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Abstract
Focal adhesion kinase (FAK) is a protein tyrosine kinase that is ubiquitously expressed,

recruited to focal adhesions, and engages in a variety of cellular signaling pathways.

Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated

by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM

domain binds the kinase domain, blocking access to the activation loop and substrate bind-

ing site. Activation of FAK occurs through conformational change, and acidic phospholipids

such as phosphatidylinositol 4,5-bisphosphate (PIP2) are known to facilitate this process.

PIP2 binding alters the autoinhibited conformation of the FERM and kinase domains and

subsequently exposes the activation loop to phosphorylation. However, the detailed molec-

ular mechanism of PIP2 binding and its role in FAK activation remain unclear. In this study,

we conducted coarse-grained molecular dynamics simulations to investigate the binding of

FAK to PIP2. Our simulations identified novel areas of basic residues in the kinase domain

of FAK that potentially undergo transient binding to PIP2 through electrostatic attractions.

Our investigation provides a molecular picture of PIP2-initiated FAK activation and intro-

duces promising new pathways for future studies of FAK regulation.

Introduction
Focal adhesions (FA) are integrin-mediated protein complexes that are found peripheral to the
cell membrane at sites of cell attachment to the extracellular matrix (ECM) [1,2]. Focal adhe-
sions establish a direct mechanical link between the actin cytoskeleton and the ECM and also
act as cellular signaling integrators, sensing biochemical and mechanical stimuli from the
extracellular environment. Diverse and critical biological events, including cell migration, pro-
liferation, differentiation, and survival, are mediated by proteins localized to focal adhesions
[3].

Focal adhesion kinase (FAK) is an essential component in the macromolecular assembly of
focal adhesions, as well as a crucial kinase that participates in a variety of cellular signaling
pathways [4]. FAK is involved in several developmental processes including angiogenesis [5]
and axonal outgrowth [6]. In addition, dysregulation of FAK activity is linked to numerous
pathological events such as tumorigenesis and metastasis [7]. Understanding the structural
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underpinnings of FAK activation is essential to development of therapeutic treatments for
these diseases. FAK is composed of 4 major domains: an N-terminal band 4.1, Ezrin, Radixin,
Moesin (FERM) domain, a central tyrosine kinase domain followed by an unstructured pro-
line-rich region, and a C-terminal focal adhesion targeting (FAT) domain. The FERM and
kinase domains are separated by a linker containing the autophosphorylation site, Y397
(Fig 1). The FERM domain plays an essential autoinhibitory role in the regulation of the cata-
lytic activity of FAK [8], in which the F2 subdomain contacts the C-lobe of the kinase domain,
blocking access to the catalytic cleft and the activation loop (A-loop) [9]. As a result, the kinase
domain remains locked in an inactive, unphosphorylated conformation. In addition, the linker
between the FERM and kinase domains forms a beta strand that is part of a beta sheet within
the F1 lobe, preventing autophosphorylation at Y397. It has been proposed [9,10] that a con-
formational change in the autoinhibited form of the FERM-kinase domain is the key initial
step in FAK activation, exposing Y397 within the linker to phosphorylation [11] and subse-
quent recruitment of Src. Once Src binds to the linker, it phosphorylates two tyrosines within
the exposed A-loop (Y576 and Y577) and renders FAK fully active [12].

FERM-interacting molecules, including growth factor receptors, p53, Ezrin, and acidic
phospholipids, are known to play key roles in FAK regulation [14]. In particular, phosphatidy-
linositol 4,5-bisphosphate (PIP2) directly binds FAK in the FERM domain, inducing a confor-
mational change and subsequent activation [10,15]. While PIP2 binding is likely driven by

Fig 1. Domain structure of FAK and illustration of the simulation system. (a) The two N-terminal
domains of FAK form the autoinhibited conformation and are connected via a linker. FERM domain: blue;
kinase domain: red; linker: green. (b) FAK lies above a DOPC bilayer (gray) with 10% PIP2 (spheres, cyan
and ochre) in the upper leaflet. Ions and water molecules are omitted for clarity. All molecular graphics are
rendered in VMD [13].

doi:10.1371/journal.pone.0132833.g001
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electrostatic forces [16], the molecular details of FAK binding to PIP2, the stoichiometry of
binding, and the binding kinetics remain unknown. Determination of these binding character-
istics is essential in order to understand PIP2-mediated activation of FAK.

We performed a series of modeling studies to investigate the molecular details of interac-
tions between FAK and PIP2. Coarse-grained molecular dynamics (CGMD) [17,18] allows
modeling of length and timescales that are significantly larger than all-atom molecular dynam-
ics and are ideal for phenomena such as PIP2 activation of FAK. CGMD simulations were
carried out to examine the binding of FAK to bilayers containing PIP2 lipids. Binding to the
KAKTLRK basic patch within the FERM domain was observed, in agreement with experimen-
tal studies [10,15]; surprisingly, we also identified PIP2 binding in the kinase domain. These
results provide novel insight into the mechanisms controlling FAK activation, and could
potentially identify new strategies to manipulate FAK regulation and treat disease.

Computational Methods
FAK simulations were performed using the crystal structure of the autoinhibited conformation
[9] (PDB 2J0J). Missing residues in the A-loop of the kinase domain (residues 574–583) were
modeled as a random coil and further minimized using the molecular simulation package
CHARMM c37b1 [19]. Missing residues from the linker region (residues 363–393) were not
modeled due to its length and structural flexibility. The all-atom model was converted to a
coarse-grained model with the MARTINI v2.2 force field [20], and backbone Cα atoms were
constrained by an elastic network [21] with a cutoff of 0.9 nm and a force constant of 500 kJ-
mol-1. Simulation of FAK in water was initially carried out with the FERM and kinase domains
allowed to move independently of one another. Deformation of the global structure occurred
(results not shown), limiting all subsequent simulations with the FERM and kinase domains
constrained as a single unit in the autoinihibited form. Another 1-μs-long simulation of FAK
in water with the added constraint was carried out to verify that the system would remain
stable.

To model the PIP2-containing lipid bilayer, we used an equilibrated DOPC bilayer of
15.2 nm × 15.2 nm in the x-y dimension and randomly replaced 10% of the DOPC molecules
on the upper leaflet of the bilayer with PIP2, as per experimental studies [15], resulting in a
lipid bilayer system composed of 629 DOPC molecules and 33 PIP2 molecules. Finally, FAK
was placed at distances of 4.5 nm (simulation I), 2.5 nm (simulation II), and 1.5 nm (simulation
III), respectively, from the surface of the lipid bilayer, and 170 sodium ions and�27,000 polar-
ized water molecules were added to the simulation box to make the final dimension of each sys-
tem 15.2 nm × 15.2 nm × 19.1 nm with�92,000 particles (Fig 1).

All CGMD simulations were run in GROMACS v4.6 [22]. Simulations were performed in
the isothermal-isobaric ensemble (NPT) with nonbond cutoff at 1.2 nm. Temperature was cou-
pled at 320 K using a Berendsen thermostat with a coupling constant of 1 ps. The pressure was
coupled to a Berendsen barostat at 1 bar with a relaxation time of 1 ps. Each simulation was
run for 1 μs with an integration time step of 10 fs and system coordinates were collected every
10 ps. Given the relatively fast system equilibration and initial ligand-binding timescales, as
well as the simulation length, the full trajectory is used for analysis unless stated otherwise.
(Discussion of simulation convergence can be found in S5 Table.) Analysis was carried out
with GROMACS analysis tools and custom-made scripts.
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Results

A. FAK binds to PIP2-containing bilayers
As a system validation, we first simulated FAK in polarized water. The protein was stable with
an average RMSD of�0.3 nm. Our next set of simulations allowed FAK to freely diffuse above
a lipid bilayer. Radial distribution functions (RDF) of PIP2 and ions to PIP2 with and without
FAK were calculated (Fig 2), and there is no notable difference in distribution in the presence
or absence of FAK. This result indicates that the presence of FAK does not globally perturb the
distribution of PIP2 within the lipid bilayer, ruling out the possibility that FAK actively recruits
large clusters of PIP2 lipids. However, it is possible for PIP2 to form clusters in the presence of
divalent cations such as calcium, meaning that FAK could potentially interact with multiple
PIP2 molecules [23].

For all simulations, FAK was placed far enough from the lipid bilayer to ensure that binding
to PIP2 would occur through random diffusion, independent of initial orientation. Due to the
use of periodic boundary conditions, FAK could freely diffuse and interact with each leaflet of
the lipid bilayer (one leaflet containing PIP2 and DOPC, the other leaflet containing only
DOPC). This design was intentional, since PIP2 is asymmetrically distributed in vivo [24–26].
Our simulations showed that FAK preferentially interacted with the PIP2-containing leaflet
(Fig 3).

B. Multiple association and dissociation events occur between FAK and
PIP2

We next examined the propensity for FAK to interact with PIP2 lipids (Table 1). FAK was con-
sidered to bind with PIP2 if the minimal distance between any coarse-grained bead of FAK and
any phosphate bead of PIP2 was less than 0.52 nm. (Results are not sensitive to the cutoff—see
S1–S4 Tables.) The average distance between PIP2 and FAK was 0.48 nm ±0.02 nm. FAK was
bound to PIP2 for at least 2/3 of the total simulation time (Table 2), with initial binding events
occurring at 80, 18, and 30 ns, respectively (Fig 3). Binding was dynamic, as multiple events of
PIP2 association and dissociation were observed throughout the course of the simulations. In

Fig 2. FAK does not actively recruit PIP2. RDF of ions as a function of distance to PIP2 in the presence
(solid line) and absence (dashed line) of FAK. RDF of PIP2 as a function of distance to PIP2 in the presence
(dash-dotted line) and absence (dotted line) of FAK. All distances are measured with respect to the 1’-
phosphate of PIP2. The final 900 ns of each simulation was used for analysis. Simulations II and III had very
similar results and are therefore not shown.

doi:10.1371/journal.pone.0132833.g002
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addition, when FAK was bound to PIP2, it can interact with multiple PIP2 lipids (usually
between 1–3 molecules), as determined by the percentage of time when FAK binds nP number
of PIP2 lipids (nP = 1–6) (Table 2).

C. Observed PIP2 binding sites on FAK
To identify PIP2 binding sites on FAK, the percentage of time xi each residue interacts with
PIP2 is monitored using xi = ni/N, where ni is the number of times residue imakes contact with
PIP2 and N is the total number of times FAK makes contact with PIP2 during the simulation
(Table 3). All identified interacting residues are basic (lysine or arginine) and thus capable of
establishing electrostatic attractions with the highly negatively-charged PIP2 head groups.
Among these residues, we identified known PIP2-binding residues K216, K218, R221, and
K222 (part of the KAKTLRK ridge) [15,27]. These residues lie on the surface of the F2 subdo-
main of the FERM domain and are critical for FAK activation. Surprisingly, we also observed
additional basic residues not previously known to interact with PIP2, as will be detailed below.

To further characterize the binding sites, PIP2-interacting residues were grouped based
upon their location on the protein surface, designated Group I and Group II (Table 4and
Fig 4). Group I residues are located at the interface between the F2 subdomain of the FERM
domain along the functionally important KAKTLRK ridge [15,27] and directly adjacent in the

Fig 3. FAK preferentially interacts with the PIP2-containing bilayer leaflet.Minimal distance between
FAK and DOPC leaflet with (solid line) and without PIP2 (dashed line) in simulation I (black), II (red), and III
(green)

doi:10.1371/journal.pone.0132833.g003

Table 1. Comparison of PIP2 and PC lipids involved in FAK binding.

Simulation % time of binding NL
a (xi > 10%)b NL (xi > 5%)

PIP2 PC PIP2 PC PIP2 PC

I 68.1 31.8 9 0 12 7

II 88.2 58.4 8 1 13 17

III 84.6 39.1 7 0 12 1

a NL is defined as the number of lipids that make contact over 10% or 5% of simulation time.
b The contact percentage of PIP2/PC lipids is calculated as the number of times a specific PIP2/PC lipid made contact with FAK normalized by the total

number of times FAK established contact with PIP2/PC lipids.

doi:10.1371/journal.pone.0132833.t001
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C-lobe of the kinase domain. These two clusters in Group I (the KAKTLRK ridge and the C-
lobe of the kinase domain) are proximal to each other and may form part of a larger phospho-
lipid binding site. Group II residues are completely new and represent a potential binding site
suggested by our simulations, located near the interface between the N- and C-lobes of the
kinase domain. Both Group I and Group II binding sites are tightly correlated to the two basic
patches on the electrostatic potential surface of the protein (Fig 4).

D. FAK adopts multiple binding poses with PIP2

Group I and Group II interactions with PIP2 account for the majority of FAK-PIP2 contacts
and are independent of one another (Table 5). However, preferential orientations of FAK with
respect to the lipid bilayer do occur. Interactions involving only Group I required both the
KAKTLRK ridge and C-lobe of the kinase domain to be effaced with the lipid bilayer (Fig 5A).
When both Group I and Group II sites interacted with PIP2, a tilted orientation with the
Group II site on the C-lobe facing the bilayer surface occurred (Fig 5B). Finally, when only
Group II preferentially interacted with PIP2, it required an orientation in which the C-lobe was
heavily tilted towards and almost parallel to the bilayer (Fig 5C).

Discussion
The computational studies carried out have led us to more carefully consider the mechanism of
PIP2 binding to FAK and the potential effects on FAK activation. When PIP2-FAK interactions
were first discovered, it was shown that the highly basic KAKTLRK ridge (part of the F2 lobe in
the FERM domain) was necessary for PIP2-FAK binding in vitro and FAK activation in vivo
[15,27]. More recently, vesicle pull-down and surface plasmon resonance studies identified
that the combined kinase and FERM domains of FAK in the autoinhibited conformation bind
less effectively to PIP2-containing bilayers than the FERM domain alone, indicating that the
autoinhibitory conformation of FAK is predisposed to decreasing the favorability of PIP2 bind-
ing [10]. The motivation for our CGMD studies was to gain molecular insight into these inter-
actions, with the expectation that the interactions would remain localized to the FERM

Table 2. Quantification of FAK binding to PIP2.

Simulation % time of bindinga nP PIP2 bound to FAK, % time of bindingb

1 2 3 4–6

I 68.1 40.5 35.5 17.6 6.4

II 88.2 28.7 41.0 24.1 6.3

III 84.6 38.9 37.3 17.9 5.9

a Percentage of time FAK is bound to PIP2 during simulation.
b Percentage of time FAK is bound to nP number of PIP2.

doi:10.1371/journal.pone.0132833.t002

Table 3. Percentage of time (xi) individual residues contact PIP2.

Simulation K191a K216 K218 R221 K222 R229 R508 R514 K515 K578 K621 K627 R640 K657 R665

I 7.8 8.6 18.2 1.3 20.6 17.4 7.3 4.8 19.0 27.7 22.3 35.6 18.9 5.4 10.4

II 4.1 5.9 12.2 1.9 7.3 4.8 27.8 11.2 13.1 37.8 53.1 39.4 16.5 6.9 11.0

III 11.0 7.3 23.4 10.5 21.7 16.6 0.0 3.5 22.6 35.4 15.7 48.0 19.5 6.4 10.5

a Residues with xi > 5% in at least two simulations or xi > 10% in any simulation.

doi:10.1371/journal.pone.0132833.t003
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domain. Our simulation faithfully reproduced the known PIP2 binding sites located on the
basic patch of the FERM domain (Group I). However, observing interactions of Group II resi-
dues within the kinase domain with PIP2 was completely unexpected. Although the previously-
mentioned studies indicate the majority of PIP2 binding to FAK occurs within the vicinity of
the KAKTLRK ridge, residual binding observed in the KAKTLRK mutant [10] may be due to
additional interaction sites as proposed here. Our results indicate that the kinase domain
(Group II) could represent a viable site for secondary binding of PIP2.

Our simulations indicate that FAK-PIP2 interaction is mainly nonspecific due to the electro-
static nature of binding, and agrees well with the lack of influence on FAK activation in the
presence of neutrally-charged phospholipids such as DOPC [10,15]. A large number of basic
residues on the FAK surface established contact with PIP2. The residues engaging frequent
contact in each simulation remain largely consistent (S5 Table), indicating a converged identi-
fication of PIP2-binding residues. Due to the constraints of our protein model, there are poten-
tial PIP2-interacting residues that may not have been identified by our CGMD simulation. For
example, R184 and K190 in the FERM domain (the KAKTLRK ridge), which were shown to be
key residues in the allosteric relationship between ATP and PIP2 binding [29], and R634 on the
kinase domain bridge the Group I and Group II sites but are inaccessible to PIP2 in the autoin-
hibited conformation. However, multiple association and dissociation events were observed,
which is supported by the fact that the probability distribution of the principal axis of FAK
with respect to the membrane normal showed that no prolonged binding pose existed (S1 Fig).

Table 4. Grouping of PIP2 interaction sites.

Group I
F2a K191 K216 K218 R221 K222 R229

C-lobe R640 K657 R665

Group II N-lobe & C-lobe R508 R514 K515 K578 K621 K627

a F2 is part of the FERM domain, N- and C-lobes are part of the kinase domain.

doi:10.1371/journal.pone.0132833.t004

Fig 4. Group I and II interaction sites correspond to large basic patches in FAK. a1, b1, and c1: Mapping of Group I (green) and Group II (yellow)
residues onto the crystal structure of FAK (F1 (violet), F2 (blue), and F3 (cyan) subdomains of the FERM domain, N-lobe (red), A-loop (iceblue), and C-lobe
(magenta) of the kinase domain, and linker (gray)). a2, b2, and c2: Electrostatic potential surface of FAK kinase calculated using APBS [28]. The view of the
electrostatic potential surface in a2, b2, and c2 corresponds to the orientation shown in a1, b1, and c1, respectively.

doi:10.1371/journal.pone.0132833.g004

Novel Focal Adhesion Kinase-PIP2 Interactions

PLOS ONE | DOI:10.1371/journal.pone.0132833 July 17, 2015 7 / 12



These transient association dynamics mainly stem from the fact that the friction originating
from fine-grained degrees of freedom present in an all-atom model is missing in the coarse-
grained model used in this study [18,30,31]. Instead of association with a defined binding
pocket, PIP2 molecules maintain “stable” contact with residues located within Group I and
Group II, interacting with the basic surfaces and sampling multiple binding complexes. This
observed binding phenomena suggests mutations that could be tested experimentally to further
characterize PIP2 binding to FAK in the Group II basic patch, in particular R508, R514, K515,
K621, and K627.

Our study has provided novel insight into potential PIP2 interactions that have been shown
to promote the conformational change responsible for FAK activation. The autoinhibitory
interaction between the F2 subdomain of the FERM domain and the C-lobe of the kinase
domain is formed by a network of charge complementarity, including interactions mediated by
the KAKTLRK ridge and R634, a possible secondary PIP2-binding target that becomes exposed
during separation of the two domains. PIP2 binding could potentially weaken the interactions
that stabilize the KAKTLRK ridge and R634 in the inactive conformation, leading to conforma-
tional change and phosphorylation of Y397. This secondary PIP2 binding site may also stabilize
FAK in its active conformation. The discovery of a second PIP2 binding site on the FAK kinase
domain (i.e., Group II) suggests additional mechanisms contributing to conformational change
that could operate independently or in concert with the FERM domain. While the initial inter-
action might resemble the pose illustrated in Fig 5B, twisting the domains to simultaneously
maximize KAKTLRK ridge and Group II interactions with PIP2 could promote conformational
change that affects the linker, exposing Y397 for phosphorylation. Further modeling and
experimental studies are currently being conducted to fully elucidate the mechanism(s) of FAK
activation in response to PIP2 binding.

Supporting Information
S1 Table. Percentage of time individual residues interact with PIP2 in simulation I using
different cutoff values. As the contact cutoff increases, the percentage of time when individual

Table 5. Percentage of time Group I and Group II sites contacted PIP2 during FAK-PIP2 interactions.

Simulation Only Group I Only Group II I and II Neither I or II

I 31.4 42.6 23.2 2.8

II 22.7 60.3 15.6 1.4

III 25.3 40.7 32.6 1.4

doi:10.1371/journal.pone.0132833.t005

Fig 5. FAK adopts a set of preferential orientations toward PIP2-containing lipid bilayers. Arrows
represent the direction from the center of mass of the F2 subdomain of the FERM domain and C-lobe of the
kinase domain to the COM of the F1 subdomain of the FERM domain and N-lobe of the kinase domain. Color
scheme is the same as Fig 1.

doi:10.1371/journal.pone.0132833.g005
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residues make contacts increase accordingly.
(DOCX)

S2 Table. Percentage of time individual residues interact with PIP2 in simulation II using
different cutoff values.
(DOCX)

S3 Table. Percentage of time individual residues interact with PIP2 in simulation III using
different cutoff values.
(DOCX)

S4 Table. Effect of cutoff on the ranking of residues that contact PIP2. The residues identi-
fied to bind PIP2 remain unchanged, meaning our results are insensitive to the cutoff distance.
(DOCX)

S5 Table. Comparison of FAK residues that contact PIP2 using reported results (Simula-
tions I, II, and III) versus simulation with an initial configuration with FAK bound to
bilayer surface. Identified residues in simulation are well-converged. Ignoring the equilibra-
tion period in original simulations or starting an independent simulation from a PIP2-bound
conformation has minimal effects on the amino acid residues from FAK that interact with
PIP2.
(DOCX)

S1 Fig. No preferential binding pose exists between FAK and PIP2. Probability (p) of the
first principal axis of FAK (Vz) with respect to the bilayer normal (z). The broad distribution
indicates there is no preferential binding pose. black: simulation I; red: simulation II; green:
simulation III.
(TIFF)

S2 Fig. Multiple dissociation and association events occur during FAK-PIP2 binding. Inter-
action energies between FAK and PIP2 in simulation I. red: van der Waals energy; black: elec-
trostatic energy. Several PIP2-FAK dissociation and association events occur, as indicated by
the significant changes in the interaction energy.
(TIFF)

S3 Fig. Group II residues are highly conserved within a representative sample of the animal
kingdom. A sequence similarity search was carried out on the human version of focal adhesion
kinase 1 (Uniprot Q05397) using the BLAST server [32]. Clustal Omega [33] was used to per-
form a multiple sequence alignment (MSA) on 25 different species from the animal kingdom
(ranging from mammals to sea urchins), with all alignment variables set to their default values.
The alignment was visually inspected and manually adjusted in Seaview [34], with the final
alignment input into Scorecons [35]. Scorecons was used to quantify residue conservation with
respect to the human version of FAK used in the sequence alignment. Each residue in Group II
was highly conserved, with the majority being completely conserved. What is interesting to
note is that K578 and K621 are both located in flexible loop regions (on the A-loop and near
the C-lobe, respectively). When K578 is mutated along with K581 to glutamic acid, FAK’s
enzymatic activity is greatly enhanced (‘SuperFAK’ [36]), underscoring the key role K578 plays
in activation of FAK, since it is next to the tyrosine residues that are phosphorylated by Src
kinase (Y576 and Y577). In addition, the A-loop of FAK kinase was shown to be intimately
involved in the allosteric pathway that exists between ATP and PIP2 binding recently revealed
by all-atom molecular dynamics simulations [37]. The role of K621 in FAK function, if any, is
unclear. This residue was in contact with PIP2 molecules for the longest duration in our
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simulations, and this behavior could be linked to the flexible nature of the long loop that con-
nects two of the α-helices in the C-lobe of the kinase domain. Each of the Group II residues
(except for K578, which is a well-characterized mutation) appear to be promising candidates
for further experimental investigations into the effect they have on binding to PIP2. MSA was
drawn using the ESPript 3.0 server [38] using default values for residue similarity scores (0.7).
Similar residues are shown in bold type with white background, completely conserved residues
are shown in white font with black background. First row: annotated secondary structure based
on PDB 2J0J from avian Gallus gallus. All other rows: primary amino acid sequences of known
FAK1 genes, listed by Uniprot identification numbers. Green background and black triangles:
Group II residues. Scorecons results for Group II residues are listed below the MSA.
(PDF)
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