration options are documented and their uses
are illustrated with example Python scripts. The core elPrep execution engine is implemented
in Common Lisp, and can be compiled either with the commercial LispWorks compiler, or the
open-source SBCL compiler, both widely used and actively maintained implementations of
Common Lisp. A precompiled binary can be downloaded, along with documentation and
source code from the elPrep github repository at http://github.com/ExaScience/elprep, released
under a BSD-style open source license, and therefore free for both non-commercial and com-
mercial uses. For developers who wish to extend elPrep, extensive API documentation is also
available at http://exascience.github.io/elprep/elprep-package/index.html—however, such
detailed information is not needed for regular uses of elPrep.

Methods
elPrep is designed as a high-performance alternative to existing tools for manipulating SAM,
BAM, and CRAM files. The software is designed to run in memory, avoiding repeated file I/O
between the preparation steps and merging their computations to execute more efficiently.
Additionally, elPrep is designed as a multithreaded program from the ground up, so that all
preparation steps can be executed in parallel, without any unnecessary barriers in between
steps.

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 4 / 16

http://www.exascience.com
http://github.com/ExaScience/elprep
http://exascience.github.io/elprep/elprep-package/index.html

A single-pass, filtering architecture
A key idea behind elPrep is to distinguish between SAM manipulation tools that can be
expressed as operations or filters that work on individual reads, and operations that affect
the whole set of reads such as sorting. A pipeline of SAM manipulation tools that are
expressed as filters can be executed using a single loop over the SAM file, as illustrated by
the pseudo code in Listing 1. The idea is that the loop makes a single pass over the reads
in the SAM file and executes the different filters one after the other on each read it encoun-
ters this way. Filters may have side effects, for updating the information stored for the
read, and return a Boolean value for checking whether the read is to be included in the out-
put file.

From a top-level perspective, elPrep can be viewed as a loop that parses the reads from file
into memory, applies the filters on the individual reads, passes the filtered reads to the opera-
tions that work on the whole set of reads, and finally writes the reads one by one to the output
file. In contrast, the execution of preparation pipelines created by calling multiple command-
line tools one after the other, results in a separate loop for each filter operation. Computation-
ally, all these loops are O(n) operations, so the overall execution differs only by a constant fac-
tor. However, since SAM/BAM files are large, this constant has a big impact on the actual
runtime. Because elPrep only makes a single pass through the data, this also avoids the repeated
file I/O that occurs when combining multiple calls to different tools.

A parallel architecture
elPrep is designed to take advantage of multithreading for parallel processing. To this end,
elPrep defines an input thread, worker threads, and an output thread. The input thread
streams the data from the input file into memory, while distributing the reads among the
available worker threads. The worker threads execute the preparation steps in parallel that
are formulated as filters on the incoming reads, modifying their state. Once all data is
streamed into memory and filters are applied, the operations that work on the whole data set,
such as sorting, are executed. elPrep implements this phase using fork-join patterns, which
are executed on a work-stealing scheduler for load balancing [9]. After the processing phase,
the worker threads transform the data back into SAM file entries in parallel, while possibly
applying additional filters, to finally send the result to the output thread which writes it to the
output file.

In practice, only some commands in existing tools for manipulating SAM files make use of
multithreading. One strategy could be to parallelise the codes that implement the different
commands. However, the execution strategy in elPrep has the advantage that there is no syn-
chronisation between preparation steps.

Listing 1. Execution of the preparation pipeline as a single loop over the input file.

filters = [remove_unmapped, mark_duplicates, . . .]

loop for read in input_file:

flag = true

loop for function in filters:

flag = flag and apply(function, read)

if flag:

write read to output_file

doi:10.1371/journal.pone.0132868.t001

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 5 / 16

Amodular plug-in architecture
To facilitate a modular plug-in architecture, the elPrep execution engine is designed as a collec-
tion of higher-order functions, and filters are implemented as lambda expressions. Lambda
expressions are a language feature for implementing anonymous first-class functions, functions
that can be treated as values, for example by passing them as input parameters, or using them
as return values.

Lambda expressions are typically known from pure functional programming languages that
do not allow for side effects such as assigning new values to object fields. However, lambda
expressions are useful also outside of pure functional programming, and have for example
been introduced more recently in C++11 (2011) and Java 8 (2014). elPrep ensures through its
design that modifications to the header and read objects passed to filters are safe.

Concretely, filters in elPrep are modelled by layering three levels of filtering functions (List-
ing 2). A filter is implemented as a function that implements or returns a header filter. A header
filter is a function that receives as input the SAM header it can modify, and possibly returns a
thread-local filter. The header filter is a global filter that is executed once for processing the
SAM file. The variables declared in the header filter are visible by all worker threads. The
thread-local filter returned by the header filter is a function that receives no arguments and
returns a read filter. The body of a thread-local filter can be used to set up thread-local variables
that are shared by the invocations of the read filter within a worker thread. The read filter itself
is a function that receives a read object it can modify, and returns a Boolean value, indicating
whether the read is to be included in the output or not.

The pseudo code in Listing 3 illustrates the implementation of a filter for removing
unmapped reads. According to the SAM specification [3], a read is unmapped when the third
bit of the flag entry of the read is zero. This is checked by the read filter, implemented by the
third lambda expression. Since the filter for removing unmapped reads does not modify the
header of the SAM file, the body of the header filter is empty (first lambda expression). The fil-
ter does not require any thread-local variables, hence the body of the thread-local filter is also
empty (second lambda expression).

The advantage of using lambda expressions for implementing filters is that they allow for
treating filters in elPrep as modular plug-ins: New filters can be easily added or removed

Listing 2. Skeleton structure of a filter definition in elPrep.

filter = lambda header:

. . . # modify header

lambda:

. . . # thread–local variables

lambda read:

. . . # modify read alignment

return true or false

doi:10.1371/journal.pone.0132868.t002

Listing 3. Removing unmapped reads as a filter in elPrep.

filter_unmapped = lambda header:

lambda:

lambda read:

return (read . flag & #x4) == 0

doi:10.1371/journal.pone.0132868.t003

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 6 / 16

without the need to know about the internal implementation details of the elPrep execution
engine or the other filters.

Expressing duplicate marking in elPrep
Most preparation tools, such as replacing the header, replacing the sequence dictionary, filter-
ing unmapped reads, or replacing read groups, are trivial to express within the elPrep frame-
work. However, some preparation tools require algorithmic reformulations. A non-trivial
example is duplicate marking, which is used for identifying PCR duplicates. PCR duplicates
occur when the same DNAmolecule is read multiple times during the sequencing process in
the wet lab. They are hard to identify because PCR duplicates do not necessarily produce the
exact same segment sequences. A common approach is to identify PCR duplicates in software
after the mapping phase by comparing the reads that map to the same position in the reference
genome, and marking the reads with the lowest quality scores as duplicates. It is a computa-
tionally intensive process as each read needs to be compared to each other read, which, in gen-
eral, is an O(n2) process.

Picard algorithm. One of the most widely used duplicate marking algorithms is imple-
mented by the Picard program (http://picard.sourceforge.net/). This tool is recommended
when targeting the GATK variant caller [7]. In elPrep, we implement the same algorithm used
in Picard in the sense that the output produced by the elPrep algorithm is equivalent to the out-
put produced by the Picard algorithm, yet the structure of the algorithm is different.

The Picard algorithm for duplicate marking is a multi-pass algorithm that reads the input
file multiple times. Structurally, there are three phases in the Picard algorithm (pseudo code
can be found in our technical presentation at http://www.exascience.com/public-files/elprep).
In the first phase, the reads are sorted according to mapping coordinates, while keeping track
of the original positions of the reads as they occur in the input file. In a second phase, the algo-
rithm identifies the groups of potential duplicates within the sorted list by grouping together
all reads that map to the same position. For each of those groups of reads, the algorithm identi-
fies the read with the highest quality score, while keeping track of the file positions of all other
reads in that group. Finally, in the third phase, a new output file is written by copying the reads
from the original file, using the file positions identified in the second phase to identify which
reads are marked as duplicate.

Expressing duplicate marking as a filter. We need to reformulate the multi-pass Picard
algorithm as a filter operation to make it fit with the single-pass framework of elPrep. The
basic idea is to define a memoization table to keep track of the read with the best quality score
for each read position seen so far as the execution progresses (Listing 4). Each time it processes
a new read, the algorithm checks the memoization table if a read was already encountered that
has the same mapping position, in which case the algorithm marks the read with the worse
quality score as a duplicate, and puts the read with the better quality score in the memoization
table. Since the memoization table must be shared between worker threads, we use a concur-
rent hash table implementation to avoid unnecessary contention (not shown in Listing 4).

Splitting execution in genomic regions. elPrep provides the option to process prepara-
tion pipelines per genomic region, a practice for splitting up sequencing workloads. However,
it is not trivial to apply this technique to the Picard algorithm.

Picard considers two reads potential duplicates if they both map to the same genomic region
and the same position within that region. Paired-end reads are compared by comparing the
reads that make up the pairs. One difficulty is that Picard guarantees duplicate marking of frag-
ments, reads that are part of a pair where the mate is missing from the SAM file. The algorithm
cannot simply look at a read and conclude that its mate is missing. Instead, it has to go through

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 7 / 16

http://picard.sourceforge.net/
http://www.exascience.com/public-files/elprep

all of the reads in the file to determine which pairs are complete before comparing the frag-
ments among each other. Another reason why processing per genomic region in Picard is hard,
is that reads of a pair may not map to a single genomic region, and Picard guarantees the cor-
rect duplicate marking of such read pairs.

Since the Picard algorithm is designed to process the SAM file as a whole, simply splitting
up the workload to run the Picard algorithm per chromosome or genomic region, changes the
outcome, and the Picard program provides no options to run it as such. elPrep allows duplicate
marking of SAM files per genomic region without changing the outcome compared to running
Picard on the whole file.

To achieve this, the elPrep algorithm looks at the sequence dictionary in the header of the
SAM file to identify the genomic regions, and splits up the SAM file into multiple smaller files,
one for each genomic region. Normally, the elPrep splitter simply assigns a read to the file that
matches the genomic region to which the read maps. Reads that are part of a pair where the
reads map to different genomic regions, are collected in a separate split file. This ensures that
such read pairs are complete in that file. The reads where the mate maps to a different genomic
region are also duplicated in the file that matches the genomic region where the read maps
(Fig 3).

The elPrep splitting strategy guarantees that all split files have all information for correct
duplicate marking. The reads of a pair always end up in the same split file, so duplicate marking
of pairs can be done separately per split file. As for fragment reads, the fragments that map to
the same position, end up in the same split file, so duplicate marking can also be done per split
file. The case where Picard marks fragments as duplicates when a read pair exists where one
read maps to the same position, is also covered. If the full pair maps to the same genomic
region as the fragment, it is just present in the same split file. If the fragment matches a read
that is part of a pair that spans different genomic regions, that read was duplicated in the same
file by the splitter.

elPrep of course also provides a command for merging the results of processing multiple
split files after marking duplicates.

Results
We claim that elPrep is more efficient than the standard practice of calling multiple command-
line tools one after the other. We shows this is mainly because our software architecture
requires making only a single pass through a SAM file to execute a preparation pipeline.

Listing 4. Duplicate marking as a filter in elPrep (simplified).

filter_duplicate = lambda header:

cache = []

lambda:

lambda read:

cached_read = cache . hash(read . pos)

if read . score > cached_read . score

cached_read . mark()

cache . remove(cached_read)

cache . add(read, read . pos)

else:

read . mark()

doi:10.1371/journal.pone.0132868.t004

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 8 / 16

Benchmarks
To prove our claims we set up benchmark experiments for three pipelines for preparing BAM
files for variant calling with GATK. The GATK Best Practices recommendations [7] provide
guidelines for two preparation pipelines. The first preparation pipeline is part of Base protocol
1, a protocol that describes the best practice to go from unaligned FASTQ files to a BAM file
that can be used by GATK. This protocol explains how to do alignment with BWA and then
discusses two preparation steps:

1. Sorting the BAM file for coordinate order using Picard;

2. Marking the duplicate reads with Picard.

The pseudo code in [7] suggests that both steps can be performed by a single Picard command,
but Picard actually requires issuing separate commands for sorting and duplicate marking.

A second preparation pipeline is discussed in [7] (Support protocol 3), which is recom-
mended for preparing BAM files that one downloads from online data repositories or receives
from colleagues, and may not be properly formatted for GATK. This preparation pipeline con-
sists of:

Fig 3. Distribution of read pairs and fragments among split files. elPrep allows splitting SAM files into smaller files which can be processed in parallel,
without information loss. The figure shows the mapping of the reads to the reference (top) and shows that elPrep generates a file per genomic region
(bottom). Pairs (see chr1) and fragments (see chrY) that map to a single genomic region are put in the files that match those regions. Pairs where reads map
to different genomic regions (see reads mapping to chr2 and chr3) are put in a separate split file (far right). The individual reads of those pairs are also
duplicated in the files that match the genomic regions where the reads map. This strategy guarantees that all split files contain all information for duplicate
marking.

doi:10.1371/journal.pone.0132868.g003

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 9 / 16

1. Sorting the BAM for coordinate order with Picard;

2. Marking duplicate reads with Picard;

3. Adding or replacing read groups with Picard.

In practice, it may be necessary to perform additional formatting steps, which is docu-
mented in the online documentation of GATK [10], or the domain expert may decide to per-
form additional filtering steps on the reads before doing the variant calling.

The third preparation pipeline we discuss as a benchmark is the one that is used at Janssen
Pharmaceutica (JP protocol). Their pipeline to prepare BAM files for variant calling consists of
five steps:

1. Sorting the BAM for coordinate order with Picard;

2. Removing unmapped reads and reads with erroneous mapping scores/flags with SAMtools;

3. Marking duplicate reads with Picard;

4. Replacing read groups with Picard;

5. Reordering and filtering the sequence dictionary with Picard.

Software and data sets. We execute the three pipelines with both elPrep and Picard/SAM-
tools. Our goal is to show that, in contrast to existing tools, the execution time with elPrep is
largely independent of how many preparation steps need to be executed. We use the latest
release of all tools at the time of writing, namely elprep-2.3, samtools-1.2, and picard-tools-
1.129. We chose to execute the pipelines with both an exome workload (Illumina high-coverage
whole-exome NA12878, human genome [11]) and a whole-genome workload (Illumina Plati-
num genomes, NA12878, 100bp, 50-fold coverage, human genome [12]).

Hardware. All our benchmarks were run on a 24-core server, consisting of two 12-core
Intel Xeon E5-2690 processors clocked at 2.6 Ghz, allowing the simultaneous execution of up
to 48 hyper-threads. The server is equipped with 256GB RAM and a 2TB Intel P3700 SSD hard
disk for storing intermediate files. The machine runs CentOS 7.0 with Linux kernel 3.19.0.

Validation. elPrep produces BAM files that are equivalent to those produced by Picard
and SAMtools for overlapping functionality. We have verified the equivalence by performing a
textual comparison of the BAM files uncompressed to SAM format (essentially using the Unix
diff command, see S2 Appendix for a detailed discussion).

Whole-exome benchmark (NA12878)
The Picard versions of the three pipelines consist of scripts that call the individual Picard com-
mands one after the other. There is no composition mechanism in Picard to combine the exe-
cution of the different pipeline steps. There is also no support in Picard for using streaming
with Unix pipes. Hence the execution times of the full pipelines are equal to the sum of the exe-
cution times for the individual steps.

While in elPrep it is possible to build pipelines using separate elPrep commands connected
via Unix pipes, we claim it is much more efficient to formulate the pipeline using a single
elPrep command that lists all the pipeline steps. We formulated the pipelines using both
approaches in elPrep to do the comparison (Tables 1–3). elPrep is flexible in terms of how
much RAM it uses via its split/merge tools. We executed elPrep once with giving it access to an
amount of RAM that is similar to what Picard uses by splitting the input file per chromosomal
regions as they occur in the header of the BAM (third column), and we also did a run with giv-
ing elPrep access to all available RAM on the benchmark server (fourth column). All of the

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 10 / 16

benchmark runs we show for elPrep were executed with 48 threads, as were the SAMtools calls.
There is no option to configure the number of threads used by Picard.

For the two-step pipeline (Table 1), the combined execution of the steps with a single elPrep
invocation is almost two times faster than executing the steps as separate elPrep commands. In
case of the three-step (Table 2) and five-step (Table 3) pipelines, the combined execution in
elPrep is respectively three and five times faster. In terms of total runtime, there is not much
difference between executing the two-step, three-step or five-step pipeline in elPrep. In con-
trast, there is a significant difference between the runtimes for the Picard versions of the pipe-
lines. The three-step pipeline is 1.5 slower than the two-step pipeline, and the five-step pipeline
is almost two times slower.

For a direct comparison between elPrep and Picard, we also need to compare the execution
times of the individual steps. We see that the elPrep versions are typically between a factor 1.5
and 2 faster than the equivalent Picard versions. However, the main performance advantage of
elPrep comes from its ability to merge the execution of multiple commands. Using this func-
tionality improves the performance for the execution of the full pipeline by another factor two,
three, and five for respectively the two-step, three-step, and five-step pipelines. Overall, elPrep
executes the two-step pipeline three to five times faster, the three-step pipeline five to seven
times faster, and the five-step pipeline six to ten times faster than Picard.

In practice, a clinical experiment consists of 300 or more samples to process, and using
elPrep thusly saves several hundred hours of computing time, namely 200+ hours for the two-

Table 1. Benchmarks of the 2-step pipeline on NA12878 exome (Basic protocol 1).

Picard elPrep elPrep (max RAM)

Time RAM Time RAM Time RAM

Sort by coordinates 22m 36s 12GB 15m 33s 19GB 10m 5s 180GB

Mark duplicates 31m 19s 23GB 14m 23s 22GB 8m 58s 216GB

Separately executed steps (total) 53m 55s 23GB 29m 57s 22GB 19m 3s 216GB

Combined execution steps na na 15m 20s 22GB 10m 58s 216GB

In elPrep, the combined execution of both preparation steps is faster than running the steps one after the other. When elPrep gets to use a similar amount

of RAM as Picard uses, it executes the pipeline three times faster than Picard (third column). When elPrep is given access to all available RAM, it

executes the pipeline five times faster than Picard (fourth column).

doi:10.1371/journal.pone.0132868.t005

Table 2. Benchmarks of the 3-step pipeline on NA12878 exome (Support protocol 3).

Picard elPrep elPrep (max RAM)

Time RAM Time RAM Time RAM

Sort by coordinates 22m 36s 12GB 15m 33s 19GB 10m 5s 180GB

Mark duplicates 31m 19s 23GB 14m 23s 22GB 8m 58s 216GB

Add read groups 22m 55s 0.6GB 15m 23s 1.7GB 6m 20s 2.7GB

Separately executed steps (total) 76m 50s 23GB 45m 20s 22GB 25m 23s 216GB

Combined execution steps na na 15m 47s 23GB 10m 34s 219GB

In elPrep, the combined execution of all three preparation steps is faster than running the steps one after the other. Compared to Basic protocol 1

(Table 1), the extra step in this pipeline does not add an additional runtime cost when combining the execution of the steps with elPrep. elPrep executes

the full pipeline five to seven times faster than using Picard, depending on how much RAM elPrep can use, namely the same amount as Picard (third

column) or all available RAM (fourth column).

doi:10.1371/journal.pone.0132868.t006

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 11 / 16

step pipeline, 300+ hours for the three-step pipeline, and more than 450 hours for the five-step
pipeline.

Whole-genome benchmark (NA12878)
We executed the same three preparation protocols on the whole-genome data set for NA12878
(Tables 4–6). Similar to what we see for the exome benchmarks, the combined execution of the
different preparation steps in elPrep is more efficient than executing the steps one after the
other.

We executed the benchmarks by having elPrep split up the input file by chromosomal
regions as they occur in the header of the BAM file. elPrep uses an amount of RAM that is pro-
portional to the input size of the split files, which, in the case of the whole-genome bench-
marks, means that elPrep uses 8.5× more RAM than Picard/SAMtools (see the RAM entries in
Tables 4–6).

A solution to use less RAM would be to use a more fine-grained splitting strategy than split-
ting by chromosomal regions, but elPrep currently does not support this. If machines with suffi-
cient RAM are not available to the user, we recommend other tools that are optimised for low-
memory footprints (discussed in detail in S1 Appendix) or switching to a cloud-based solution.
For example, when using AmazonWeb Services, the cost of renting a memory-optimised server

Table 4. Benchmarks of the 2-step pipeline on NA12878 whole genome (Basic protocol 1).

Picard elPrep

Time RAM Time RAM

Sort by coordinates 5h 14m 12GB 5h 2m 203GB

Mark duplicates 7h 45m 28GB 5h 16m 234GB

Separately executed steps (total) 12h 59m 28GB 10h 18m 234GB

Combined execution steps na na 5h 9m 239GB

Similar as with exome data, the combined execution of the preparation pipeline in elPrep is much faster

than executing the individual steps one by one, which is the only option with Picard. elPrep executes Basic

protocol 1 about 2.5 times faster than Picard.

doi:10.1371/journal.pone.0132868.t008

Table 3. Benchmarks of the 5-step pipeline on NA12878 exome (JP protocol).

Picard*/SAMtools+ elPrep elPrep (max RAM)

Time RAM Time RAM Time RAM

Sort by coordinates 22m 36s* 12GB 16m 4s 19GB 10m 19s 180GB

Filter unmapped reads 3m 16s+ 0.8GB 14m 58s 1.5GB 6m 12s 2.8GB

Mark duplicates 30m 47s* 23GB 14m 18s 22GB 8m 48s 216GB

Add read groups 22m 39s* 0.7GB 14m 49s 1.7GB 6m 42s 2.5GB

Filter sequence dictionary 20m 39s* 11.8GB 14m 48s 19GB 9m 35s 189GB

Separately executed steps (total) 99m 58s 23GB 74m 56s 22GB 41m 37s 216GB

Combined execution steps na na 15m 31s 23GB 10m 23s 219GB

In elPrep, the combined execution of all preparation steps is faster than running the steps one after the other. The execution of the five-step pipeline in

elPrep does not take significantly longer than the execution of the two-step and three-step pipelines (Tables 2 and 3). elPrep executes the full pipeline

between six times faster when using a similar amount of RAM as Picard (third column) and ten times faster when given access to all available RAM

(fourth column).

doi:10.1371/journal.pone.0132868.t007

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 12 / 16

that runs elPrep is in the same range as renting a server with less RAM that runs Picard/SAM-
tools (https://aws.amazon.com/ec2/pricing/ as of May 19, 2015). Based on the resource require-
ments in Tables 4–6), we need to run elPrep on an r3.8xlarge (memory optimised) instance
with 32 virtual CPU cores, 244GB RAM, and 2× 320 GB SSD drives, which costs $2.800/hour.
For running the Picard/SAMtools pipelines, a i2.xlarge (storage optimised) instance with 4 vir-
tual CPU cores, 30.5GB RAM, and 1× 800 GB SSD drive would suffice, which costs $0.853/
hour. Hence the instance for running the pipelines with elPrep costs roughly 3.3× more than
the instance for using Picard/SAMtools. However, since elPrep executes the pipelines between
2.5 to 5× faster than Picard/SAMtools (see Tables 4–6), the server cost of using elPrep is in the
same range for Basic protocol 1, and cheaper for Support Protocol 3 and the JP Protocol, than
using Picard/SAMtools, with the added benefit of a substantially reduced waiting time for the
elPrep user.

RelatedWork
There is a large body of related work that focuses on optimising individual SAMmanipulation
tools (see S1 Appendix for a detailed overview). For example, many tools focus on optimising

Table 6. Benchmarks of the 5-step pipeline on NA12878 whole genome (JP protocol).

Picard*/SAMtools+ elPrep

Time RAM Time RAM

Sort by coordinates 5h 14m* 12GB 5h 2m 203GB

Filter unmapped reads 42m 16s+ 0.8GB 1h 26m 2.5GB

Mark duplicates 7h 4m* 29GB 5h 1m 233GB

Add read groups 5h 18m* 0.8GB 1h 18m 2.8GB

Filter sequence dictionary 5h 6m* 12GB 4h 54m 196GB

Separately executed steps (total) 23h 25m 29GB 17h 42m 233GB

Combined execution steps na na 4h 47m 239GB

Again, combined execution in elPrep is faster than executing the steps one by one. elPrep executes the

five-step pipeline faster than the three-step pipeline (Table 5), even though it has two more steps. This is

because the second step here removes unmapped and erroneously tagged reads. This reduces the

number of reads that are processed by the subsequent steps. This can be seen by looking at the timings of

the individual steps, both for elPrep and Picard, as well. Overall, elPrep executes the five-step pipeline

almost five times faster.

doi:10.1371/journal.pone.0132868.t010

Table 5. Benchmarks of the 3-step pipeline on NA12878 whole genome (Support protocol 3).

Picard elPrep

Time RAM Time RAM

Sort by coordinates 5h 14m 12GB 5h 2m 203GB

Mark duplicates 7h 45m 28GB 5h 16m 234GB

Add read groups 6h 51m 0.7GB 1h 26m 20GB

Separately executed steps (total) 19h 51m 28GB 11h 44m 234GB

Combined execution steps na na 5h 11m 239GB

The execution time with elPrep remains stable compared to Basic protocol 1 (Table 4). elPrep executes

this preparation pipeline almost four times faster than Picard.

doi:10.1371/journal.pone.0132868.t009

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 13 / 16

https://aws.amazon.com/ec2/pricing/

memory use of duplicate marking, for example by defining data structures that overflow to
disk when a certain threshold is reached (bamUtil [13], biobambam [14], Sambamba [15]) or
define an alternative duplicate marking strategy that does not require comparing all alignments
(SAMBLASTER [16]). Some of these tools are faster for executing the individual tools they
implement, or use substantially less RAM than elPrep. However, none of the tools offer a way
of combining the execution of multiple tools like elPrep does. Whereas we focus on tackling
the drawbacks of composing pipelines as separate command invocations, the related work
focuses on optimising individual tools, such as duplicate marking and sorting for coordinate
order. These results are orthogonal, and it should be possible to add the optimisations to
elPrep, or to redesign the other tools to use a software architecture similar to that of elPrep.
Since lambda expressions have recently been added to languages such as C++11 and Java 8,
such a redesign should be viable for at least some of the related work.

Other related work focuses on integrating complete pipelines into single applications with a
focus on taking advantage of computational resources, like BALSA [17], optimised for GPUs,
and ISAAC [18], optimised for servers with high amounts of RAM. Since these tools have full
control over the pipeline, they have more opportunities for optimisations, such as defining
their own alignment format instead of using the generic SAM format (BALSA), or partially
combining secondary analysis steps such as filtering with the alignment phase (ISAAC). How-
ever, an advantage of using de-facto, community-driven standard file formats like SAM/BAM/
CRAM is that they provide scientists the freedom to freely choose different tools from different
tool authors for different phases of the pipeline. This is also partially acknowledged by the inte-
grated pipeline solutions, in that they are also split into subtools: ISAAC comes with a separate
aligner and variant caller and is open source, so that modifications to these tools are in princi-
ple possible; BALSA, while closed source, provides snapshot files, its own format for represent-
ing alignments, which can be used to implement one’s own secondary analysis and variant
caller tools. Unlike these other integrated tools, elPrep focuses on modifying SAM/BAM/
CRAM files to ease the combined use of different aligners and variant callers.

Conclusions and Future Work
The main contribution of this paper is a software architecture for SAM/BAMmanipulation
tools that only requires a single pass through a SAM file to execute a sequencing pipeline, inde-
pendent of which and how many tools need to be applied. The idea is to define the execution
engine in terms of higher-order functions and define the manipulation tools as lambda expres-
sions, allowing for a modular design where individual tools are implemented without a need to
know how the other tools are implemented or how they are executed (in parallel) by the execu-
tion engine.

We have implemented this architecture as a tool called elPrep. With elPrep, a user speficies
a sequencing pipeline as a single command, and elPrep takes care of merging and parallelising
the execution of the different steps within the pipeline. Our benchmarks show this is much
faster than executing the steps one after the other by using separate command invocations,
which is the standard practice for defining sequencing pipelines today. elPrep avoids the
repeated file I/O that occurs between seperate command invocations, as well as the repeated
traversals of the same SAM files, and the explicit synchronisation that limits parallelism with
separate command invocations.

Concretely, elPrep executes a five-step pipeline used at Janssen Pharmaceutica between six
to ten times faster—depending on how much memory elPrep is allowed to use—than using a
combination of SAMtools and Picard invocations. Similarly, elPrep executes a two-step and
three-step pipeline from the GATK Best Practices recommendations between respectively

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 14 / 16

three to five times and five to seven times faster than Picard. For exome workloads this means
elPrep reduces the runtime from about 1:40 hours to about 10 to 15 minutes, saving hundreds
of hours of computation time in a typical clinical experiment. The benefit would be even larger
for whole-genome data, where SAM files are ten to twenty times larger.

A possible drawback of elPrep is that it is currently under development, and more mature
tools such as SAMtools and Picard are more feature complete.

elPrep focuses on preparation tools for SAM/BAM/CRAM files. We think it should be pos-
sible to further optimise the whole sequencing pipeline to take advantage of the single-pass exe-
cution strategy of elPrep. For example, elPrep relies on a splitting phase that takes the BAM file
and splits it up according to genomic regions for parallel processing. However, we could adapt
the aligner tool to directly output multiple split files instead of writing a single BAM file. While
this is a minor modification to the aligner, we would avoid the cost of splitting up the BAM file
in elPrep. We have not yet explored this in detail.

Another feature of our architecture that we did not discuss in this paper, is that our architec-
ture is agnostic with regard to where input, intermediate, and output data are stored. The frame-
work is designed in such a way that data can reside in files on disk, in memory, or even in a
database. For example, preliminary support for MongoDB is provided as a separate extension
library for elPrep. Such a feature is interesting for connecting interactive applications to sequenc-
ing pipelines, but we need to further explore the impact on performance of our approach.

elPrep can be used as a plugin for the Halvade MapReduce framework for executing
sequencing pipelines in parallel on a cluster [19]. This is particularly interesting for further par-
allelising the execution of whole-genome data.

Supporting Information
S1 Appendix. Detailed overview of related work. Benchmarks and discussion of bamUtil, bio-
bambam, Sambamba, SAMBLASTER, and SAMtools, compared to elPrep.
(PDF)

S2 Appendix. Validation of elPrep output compared to Picard/SAMtools output.Detailed
comparison of elPrep and Picard/SAMtools output using textual comparison (diff).
(PDF)

Acknowledgments
We thank Gert Pauwels from Intel for providing support and access to benchmark servers.

Author Contributions
Conceived and designed the experiments: CH PC JR. Performed the experiments: CH PC. Ana-
lyzed the data: CH PC DD JF JR. Contributed reagents/materials/analysis tools: JR PC. Wrote
the paper: CH PC DD JF JR. Designed and implemented the tool presented in the paper: CH
PC.

References
1. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformat-

ics. 2009 Jul 15; 25(14):1754–60. doi: 10.1093/bioinformatics/btp324 PMID: 19451168

2. DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, et al. A framework for variation discov-
ery and genotyping using next-generation DNA sequencing data. Nature Genetics. 2011 Apr 10;
43,491–498. doi: 10.1038/ng.806 PMID: 21478889

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 15 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132868.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132868.s002
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://dx.doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889

3. Li H, Hansaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format
and SAMtools. Bioinformatics. 2009 Aug 15; 25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PMID:
19505943

4. Fritz M, Leinonen R, Cochrane G, Birney E. Efficient storage of high throughput DNA sequencing data
using reference-based compression. Genome Res. 2011 Jan 18; 21:734–740.

5. Cochrane G, Cook C, Birney E. The future of DNA sequencing archiving. GigaScience. 2012 Jul 12;
1:2. doi: 10.1186/2047-217X-1-2 PMID: 23587147

6. The SAM/BAM Format Specification Working Group. Sequence Alignment/Map Format Specification.
2015 March 3 [cited 24 March 2015]. Available: http://github.com/samtools/sam-spec.

7. Van der Auwera G, Carneiro M, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ
Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr Pro-
toc Bioinformatics. 2013 Oct 15; 43:11.10.1–11.10.33.

8. Guimera R, Chapman B. bcbio-nextgen: Automated, distributed, next-gen sequencing pipeline. EMB-
net.journal. 2012; 7.B:p.30. doi: 10.14806/ej.17.B.286

9. Blumofe R, Leiserson C. Scheduling Multithreaded Computations byWork Stealing. Journal of the
ACM. 1999 Sep; 46,5, 720–748. doi: 10.1145/324133.324234

10. Van der Auwera G. Collected FAQs about BAM files. 2013 March [cited 24 March 2015]. Available:
http://gatkforums.broadinstitute.org/discussion/1317/collected-faqs-about-bam-files

11. National Center for Biotechnology Information. 2014 Oct 12 [cited 24 March 2015]. Available: http://
www.ncbi.nlm.nih.gov/sra/SRX731649

12. European Nucleotide Archive. 2012 Nov 12 [cited 24 March 2015]. Available: http://www.ebi.ac.uk/ena/
data/view/ERP001960

13. Wing MK. bamUtil Overview. 2010 Apr 6 [cited 19 May 2015]. Available: http://genome.sph.umich.edu/
wiki/BamUtil

14. Tischler G, Leonard S. biobambam: tools for read pair collation based algorithms on BAM files. Source
Code Biol Med. 2014 Jun 20; 9:13. doi: 10.1186/1751-0473-9-13

15. Tarasov A. Sambamba. 2012 Apr 28 [cited 19 May 2015]. Available: https://github.com/lomereiter/
sambamba

16. Faust G, Hall I. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinfor-
matics. 2014 Sep 1; 30(17):2503–5. doi: 10.1093/bioinformatics/btu314 PMID: 24812344

17. Luo R, Wong Y, LawW, Lee L, Cheung J, Liu C, et al. BALSA: integrated secondary analysis for whole-
genome and whole-exome sequencing, accelerated by GPU. PeerJ. 2014 Jun 3; 2:e421. doi: 10.7717/
peerj.421 PMID: 24949238

18. Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH, et al. Isaac: ultra-fast whole-
genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013 Aug 15; 29
(16):2041–3. doi: 10.1093/bioinformatics/btt314 PMID: 23736529

19. Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade: scalable sequence analysis with
MapReduce. Bioinformatics. 2015 Mar 26. In press. doi: 10.1093/bioinformatics/btv179 PMID:
25819078

elPrep: High-Performance Preparation of Sequence Alignment/Map Files

PLOS ONE | DOI:10.1371/journal.pone.0132868 July 16, 2015 16 / 16

http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1186/2047-217X-1-2
http://www.ncbi.nlm.nih.gov/pubmed/23587147
http://github.com/samtools/sam-spec
http://dx.doi.org/10.14806/ej.17.B.286
http://dx.doi.org/10.1145/324133.324234
http://gatkforums.broadinstitute.org/discussion/1317/collected-faqs-about-bam-files
http://www.ncbi.nlm.nih.gov/sra/SRX731649
http://www.ncbi.nlm.nih.gov/sra/SRX731649
http://www.ebi.ac.uk/ena/data/view/ERP001960
http://www.ebi.ac.uk/ena/data/view/ERP001960
http://genome.sph.umich.edu/wiki/BamUtil
http://genome.sph.umich.edu/wiki/BamUtil
http://dx.doi.org/10.1186/1751-0473-9-13
https://github.com/lomereiter/sambamba
https://github.com/lomereiter/sambamba
http://dx.doi.org/10.1093/bioinformatics/btu314
http://www.ncbi.nlm.nih.gov/pubmed/24812344
http://dx.doi.org/10.7717/peerj.421
http://dx.doi.org/10.7717/peerj.421
http://www.ncbi.nlm.nih.gov/pubmed/24949238
http://dx.doi.org/10.1093/bioinformatics/btt314
http://www.ncbi.nlm.nih.gov/pubmed/23736529
http://dx.doi.org/10.1093/bioinformatics/btv179
http://www.ncbi.nlm.nih.gov/pubmed/25819078

