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Abstract
Pathway analysis is a common approach to gain insight from biological experiments. Sig-

naling-pathway impact analysis (SPIA) is one such method and combines both the classical

enrichment analysis and the actual perturbation on a given pathway. Because this method

focuses on a single pathway, its resolution generally is not very high because the differen-

tially expressed genes may be enriched in a local region of the pathway. In the present

work, to identify cancer-related pathways, we incorporated a recent subpathway analysis

method into the SPIA method to form the “sub-SPIA method.” The original subpathway

analysis uses the k-clique structure to define a subpathway. However, it is not sufficiently

flexible to capture subpathways with complex structure and usually results in many overlap-

ping subpathways. We therefore propose using the minimal-spanning-tree structure to find

a subpathway. We apply this approach to colorectal cancer and lung cancer datasets, and

our results show that sub-SPIA can identify many significant pathways associated with

each specific cancer that other methods miss. Based on the entire pathway network in the

Kyoto Encyclopedia of Genes and Genomes, we find that the pathways identified by sub-

SPIA not only have the largest average degree, but also are more closely connected than

those identified by other methods. This result suggests that the abnormality signal propagat-

ing through themmight be responsible for the specific cancer or disease.

Introduction
Various “omics” technologies, such as microarrays, RNAseq, and gas chromatography mass
spectrometry, can help to identify potentially interesting (i.e., differential) genes and metabo-
lites, especially those associated with specific diseases. However, using such information to bet-
ter understand the underlying biological phenomena remains a challenge. Pathway analysis
has become a popular approach for gaining insight into the underlying biology of differentially
expressed genes (DEGs) and proteins. The evolution of knowledge-driven pathway analysis
can be divided into four generations. The first-generation analysis method is called the over-
representation approach (ORA) [1] and compares the number of differential genes expected to
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hit the given pathway by chance. If this number differs significantly from that expected by
chance, the pathway is significant. Many tools are based on first-generation methods, such as
Onto-Express [2, 3] or GOEASE [4]. The ORA assumes that each gene is independent of the
other genes. However, biological processes form a complex web of interactions between gene
products that constitute different pathways. Functional class scoring (FCS) is a second-genera-
tion method for detecting coordinated changes in the expression of genes in the same pathway.
Gene-set enrichment analysis is an example of a second-generation method [5, 6]. Because
upstream genes may have a larger impact than downstream genes, pathway-topology-based
approaches, such as signaling-pathway impact analysis (SPIA) [7] and ScorePAGE [8], qualify
as third-generation methods. In particular, SPIA combines classical enrichment analysis and
the perturbation on a given pathway, which allows it to capture the influence of upstream
genes. Following SPIA, Vaske et al. [9] proposed a method named PARADIGM, which inte-
grates diverse high-throughput genomics information with known signaling pathways to pro-
vide patient-specific genomic inferences on the state of gene activities, complexes, and cellular
processes. Recently, researchers proposed that key subpathway regions may represent the cor-
responding pathway and be more relevant for interpreting the associated biological phenom-
ena. Moreover, several studies show that abnormalities in subpathway regions of metabolic
pathways may contribute to the etiology of diseases [10–12]. Subpathway analysis in signaling
pathways has also been studied, resulting in approaches such as DEgraph [13], the clipper
approach [14], and Pathiways [15]. These are qualified as fourth-generation methods.

In the present work, we combine the approaches of subpathway analysis and SPIA, which
we call sub-SPIA, to identify biologically meaningful signaling pathways. One key problem in
subpathway analysis is how to define a subpathway. Li et al. [11] used the k-clique concept to
define a subpathway. However, pathways are usually sparsely connected and are composed of
many linear structures. The k-clique concept has two limitations: (i) the relationship between
DEGs in a subpathway may not exactly form a k-clique structure, and (ii) the k-clique algo-
rithm usually results in many redundant and overlapped subpathways. The minimal-spanning
tree (MST) is a simple data structure that is frequently used to represent tightly related nodes
in a graph. It is more appropriate to represent various subpathways than the k-clique structure,
especially in sparse-pathway networks.

We applied the sub-SPIA method to the colorectal cancer (CRC) and lung cancer datasets,
and our results demonstrate that the proposed method can identify more disease-related path-
ways than SPIA, DEgraph, Clipper, and Pathiways. Furthermore, we find that most of the path-
ways identified by sub-SPIA have a high degree and are tightly connected within the entire
pathway network. This result reveals that diseases (e.g., cancer) may result from the synergic
interactions of a group of related pathways.

Results
There are 137 signaling pathways in KEGG. To deduce pathway significance, we used a signifi-
cance threshold of 1% on the p-values corrected for false discovery rate (FDR). For both sub-
SPIA and SPIA, the FDR-adjusted p-values PG(FDR) which combine the enrichment and per-
turbation p-values (see definition in the method section), were computed from the nominal p-
values by using the R function “p.adjust.”We present herein the significantly enriched path-
ways by applying sub-SPIA and SPIA to CRC and lung cancer datasets. The significant path-
ways that were also identified by DEgraph, Clipper, and Pathiways and are given in Tables 1
and 2.

Sub-SPIA
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Pathway Analysis
Colorectal-Cancer Dataset. Sub-SPIA identified 18 potential pathways associated with

CRC, while SPIA identified only 8 pathways. These pathways and their corresponding PG are
listed in Table 1. Four common pathways were identified by both SPIA and sub-SPIA: focal
adhesion, pathways in cancer, PPAR signaling pathway, and ECM-receptor interaction. Previous
studies show that some common pathways are highly associated with various cancers, includ-
ing CRC and lung cancer, such as focal adhesion [16, 17], pathways in cancer, regulation of
actin cytoskeleton [18, 19], the MAPK signaling pathway [20–27], ECM-receptor interaction, the
Wnt signaling pathway [28–32], and the p53 signaling pathway [33, 34]. Sub-SPIA identified all
of these pathways, whereas SPIA only identified three of them. However, some pathways are
not likely to be relevant to CRC, such as the pathways for Huntington’s disease, Alzheimer's dis-
ease, and Parkinson’s disease [7]. These are ranked first, second, and sixth in significance by
SPIA, whereas sub-SPIA identifies them either as not significant or not found.

Concerning the significant pathways identified by sub-SPIA but not by SPIA, existing evi-
dence indicates that they may be associated with CRC. The dysregulation of the regulation of
actin cytoskeleton pathway plays a key role in the progression of CRC [18, 19]; this pathway
contains a differential gene LIMK2 that promotes tumor-cell invasion and metastasis. LIMK2
expression is associated with CRC progression, and its deletion affects gastrointestinal stem
cell regulation and tumor development.

The complement and coagulation cascades pathway involves 14 DEGs and also plays a key
role in the progression of CRC. For example, in a comparison of radiosensitive and radio-resis-
tant lines of CRC cells, the result of five lines of CRC cells shows that 30 up-regulated genes

Table 1. Significantly enriched pathways identified by sub-SPIA and SPIA from the CRC dataset.

No Pathway Sub-SPIA SPIA Clipper Kclique Pathiways DEGraph Ref

1 Focal adhesion 1.30E-10 1.72E-08 Yes [16, 17]

2 PPAR signaling pathway 1.30E-10 4.67E-05 Yes Yes

3 ECM-receptor interaction 7.90E-07 7.19E-06 Yes Yes

4 Pathways in cancer 0.0001 0.0011

5 Regulation of actin cytoskeleton 1.88E-06 0.071 Yes [18, 19]

6 MAPK signaling pathway 2.81E-06 0.056 Yes [20–27]

7 Complement and coagulation cascades 2.76E-05 0.79 [35, 36]

8 Wnt signaling pathway 0.0007 0.066 Yes [28–32]

9 Staphylococcus aureus infection 0.0018 0.26 [40]

10 p53 signaling pathway 0.0019 0.7429 Yes [33, 34]

11 Notch signaling pathway 0.0029 0.2185 Yes [39,75,76]

12 Renal cell carcinoma 0.0037 0.0800 Yes [77, 78]

13 ErbB signaling pathway 0.0037 0.2207 Yes [42–45]

14 T cell receptor signaling pathway 0.0045 0.4230 Yes [41]

15 Circadian rhythm 0.0045 0.1659

16 Tuberculosis 0.0045 0.3576 [49]

17 Dopaminergic synapse 0.0046 0.2185 [79]

18 Legionellosis 0.0046 0.1926 Yes Yes

19 Axon guidance 0.0104 0.0002 [80–82]

20 Parkinson's disease 0.0439 1.19E-09

21 Alzheimer's disease 0.1827 1.19E-09

22 Huntington's disease No 4.67E-05

doi:10.1371/journal.pone.0132813.t001
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were identified as being involved in DNA damage response pathways, immune response path-
ways, and the complement and coagulation cascades pathway [35, 36].

The deregulation of the notch signaling pathway was observed in colorectal and other forms
of cancer [37]. NOTCH is the center of the subpathway identified by sub-SPIA (see Fig 1). The
abnormal expression of NOTCH and its upstream gene NUMB would lead to the dysfunction
of many downstream genes. The Notch signaling pathway is involved in regulating stem-cell
hierarchy and determining cell fate [38]. A recent study [39] indicates that inhibiting prolactin
can completely abrogate the Notch signaling pathway and may provide a novel target for thera-
peutic intervention.

Elafin is a protease inhibitor with antibacterial effects against bacteria such as Pseudomonas
aeruginosa and Staphylococcus aureus, and which modulates inflammation through its antipro-
tease activity. A delicate relationship between proteases and antiproteases is central in deter-
mining how inflammation develops during colitis. Proteases damage tissues during
inflammation whereas protease inhibitors minimize tissue damage and facilitate healing. In a
microarray study of human colonic biopsies, patients with ulcerative colitis expressed 30-fold
more elafin mRNA than healthy controls, which indirectly indicates that the Staphylococcus
aureus infection pathway is associated with CRC [40].

The T cell receptor signaling pathway is responsible for impaired immune responsiveness of
T cells in cancer patients. In such patients, the TCR-β gene in lymphocytes is less expressed in
colon cancer, renal cell carcinoma, melanoma, and cervical cancer, which has important clini-
cal implications for monitoring the patient immune status during therapy [41].

Table 2. Significantly enriched pathways identified by sub-SPIA and SPIA from lung cancer dataset.

No Pathway Sub-SPIA SPIA Clipper Kclique Pathiways DEGraph Ref

1 ECM-receptor interaction 3.17E-05 7.60E-05 Yes

2 Cell cycle 3.17E-05 0.0652 Yes Yes [83]

3 Focal adhesion 3.17E-05 0.0109 [51, 52]

4 Tuberculosis 0.0002 0.8017 Yes [65]

5 NF-kappa B signaling pathway 0.0008 0.2694 Yes [62, 84]

6 p53 signaling pathway 0.0010 0.3529 Yes [85, 86]

7 Melanogenesis 0.0010 0.580 Yes

8 PPAR signaling pathway 0.0010 0.5399 Yes Yes

9 MAPK signaling pathway 0.0016 0.1993 Yes [54]

10 Fc gamma R-mediated phagocytosis 0.0016 0.0595 Yes Yes

11 Regulation of actin cytoskeleton 0.0019 0.0581 [53]

12 Pathways in cancer 0.0020 0.0581

13 Fanconi anemia pathway 0.0023 0.0651 [63]

14 Wnt signaling pathway 0.0025 0.0581 Yes [55]

15 Amphetamine addiction 0.0046 0.8161 Yes Yes

16 Vascular smooth muscle contraction 0.0057 0.0652 Yes [87]

17 Salmonella infection 0.0068 0.1034 Yes Yes Yes [88]

18 Complement and coagulation cascades 0.0068 0.4547 Yes

19 Staphylococcus aureus infection 0.0088 0.3529 Yes

20 Protein processing in endoplasmic reticulum 0.1649 7.60E-05 Yes

21 RNA transport 0.2624 0.0006

22 Epstein-Barr virus infection 0.4085 0.0053 Yes Yes [69]

23 Bacterial invasion of epithelial cells 0.0797 0.0087 Yes Yes

doi:10.1371/journal.pone.0132813.t002
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Fig 1. Subpathways in theWnt signaling pathway identified by Sub-SPIA on CRC dataset. (A) The
insulin-signal pathway with DEGs highlighted. (B) Gene network obtained by graphite package. (C) Sub
Gene network corresponding to the MST for Minimal-spanning tree for ns = 4. (D) Sub Gene networks
corresponding to the MST for Minimal-spanning tree for ns = 2. Red indicates an up-regulated gene and blue
indicates a down-regulated gene. Reprinted from http://www.kegg.jp/kegg/kegg1.html under a CC BY
license, with permission fromMiwako Karikomi, original copyright 2013.

doi:10.1371/journal.pone.0132813.g001
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The human epidermal growth factor receptor family contains four members that belong to
the ErbB lineage of proteins (ErbB1-4)[42–45] [42–45]. Downstream ErbB signalingmodules
include the phosphatidylinositol 3-kinase/Akt pathway, the Ras/Raf/MEK/ERK1/2 pathway,
and the phospholipase C pathway. Several malignancies are associated with the mutation or
increased expression of members of the ErbB family, including lung, breast, and stomach can-
cer [42]. By immunohistochemistry, Yao et al. found that receptor tyrosine kinase (RTK) mem-
bers ErbB2, ErbB3, and c-Met were indeed differentially overexpressed in samples from CRC
patients, leading to constitutive activation of RTK signaling pathways. By using the ErbB2-spe-
cific inhibitor Lapatinib and the c-Met-specific inhibitor PHA-665752, they further demon-
strated that this constitutive activation of RTK signaling is necessary to the survival of CRC
cells [46].

As of 2008, CRC is the third most commonly diagnosed cancer in males and the second in
females [47]. Worldwide,mycobacterium tuberculosis (MTB) is the second leading cause of
death from an infectious disease [48]. Significant evidence shows that active MTB could be
present in patients with metastatic CRC [49]. Although the samples we used were not reported
to be infected with these pathogens, it is possible that the tuberculosis pathway plays an impor-
tant role in them and thus is identified by sub-SPIA as being significant in CRC.

Lung Cancer Dataset
Sub-SPIA identified 19 potential pathways associated with lung cancer, whereas SPIA only
identified 5 pathways (see S2 Table). These pathways and their corresponding PG are listed in
Table 2. Both methods identified three common pathways: ECM-receptor interaction, cell cycle,
and focal adhesion. Qiu et al.[50] found that DEGs may promote metastasis of lung cancer cells
through complicated networks, including pathways in cancer, focal adhesion [51, 52], regula-
tion of actin cytoskeleton [53], the p53 signaling pathway, the MAPK signaling pathway [54],
ECM-receptor interaction, and the Wnt signaling pathway [55]. These pathways are also identi-
fied by sub-SPIA, whereas SPIA only identifies five of them with P<0.06.

Gene anomalies in cell-cycle pathways have been frequently observed in a variety of human
malignancies, including lung cancer [56–58]. Dysfunctions of proto-oncogenes, such as
CCND1 and STK15, and tumor-suppressor genes, such as p53, p21, and p27, are commonly
associated with increased cell proliferation, defective apoptosis, elevated cancer risk, and poor
survival rates [50, 59].

Constitutive activation of NF-κB was detected in non-small-cell lung carcinoma (NSCLC)
and was implicated in imparting resistance to CDDP [60, 61]. Therefore, inhibiting NF-κB sig-
naling may be a critical target for enhancing the efficacy of CDDP against NSCLC. Wang et al.
[62] found that the inhibition of NF-κB by geldanamycin (GA) could be responsible for the
synergistic apoptosis-inducing effect of GA and CDDP in NSCLC cells and tumor xenografts.

By using methylation-specific PCR, Marsit et al. [63] found the epigenetic alterations in the
fanconi anemia pathway in NSCLC. They demonstrated that inactivation of the FANC-BRCA
pathway is relatively common in solid tumors and may be related to tobacco and alcohol expo-
sure and to the survival of these patients.

Aberrant activities of the vascular smooth muscle contraction and the focal adhesion path-
ways may play key roles in the initiation and development of NSCLC. Fang et al. [64] demon-
strated the indispensable roles of these two signal pathways in the carcinogenesis of NSCLC.

The comorbidity of lung cancer and pulmonary tuberculosis (TB) is a clinical problem
whose diagnosis and treatment presents a challenge [65]. In a review of 36 patients with salmo-
nella pneumonia, or lung abscess, Cohen et al. noted that thirteen of them (36%) had prior
abnormalities of the lung or pleura. From among these thirteen, seven had lung malignancies

Sub-SPIA
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[66]. Although the samples we used were not reported to be infected with salmonella patho-
gens, it is possible that the tuberculosis pathway plays an important role in them and thus is
identified by sub-SPIA.

Subpathway Analysis
According to the KEGG pathway hsa05200 (also called pathways in cancer), the signals from
the outside pathways, such asWnt signaling andMAPK signaling, are common driving forces
during carcinogenesis [15]. The sub-SPIA not only improves the identification resolution of
cancer-related pathways, but also helps biologists to understand their underlying mechanisms.

TheWnt signaling pathway has a canonicalWnt/β-catenin cascade and two non-canonical
pathways named theWnt/Planar cell-polarity (Wnt/PCP) pathway and theWnt/Ca2+ path-
way. Sub-SPIA identified that both the canonicalWnt/β-catenin cascade and theWnt/Planar
cell-polarity (Wnt/PCP) pathways are significantly enriched with DEGs relating with CRC and
lung cancer. Figs 1A and 2A show theWnt signaling pathway with the differentially expressed
genes highlighted on the two datasets. The identified subpathways are circled by the red dashed
lines for ns = 4 and the blue dashed lines for ns = 2. β-catenin was observed highly expressed in
the CRC patients. According to the identifiedWnt/β-catenin cascade, the upstream signal of
Wnt triggers the activation of gene Frizzled and Dv1, and the downregulation of the inhibitor
GSK-3β by Dv1 activates the expression of β-catenin. Genes belonging to theWnt/PCP path-
way, such as JNK are known to be up-regulated in cancer [67]. Based on the results given in
Figs 1A and 2A, we can see that gene expression of various activators and inhibitors related to
Wnt signaling activation is consistent with the regulation flows.

Figs 1C and 2C show the gene networks corresponding to the identified subpathway for ns =
4. We see that, not only do the number of DEGs differ for the two datasets, but also some
DEGs exist that are highly expressed on the CRC dataset but lowly expressed on the lung data-
set. this demonstrates that theWnt signaling pathway may function differently in the CRC and
lung cancer. For example, the downstream of theWnt/PCP pathway which leads to the gene
transcription in CRC is down-regulated whereas it is upregulated in lung cancer.

Comparison with other Approaches
As mentioned in introduction, several subpathway analysis methods have been proposed to
exploit the various functions of the pathway. For example, DEgraph [13] uses multivariate
analysis to identify differential-expression patterns that are coherent with a given subgraph
structure. The clipper approach [14] applies a Gaussian graphical model to deconstruct the
pathway into smaller subgraphs (cliques). Pathiways aims to identify subpathways that have
significant differences in the probability of activation of the individual stimulus-response sig-
naling circuits. The results of applying these methods to the CRC data set and to the lung can-
cer dataset are included in S1 and S2 Tables, respectively.

It seems that, in comparison with sub-SPIA, the three methods mentioned above are very
sensitive to the dataset. With a p-value of 0.01, Clipper, and DEgraph identified 13 and 21 sig-
nificant pathways, respectively, from the CRC dataset. However, they identified many signifi-
cant pathways with dubious biological meaning in the lung cancer dataset (107 and 89,
respectively). Pathiways identified 10 significant pathways from the colorectal- cancer dataset
but no significant pathways at all from the lung cancer data set. Therefore, in comparison, the
proposed sub-SPIA generally performs more stably with both data sets.

From Tables 1 and 2, we see that some of the potential significant pathways identified by
sup-SPIA were not found by these three methods, especially in the CRC data set. This result is
attributed to the fact that these methods have different motivations. Although the number of

Sub-SPIA
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Fig 2. Subpathways in theWnt signaling pathway identified by Sub-SPIA on lung cancer dataset. (A)
The insulin-signal pathway with DEGs highlighted. (B) Gene network obtained by graphite package. (C) Sub
Gene network corresponding to the MST for Minimal-spanning tree for ns = 4. (D) Sub Gene network
corresponding to the MST for Minimal-spanning tree for ns = 2. Red indicates an up-regulated gene and blue
indicates a down-regulated gene. Reprinted from http://www.kegg.jp/kegg/kegg1.html under a CC BY
license, with permission fromMiwako Karikomi, original copyright 2013.

doi:10.1371/journal.pone.0132813.g002
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significant pathways identified by the recently proposed Pathiways is relative small, but it can
analyze the activity probability of a subpathway, which provides a tool with which to under-
stand the biological mechanisms of diseases. However, these methods, including the proposed
sub-SPIA method, mainly focus on identifying subpathways.

Relationship between Identified Pathways
From the perspective of systems biology, the emergence and development of a cancer or disease
may be due to abnormal changes in some related pathways instead of in individual pathways.
Based on the connection between pathways, we construct the entire pathway network in the
KEGG. Fig 3A is the pathway network that consists of 239 nodes and 818 edges. Fig 3B is its
corresponding degree distribution. Each node represents a specific pathway and the edge repre-
sents the connection between nodes. Obviously, most of the pathways are sparsely connected
and only a few pathways which may serve some important biological function for living sys-
tems are highly connected with other pathways. The core region in Fig 3A is the 12 pathways
which connected more 20 other pathways.

To investigate the topological relationship of the significant pathways identified by each
method in the entire pathway network, we extracted from Fig 3 the identified pathways and
their directly connected neighbors. The average degree, clustering coefficient, and betweenness
of the identified pathways are presented in Table 3. The significance of the average degree is
obtained from generating 10 000 random degree distributions. The average degree of those
pathways identified by sub-SPIA and Pathiways is larger than that identified by other methods,
and the p-value of their average degree further indicates that they are very significant. The aver-
age betweenness of the pathways identified by sub-SPIA and Pathiways is also the largest. Both
the average degree and betweenness actually reflect the hub characteristic of the identified
pathways; the two observations just mentioned demonstrate that the pathways identified by
sub-SPIA and Pathiways generally play important roles in the entire system.

The average clustering coefficient generally reflects the degree of the closeness of the identi-
fied pathways. For both datasets, the average clustering coefficient of pathways identified by
sub-SPIA is about 0.38, which is the largest obtained of the five methods. Considering the

Fig 3. Pathway network in KEGG. (A) The connection between Pathways. The core nodes represent pathways connected with more than 20 other
pathways. (B) The degree distribution of pathways in (A).

doi:10.1371/journal.pone.0132813.g003
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relative sparseness of the entire pathway network, this indicates that the pathways identified by
sub-SPIA are more closely related than those identified by other methods. In other words, they
interact closely with each other to fulfill various biological functions.

Discussion
To identify significant pathways, we combine the subpathway analysis and the SPIA in a
method we call sub-SPIA. Compared with the original SPIA, sub-SPIA dramatically improves
the resolution for identifying significant pathways because subpathway analysis focuses on a
local region in a pathway. From Tables 1 and 2, we see that the p-value of pathways identified
by sub-SPIA is much smaller than for SPIA. Furthermore, the flexibility of the minimal-span-
ning tree makes it possible to capture various subpathways with complicated topologies. These
two factors make sub-SPIA more sensitive than SPIA, allowing sub-SPIA to identify more
potential pathways associated with specific cancers or diseases. Note that sub-SPIA misses a
few pathways identified by SPIA that are related to the corresponding cancer, such as the
Epstein-Barr virus infection [68, 69]. However, upon investigating this pathway, we find that
most of the DEGs on it are scattered over the entire pathway instead of being clustered in a
local region, which is why the spanning-tree algorithm fails to group them as a cluster or
subpathway.

We also compared sub-SPIA with three other subpathway-analysis methods: DEgraph,
Clipper, and Pathiways. Based on the number of the identified significant pathways, sub-SPIA
is more stable than these three methods because they either find many dubious pathways or no
significant pathways at all on the lung cancer dataset. Analyzing the relationship between the
significant pathways identified by those methods further reveals that those identified by sub-
SPIA not only play a more important role in the entire network but also are highly connected.
Because most of these pathways are known to relate to various cancers, we may conclude that
the abnormality signal propagating through them may be responsible for the specific cancer or
disease.

Finally, The MST structure overcomes the disadvantage of the k-clique method, which gen-
erally results in many overlapped subpathways. For example, in the pathways identified by
sub-SPIA on the two datasets with p-values of 5%, most pathways contain just one significant
subpathway whereas only seven pathways contain two to five subpathways (see supplemental
files). Additionally, the cross talk between pathways had been found to play an important role
in cancer [70]. The flexibility of MST has the potential to find cross talk if we apply it to con-
nected pathway networks.

Table 3. The topological characteristics of the significantly enriched pathways identified by five methods.

Colorectal cancer Lung cancer

Method Deg p-value Clu Bet Deg p-value Clu Bet

Sub-SPIA 15.7(18) 2.0e-6 0.377 324.8 15.2(19) 1.1e-6 0.38 284.1

SPIA 10.6(8) 0.0933 0.33 130.4 9.4(5) 0.2379 0 94.4

Clipper 10.1(13) 0.0675 0 127.2 8.6(107) 0.0012 0.24 181.2

DEGraph 7.2(21) 0.4138 0 84.1 9.7(89) 9.6e-6 0.35 254.2

Pathiways 17.6(10) 9.1e-6 0 334.1 NA NA NA NA

* Deg-Average Degree, Clu-Average Clustering coefficient, Bet-Average Betwenness. Number in the parentheses after Deg is the degree of the pathway

in the whole pathway network. NA means there was no significant subpathways were found.

doi:10.1371/journal.pone.0132813.t003
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Materials and Methods

Dataset
The first is the CRC dataset, which compares 12 CRC samples with 10 normal samples [71] by
using the Affymetrix HG-U133 Plus 2.0 microarray platform (ID = GSE4107). The second
dataset, which was initially analyzed by Landi et al. [72], is a lung cancer dataset and is publicly
available at the GEO database (accession number GSE10072).This dataset contains 58 tumor
samples and 49 normal samples and uses the Affymetrix Human Genome U133A Array.

Minimal-Spanning Tree
A spanning tree is a subgraph that is a tree and connects all the vertices of the parent graph.
Minimal-spanning trees (MSTs) have many applications in telecommunication and transpor-
tation-route design. As mentioned in the introduction, genes in a pathway are generally
sparsely connected and the DEGs mapped in it may not be connected directly, so we search for
a minimal-spanning tree that includes both the maximum number of signature nodes and the
minimum number of non-signature nodes. This concept is more flexible than the k-clique con-
cept for representing a subpathway. The Kruskal algorithm is one commonly used algorithm to
find the minimal-spanning tree.

Methods
Sub-SPIA is implemented by using the statistical programming language R and can be freely
downloaded from https://github.com/eshinesimida/subpathway-analysis. The main steps to
identify significantly enriched subpathways include (i) reconstruct the gene network from the
signaling pathways, (ii) map the DEGs in the constructed gene network, and (iii) locate sub-
pathways and evaluate their statistical and perturbation significance. In this work, a pathway
confers significantly enriched pathways if and only if it contains at least one significant-enrich-
ment subpathway.

Map DEGs to graphs of pathways
We downloaded the signaling pathways from KEGG. These are directed graphs based on bio-
chemical-reaction information in the KGML file (an XML representation of the KEGG-path-
way information, see http://www.kegg.jp/kegg/xml/). The KEGG database provides one xml
file for each pathway. In the KGML format, nodes in pathways often correspond to multiple
gene products and compounds. Gene products can be divided into protein complexes and
groups containing alternative members (gene families). We applied the graphite [73] package
to reconstruct the gene network from the pathway. Next, the DEGs were mapped to the gene
network.

Locate subpathways by DEGs
DEGs within a pathway provide important signatures to locate subpathways associated with
diseases of interest. Because DEGs in a subpathway are generally closely connected in the con-
verted gene network, we first find all node sets in a pathway which include closely connected
signature nodes. The main process is as follows: (i) we define a node set S = ϕ and add a ran-
domly selected signature node to it. (ii) if the shortest path between a signature nodes u2S and
v=2S is less than ns + 1 (parameter ns is the maximum number of permitted non-signature
nodes in the shortest path between two signature nodes)ns+1, then we add the non-signature
nodes in their shortest path and node v to S. (iii) We repeat step (ii) until no other signature
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nodes can be added to S. (iv) If there exist some signature nodes in the pathway not included in
the node set S, we repeat steps (i)–(iii) on them to find other node sets S0.

Obviously, genes in the node set S forms a connected sub-gene-network. However, it may
include some redundant non-signature nodes that are not necessarily needed to make the sig-
nature nodes form a connected subregion. According to the definition of the MST, these
redundant non-signature nodes should locate in the leaves of MST. Therefore, we first use the
Kruskal algorithm to find the MSTs and then remove these non-signature nodes in the leaves
of MST. We convert the subgraph of nodes in set S into an undirected weighted graph. The
weight w of an edge connecting two nodes u and v is defined as

W ¼

1 if u and v are signature nodes

1þ 1

kv
if u is a signature node and v is a non� signature node

1þ 1

ku
þ 1

kv
if u and v are non� signature nodes;

8>>>>><
>>>>>:

where ku and kv are the number of signature nodes connected with nodes u and v. The Kruskal
algorithm first sorts the edges in a graph according to their weight and then iteratively selects |
S|-1 minimal-weighted edges that cannot form a loop with the previously selected edges at
each step. After trimming these non-signature nodes in the leaves, we obtain the MST that
includes the maximum number of signature nodes and the minimum number of non-signature
nodes.

Flexibility can be introduced to this subpathway strategy by varying the parameter ns. A
smaller value of ns means that only those nodes meeting stricter distance similarities will be
added to the corresponding subpathway, and the subpathways thus identified become smaller
compared with what happens with larger values of ns. A smaller number of permitted non-sig-
nature nodes helps to increase the ratio of signature nodes in the located subpathway regions.
In this paper, we use ns = 4 to search the minimal-spanning tree based on the DEGs.

In Figs 1 and 2, we show the subpathways obtained in the Wnt signaling pathway from the
CRC and lung cancer datasets by Sub-SPIA. Figs 1A and 2A show the Wnt-signal pathway
with the differentially expressed genes highlighted. Figs 1B and 2B show the gene network
obtained by the graphite package. Figs 1C and 2C show the subnetwork corresponding to the
MST obtained by ns = 4, and Figs 1D and 2D show the subnetwork corresponding to the MST
obtained by ns = 2. The subpathway circled by the red dashed lines in Figs 1A and 2A corre-
spond to the subnetwork in Figs 1C and 2C. The subpathway circled by the blue dashed lines
in Figs 1A and 2A correspond to the subnetwork in Figs 1D and 2D.

We now give a brief description of the MST by referring to the node set in Fig 1B. Assuming
ns = 2 and starting from signature node 16, we reach the node set S = {16,17,19,20,21,22,24},
which includes the two non-signature nodes 19 and 21. Fig 4A shows the sub-gene network of
the nodes in Fig 1B. Fig 4B shows the converted undirected weighted graph from it. Fig 3C
shows the MST obtained from the Kruskal algorithm. The final MST is obtained by removing
leaf node 19, because it is a non-signature node.

The statistical significance of subpathways
We used the hypergeometric test and abnormal perturbation to calculate the statistical signifi-
cance of each subpathway. This process contains two types of evidence: the overrepresentation
of DEGs and the abnormal perturbation in a given subpathway. The first probability PNDE = P
(X�Nde|H0) captures the significance of the given subpathway Pi by an over-representation
analysis of the number of DE genes (NDE) observed on the pathway.H0 stands for the null
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hypothesis where random DEGs appear on a given subpathway. From a biological perspective,
this would mean that the subpathway is not relevant to the condition under study. The value of
PNDE represents the probability of obtaining a number of DEGs on the given subpathway that
is at least as large as the observed number Nde. The probability PNDE is obtained by assuming
that NDE follows a hypergeometric distribution. If the whole genome has a total ofm genes of
which t are involved in the pathway under investigation, and the set of genes submitted for
analysis has a total of n genes of which r are involved in the same pathway, then the p-value
can be calculated to evaluate enrichment significance for that pathway as follows:

p ¼ 1�
Xr�1

x¼0

t

x

 !
m� t

n� x

 !

m

n

 !

The second probability PPERT is calculated based on the amount of perturbation measured
in each pathway. A gene perturbation factor is defined as:

PFðgiÞ ¼ DEðgiÞ þ
Xn
j¼1

bij:
PFðgjÞ
NdsðgjÞ

where the term ΔE(gi) represents the signed normalized measured expression change of the
gene gi (log fold-change if two conditions are compared). The second term in Equation is the
sum of perturbation factors of the genes gj directly upstream of the target gene gi, normalized
by the number of downstream genes of each such gene Nds(gj). The absolute value of βij quanti-
fies the strength of the interaction between genes gi and gj. Other detailed information can be
referred in Ref. [7].

Fig 4. An example of the MST. (A) A sub gene network extracted from Fig 1B for ns = 2. (B) The converted undirected weighted graph. (C) The resulted
MST.

doi:10.1371/journal.pone.0132813.g004
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The global probability value PG, which tests whether the subpathway is significantly per-
turbed by the condition being studied, combines PNDE and PPERT to rank the pathways. When
the null hypothesis is true, the probability of observing a pair of p-values whose product, ci =
PNDE(i)�PPERT(i) is at least as low as that observed for a given pathway Pi is

PG ¼ ci � ci � lnðciÞ

When several tens of subpathways are tested simultaneously, small PG values can occur by
chance. Therefore, we control the FDR of the subpathway 1% by applying the commonly used
FDR algorithm [74].
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