
RESEARCH ARTICLE

Ceria Nanotube Formed by Sacrificed
Precursors Template through Oswald
Ripening
Laixue Pang*, XiaoyingWang, Xinde Tang

School of Material Science and Engineering, Shandong Jiaotong University, Jinan, P.R China

* lxpang@sdjtu.edu.cn

Abstract
Controllable preparation of ceria nanotube was realized by hydrothermal treatment of Ce

(OH)CO3 precursors. The gradually changing morphologies and microstructures of cerium

oxide were characterized by X-ray powder diffraction, scanning electron microscopy and

transmission electron microscopy. A top-down path is illuminated to have an insight to the

morphological transformation from nanorod to nanotube by adjusting the reaction time. The

growth process is investigated by preparing a series of intermediate morphologies during

the shape evolution of CeO2nanostructure based on the scanning electron microscopy

image observation. On the basis of the time-dependent experimental observation, the pos-

sible formation mechanism related to oriented attachment and Oswald ripening was pro-

posed, which might afford some guidance for the synthesis of other inorganic nanotubes.

Introduction
Cerium oxide (CeO2) is a technological important material due to its wide applications such as
catalyst, fuel cell, sensor, UV shielding, and luminescence. It is widely known that the photoca-
talytic, magnetic, electronic, and catalytic properties of CeO2 are strongly size/shape dependent
at the nanometer scale [1–5]. Recent studies in CeO2 system have focused on the development
of robust synthetic approaches toward size/shape-controlled nanostructures (wires, rods,
tube), and the investigation of their size/shape-dependent properties [6–10]. For example,
some groups prepared size-tunable CeO2 nanocrystals via various wet chemical approaches
(including modified precipitation, alcohothermal treatment, microemulsion, and sonochemical
method)and investigated their size-dependent UV absorption behavior in order to clarify the
confinement effects in CeO2[11–15]. The nanotube of ceria has recently attracted a great deal
of attention due to the aesthetic beauty and potential unique physical properties. Zhang et al
prepared CeO2 nanotubes using carbon nanotubes as templates by a liquid deposition method
[16]. Boehme et al synthesized ceria nanotube with diameter of below 100nm and a wall thick-
ness of around 10nm using electroless deposition based on aqueous solutions at room tempera-
ture [17]. Hua et al fabricated ceria nanotubes by the ultrasonic assisted successive ionic layer
adsorption and reaction method to increased amounts of oxygen vacancies and single electron
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defects containing Ce3+ [18]. Tang et al developed an approach for high-yield synthesis of sin-
gle-crystalline CeO2 nanotube with a well-shaped hollow interior through a “casually-modi-
fied” approach based on the hydrothermal treatment of Ce(OH)CO3 precursors with a alkali
solution in an aqueous phase[19]. Chen et al prepared ceria nanotubes with significantly
smaller diameters through hydrothermal treatment of Ce(OH)CO3 with dilute NaOH at a
mild temperature (120°C)[20]. Among these reported approaches, hydrothermal synthesis has
been most extensively investigated because it is simple and cost effective [21–23]. Hydrother-
mal reaction under moderate conditions is an effective approach in synthesizing nanotube of
inorganic oxide [24–27]. In many cases, alkaline solutions are used in the hydrothermal syn-
thesis in which the shape and size of the nanotube are well-controlled. Despite remarkable
progress in CeO2nanotubessynthesis, the basic formation mechanism is not fully understood,
which may be ascribed to the absence of direct experimental observation of the nanotube for-
mation during the growth process. It may be beneficial not only to further understand the
growth process, but also to explore the appropriate growth conditions of the produced nano-
tubes. Therefore, direct experimental determination of such process is of great scientific
significance.

In this study, we use scanning electron microscopy (SEM) to obtain and probe intermediate
products of hydrothermal synthesis of CeO2nanotube. Just by adjusting the hydrothermal
treatment time, the morphology transformation from precursor to nanotube is achieved,and
series of condition-dependent experiments have been conducted to understand the characteris-
tics of the crystal growth and hollow tube formation processes involved in this synthesis. Fur-
thermore, a possible crystal growth and hollowing mechanism are proposed based on the
detailed experimental results.

Experimental

Materials and synthesis procedure
Cerium Nitrate (Ce(NO3)3�6H2O), urea(CO(NH2)2), which received from Sinopharm Chemi-
cal Reagent Co. Ltd, were of analytical grade and used as received without further purification.
Deionized water was used as the solvent in all experiments.

Rodlike Ce(OH)CO3 precursors were synthesized by reacting cerium nitrate with urea. In a
typical synthesis, 4mmol of Ce(NO3)3�6H2O and 24mmol of urea were added to 80mLof water
under vigorous magnetic stirring. The clear solution was charged into a 100mL wide-mouthed
jar which was closed and kept at 80°C for 24 h. The solution was then air-cooled to room tem-
perature. The obtained powder samples were centrifuged, washed with distilled water, and
dried at 60°C in air overnight.

The Ce(OH)CO3nanorods obtained above were re-dispersed into 20 mL distilled water.
Upon adding NaOH solution, the mixture solution was transferred to a Teflon-lined stainless
steel autoclave and maintained at 120°C for different duration time (18h, 24h, 48h, 54h, 60h);
it was then air-cooled to room temperature. The resulting products were collected, washed sev-
eral times with absolute ethanol and distilled water, and then dried in a vacuum condition.
Flow chart of synthesis strategy for CeO2nanotubesis shown as Fig 1.

Characterization
The obtained samples were characterized by X-ray powder diffraction using a Rigaku D/max-
ga X-ray diffractiometer with graphite-monochromatized Cu Kα radiation (λ = 1.54178Å).
The morphology and structure of the sample was obtained from transmission electron micros-
copy (JEM2010 200kV) and field emission scanning electron microscopy (JEOL 6300, 100kV).
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Results and Discussion
Representative microscopic images of the as-maderodlike Ce(OH)CO3 and as-obtained CeO2

nanotubes are as follows. TEM image (Fig 2a) shows a typical morphology of these precursors,
which revealing a one-dimension structure under the conditions used. It can be seen that the
nanorods have a diameter around 200~300nm, with length typically larger than 1μm. SEM
image (Fig 2b) shows the synthesized CeO2 nanotube sample, clearly displaying the formation
of hollow interiors (red circle), with a well-shaped hollow interior. The diameter of the tube is
about 50–100nm.

Fig 3 shows a typical XRD pattern of the as-synthesized Ce(OH)CO3 and CeO2 nanotubes.
All peaks in the Fig 3a can be well-indexed to a pure hexagonal phase of Ce(OH)CO3 (space
group:P �6 2c) with calculated lattice constants a = 1.252nm and c = 1.000nm, which is in good
agreements with the JCPDS file for Ce(OH)CO3 (JCPDS 52–0352). No impurity peaks are
observed, indicating a high purity of the final products. In Fig 3b all peaks can be indexed as
the cubic phase (Fm �3 m, JCPDS 34–0394) with a lattice constant a = 0.5411nm. The strong
and sharp diffraction peaks indicate the good crystallization of the sample. No obvious peaks
corresponding to cerium nitrate or other cerium oxides were observed in the powder pattern.

In order to obtain a complete view of the CeO2 nanotube formation process and its growth
mechanism, the detailed time-dependent evolution of the morphology was evaluated

Fig 1. Synthesis strategy flow chart.

doi:10.1371/journal.pone.0132536.g001

Fig 2. (a)TEM image of as-prepared Ce(OH)CO3 precursors and (b) SEM image of CeO2 nanotubes.

doi:10.1371/journal.pone.0132536.g002
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thoroughly by SEM (Fig 4). A clear time-dependent morphology evolution process from the
precursors to tubelike shapes can be observed. As shown in Fig 4a, it is obvious that,at the early
reaction time, the precursors keep spindle-like morphology. Crystallites growth makes the pre-
cursor small crevice. When the reaction time was prolonged to 24h, the crystallites serving as
new starting growth sites are growing into cube-shape with different crystal planes due to its
anisotropic growth [28]. The loosely packed particles were verified by plenty of intercrystallite
spaces observed in these premature cubic structures, as shown in Fig 4c. With the reaction time
increasing, the long cylinder-shaped topology is grown, which suggests that the preferred
growth of the ceria polyhedra is along the specific direction, similar to that of the CeO2nanor-
ods obtained by other methods [29, 30]. The nanocrystals fuse together, forming interfaces
among the aggregates, and with time going, those interfaces become lesser, and the nanoparti-
cles merge together and share the same single crystallographic orientation, which leads to the
formation of long elongated rod. Adirectionalattachmentgrowth is the major mechanism in
this section.

When the reaction time is up to 54h, hollowing takes place and results in the creation of
central space indicated by the ruptured nanotube (blue circle in Fig 4d). The hollow shape is
formed because cerium tends to move towards the wall of the rod due to the density variation
among the rod and then undergo Ostwald ripening process. Due to the difference of surface
energy and particles located in the inner space of the cubes and this particles could be dissolved
and merged by particles in the outer surface, and meanwhile the solid rod gradually develops
into a hollow structures [31–33]. The large nanotubes grow up at the expense of the nanorod-
wall dissolution, as confirmed by the transparent surface. At last, the precursor is consumed at
all; the reaction has run to completion. The perfect hollow structure can be observed as shown

Fig 3. XRD patterns of the as-synthesizde Ce(OH)CO3 precursors (a) and CeO2 nanotubes (b).

doi:10.1371/journal.pone.0132536.g003

Fig 4. SEM images of the as-prepared CeO2 products after different reaction time: (a)6h, (b)12h, (c)18h, (d) 24h, (e) 48h, (f) 54h, (g)60h.

doi:10.1371/journal.pone.0132536.g004
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in Fig 4e. It has been noted that during the creation of nanotube, the exterior appearance of the
precursors did not change appreciably. Therefore, by controlling the hydrothermal time, the
hollow interior structure can be effectively monitored, which compared with Kirkendall diffu-
sion mechanism as reported in Ref.[34].

Based on the experimental observations, a possible formation mechanism of CeO2 nano-
tubes is proposed and displayed in Fig 5. At the early stages, the initial nanoparticles are
expected to randomly aggregate to reduce the surface energy (Fig 5a). Along with the reaction
proceeding, the Ostwald ripening is dominant, and the small, less crystalline particles in a col-
loidal aggregate dissolved gradually, while larger, better crystallized particles in the same aggre-
gate grew (Fig 5b). Meanwhile, this process involves spontaneous self-organization of adjacent
particles so that they share a common crystallographic orientation, followed by the joining of
these particles at a planar interface (Fig 5c). At last, the Ostwald ripening is completed with
“solid-solution-solid”mass transportation. Crystallites located in the outermost surface ofag-
gregates are larger and would grow at the expense of smallerones inside, so the solid evacuation
occurred. As a result, the CeO2 nanotube was formed (Fig 5d). CeO2nanostructure with hollow
interior space maybe a good CO conversion support owe to its high surface area, which is
believed to widely used in catalytic systems.

Conclusions
In summary, we unveiled the CeO2 nanotube shape evolution using the scanning electron
microscopy. The morphological evolution can be achieved by adjusting the hydrothermal treat-
ment time. Based on the evidence of electron microscopy images, the morphological evolution
mechanism suggested that the nanotube formation might be an Oswald ripening and mass
transportation. Considering the convenience of the procedure and the availability of the chemi-
cals used in this ceria nanotube preparation, this route is promising and may be extended to
fabricate other metal oxide nanostructures.
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Fig 5. A schematic diagram showing growthmechanism of CeO2 nanotubes.
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