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Abstract

High-throughput sequencing, and genome-based datasets in general, are often repre-
sented as profiles centered at reference points to study the association of protein binding
and other signals to particular regulatory mechanisms. Although these profiles often provide
compelling evidence of these associations, they do not provide a quantitative assessment
of the enrichment, which makes the comparison between signals and conditions difficult. In
addition, a number of biases can confound profiles, but are rarely accounted for in the tools
currently available. We present a novel computational method, ProfileSeq, for the quantita-
tive assessment of biological profiles to provide an exact, nonparametric test that specific
regions of the test profile have higher or lower signal densities than a control set. The
method is applicable to high-throughput sequencing data (ChIP-Seq, GRO-Seq, CLIP-Seq,
etc.) and to genome-based datasets (motifs, etc.). We validate ProfileSeq by recovering
and providing a quantitative assessment of several results reported before in the literature
using independent datasets. We show that input signal and mappability have confounding
effects on the profile results, but that normalizing the signal by input reads can eliminate
these biases while preserving the biological signal. Moreover, we apply ProfileSeq to ChlP-
Seq data for transcription factors, as well as for motif and CLIP-Seq data for splicing factors.
In all examples considered, the profiles were robust to biases in mappability of sequencing
reads. Furthermore, analyses performed with ProfileSeq reveal a number of putative rela-
tionships between transcription factor binding to DNA and splicing factor binding to pre-
mRNA, adding to the growing body of evidence relating chromatin and pre-mRNA process-
ing. ProfileSeq provides a robust way to quantify genome-wide coordinate-based signal.
Software and documentation are freely available for academic use at https:/bitbucket.org/
regulatorygenomicsupf/profileseq/.
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Introduction

Profiling is a method for data visualization that is currently widely used with high-throughput
sequencing data in combination with genome annotations. This generally consists in pooling
data for a set of genomic loci with similar features of interest in order to make generalized bio-
logical inferences about the feature in question. In its application to high-throughput sequenc-
ing analysis, reads are added or averaged at contiguous bins up to a specified distance from a
chosen set of reference positions, e.g. transcription start sites (TSSs). By pooling data from a
large number of regions, greater statistical certainty is achieved, which is desirable due to the
high variability at individual loci in high-throughput sequencing data. However, profiles often
simply provide a qualitative map of the genomic landscape around a feature of interest. For
example, a profile was used to provide evidence that RNA Polymerase 2 (RNAPII) accumulates
at sites downstream of alternatively spliced exons where CCCTC-binding factor (CTCF) is
bound [1]. In a similar example, ChIP-Seq profiles were used to show qualitatively that the SR-
proteins SRSF1 and SRSF2 bind to a large extent at the TSS and to a smaller extent on exons of
DNA [2]. While profiles can be very useful, they generally do not provide a quantitative assess-
ment of statistical significance, and variations of the read density could be due to experimental
or data processing artifacts rather than to biology. Thus, there is a need for a profiling method
that reduces biases and quantitatively assesses the statistical significance of a profile feature in
order to better inform biologists of which profile results are most likely to be biologically
relevant.

We present ProfileSeq, a new method for a controlled and quantitative assessment of biolog-
ical profiles. In particular, ProfileSeq provides a quantitative test to assess whether specific
regions of the profile have higher or lower signal densities than a control set. ProfileSeq was
designed with the aim of minimizing confounding factors and for performing a proper statisti-
cal analysis of the profiles. Moreover, it is applicable for any dataset of reads or genomic ranges
of any length, it can be used to generate profiles for any data type that can be reduced to a set of
genomic coordinates, and can accommodate up to single nucleotide (nt) resolution, hence is
also applicable to methods such as GRO-Seq [3] and iCLIP-Seq [4]. We have used ProfileSeq
to reproduce previously published profiling results and to provide additional insights. We
show that a number of confounding factors exists and provide novel strategies in order to elim-
inate or reduce those confounding factors. Finally, profiles generated with ProfileSeq reveal a
number of putative relationships between transcription factor binding to DNA and splicing
factor binding to pre-mRNA, adding to the growing body of evidence relating chromatin and
pre-mRNA processing.

Results and Discussion
A quantitative method to compare genome-based profiles

We have developed a computational tool, ProfileSeq, to perform a quantitative comparison
between profiles of genome-based signal. ProfileSeq uses as input the signal data and two sets
of regions, a reference set and a control set (Fig 1A). The reference set is the list of regions of
interest, and the control set contains the regions to compare with. The signal can be sequencing
reads from ChIP-Seq, RNA-Seq, CLIP-Seq, etc., or any other coordinate-based measurement,
like motifs, CpG islands, peak regions, etc. Optionally, a secondary signal, such as read mapp-
ability or chromatin input, can be used to correct for confounding factors. The coverage of
positions by the signal is then calculated, the signal count is summarized into bins at a resolu-
tion specified as an input, and at each bin a test for enrichment is performed (Fig 1B). As out-
put, ProfileSeq provides the corrected counts per bin, and the regions that are significantly
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Fig 1. Workflow of ProfileSeq. Rectangles indicate files. Arrows leaving from files indicate outputs; arrows coming into a file indicate inputs. The user first
prepares Test and Control reference files (.ref) containing the positions at which the datasets are to be plotted, as well as a BED or.pos file with the data to plot

PLOS ONE | DOI:10.1371/journal.pone.0132448 July 24,2015 3/29



el e
@ : PLOS ‘ ONE Profiling Tool Reveals Associations between Chromatin and RNA

(A). The.ref and.pos formats are as displayed, except that the id field required for the.ref format is not shown. The BED or.pos file must be pre-processed such
that the maximum number of times a read can be repeated at a given coordinate (chromosome position strand) is known. An optional file of genomic coordinates
of mappable reads or input reads may be used for more accurate results. Each pair of.ref and BED/.pos files are then input into count_occurences, which will
output a file of the counts of occurrences (.occ) of reads in the BED/.pos file at and around the positions in the.ref file (B). The.occ files are then used as inputs to
ProfileSeq, which generates a profile like the one shown, as well as files with a list of significant regions and P-values of Test vs. Control counts in each bin.
Additionally, using ProfileSeq_peaks, the count of occurrences in the central region c is compared to the counts in the immediately flanking regions (a and b) on
the Test and Control profiles separately. Software and usage details are available at https://bitbucket.org/regulatorygenomicsupf/profileseq/.

doi:10.1371/journal.pone.0132448.9001

different between reference and control, with the corresponding p-values. The novelty of Profi-
leSeq is that it performs a quantitative assessment of the differences in signal between the set of
interest and a control set. Additionally, it performs a second quantitative test of the signal
around a reference point compared to the flanking regions (Fig 1). Further details are given in
the Methods section.

We validated ProfileSeq by reproducing prior results from the literature using multiple
independent datasets, including CLIP-Seq, RNA-biding motifs, ChIP-Seq, GRO-Seq, and
mappability of genomic positions. Mappability, the ability to uniquely map a read starting and
ending at specific genomic coordinates, is a potentially confounding factor in profiles. We are
able to reproduce and quantify the result showing that the mappability of regions flanking
splice sites (SSs) of internal exons (using 32nt reads) correlates with the length of the host tran-
script [5], using a different annotation (Fig 2A) and for other read lengths for human and
mouse (Figures A, B, and Cin S1 Fig). Additionally, using exons larger than 100nt in human
and mouse to account for the difference of length of the internal exons in long and short tran-
scripts (P-value<10~*, Wilcoxon test) (Figure D in S1 Fig), we also find the mappability bias
on the exon body (Figures E and F in S1 Fig). Thus, we recover the biases described before [5]
and extend them to other regions, read lengths and species.

We also quantified an additional, relevant mappability bias, consisting of a significantly
higher mappability at and around exons with strong SSs compared with exons with weak sites
(Fig 2B) (Methods) with similar results for mouse (mm9 40nt reads, Figure A in S2 Fig). This
bias in mappability persists in the 100nt region upstream of the 3’SS and downstream of the
5’SS when considering exons longer than 100nt in length (Figure B in S2 Fig). We observe that
part of the significant difference in mappability lies on the exon. This will probably impact the
calculation of exon percent spliced in (PSI) values [6, 7]. Given the potential for mappability to
confound profile results, we considered it throughout our profile analyses (Methods). However,
we found that in general mappability has a negligible effect on the results.

We next validated ProfileSeq for ChIP-Seq and GRO-Seq data. A number of genome-wide
studies have observed a greater density of signal associated with RNAPII binding around TSSs
compared to other regions, e.g. polyadenylation sites (pA-sites) [3]. We used ProfileSeq with
ChIP-Seq data for RNAPII in K562 and HepG2 cells, as well as mouse embryonic fibroblasts
(MEFs) (Fig 2C and Figures A and B in S3 Fig), and global run-on sequencing (GRO-Seq) for
Imr90 and MEFs (Fig 2D and Figure C in S3 Fig), all centered at the same number of TSS and
pA-sites from the same genes. All the obtained profiles show that the signal at the TSS is signif-
icantly greater than at pA-sites. The RNAPII profiles in HepG2 and MEF cells show a large
peak just downstream of the TSS and another smaller one ~150-200nt upstream. This behavior
was proposed to reflect the composite behavior of the TSSs in genes [8]. The K562 profiles
behave similarly, but with a less pronounced, though still discernible, peak upstream of the
TSS. We also observe significant accumulation of ChIP-Seq input reads at the TSS and deple-
tion at the pA-site similar to the observed patterns for RNAPIL. However, using ProfileSeq, we
are able to show that the significant enrichment of RNAPII at the TSS persists even after
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Fig 2. Validation Profiles. (A) Mappability according to transcript length. “Longest” gives the longest 20% of transcript lengths, “long” gives the 2" longest
20% of transcript lengths, and so on. Each class has N = 11711 reference regions. (B) Mappability at the upper vs. lower quartile of splice site strengths,
“strong” and “weak”, respectively. (C)-(E) Comparisons of regions surrounding transcription start sites (TSSs) and polyadenylation sites (pA-sites). The pA
profiles have been inverted, such that for all these profiles, positive values on the x-axis indicate the distance into the transcript, whereas negative values
indicate the distance outside of the transcript. (F)-(G) Mouse CLIP-Seq profiles at strong vs. weak exons. Test vs. control P-values/bin are as shown in Fig
1B, with the lightest shade of grey corresponding to P-value < 0.01.

doi:10.1371/journal.pone.0132448.9002

accounting for the input signal in all cell lines (Fig 2E and Figures D and E in S3 Fig). Finally,
stranded profiles for GRO-Seq in human (Fig 2D) and mouse (Figure Cin S3 Fig) show a
sharp peak just downstream of the TSS, as shown before for the human sample [3], and a
smaller, but sharp peak at the pA-site as well as a second, broader peak downstream of the pA-
site, which was proposed to be related to 3' cleavage before polyadenylation [3].

We also validated ProfileSeq using CLIP-Seq data. Several splicing factors are known to
bind to exonic splicing enhancer (ESE) elements, thereby assisting in the inclusion of exons
with weak splice-site signals [9]; various computational and experimental approaches have
been used to successfully predict ESE motifs, e.g. [10,11]. The SR-proteins SRSF1 and SRSF2
are particularly well-studied splicing factors known to bind these ESEs [12]. We compared the
profiles of CLIP-Seq reads for SRSF1 and SRSF2 from mouse cells [2] between the upper and
lower quartiles of SS scores, for both 5' and 3' SSs separately (Fig 2F and 2G). Our profiles show
a significantly greater read density in the weakest quartile compared with the strongest one,
with very few reads at introns, which agrees with their main role in binding exons to enhance
splicing. Additionally, the significance of the comparisons is maintained after correcting for
mappability (Figures A and B in S4 Fig). Performing the same analysis for CLIP-Seq data for
PTB [13] produced enrichment in the intronic region 100-125nt upstream of weak 3'SSs
(Figure C in S4 Fig), consistent with previously reported patterns [14,15], whereas no differ-
ence was found when comparing weak and strong 5'SSs. Additionally, we observed significantly
more PTB signal occurs on the body of exons with strong 5'SSs compared with exons with
weak 5'SSs, even though this density is lower than at intronic regions (Figure C in S4 Fig). We
conclude that ProfileSeq on CLIP-Seq data is consistent with the previous findings and also
suggest new possible relations between PTBP1 binding and the strength of the nearby SSs.

ChIP-Seq input signal bias as a possible confounding factor in ChlP-Seq
profiles

After validating the quantitative findings with ProfileSeq, we next investigated possible associa-
tions between chromatin and pre-mRNA splicing. It was shown before that RNAPII signal
accumulates at CTCF binding sites downstream of alternatively spliced internal exons [1]. In
particular, it was found that the RNAPII read density at the CT'CF summits was ~3 fold greater
compared with exons and with regions at > 250nt up and downstream of these summits [1].
We applied ProfileSeq to data from ENCODE to try to reproduce this result with a set of inter-
nal exons (Methods). First, we checked the mappability at the CTCF peaks in the 1kb region
downstream of internal exons. We found significantly greater mappability, in both human and
mouse, around the peak centers compared with control regions, defined as equivalent positions
relative to the nearby SS in the 1kb region downstream of internal exons without a peak, (Fig
3A). The profiles of RNAPII ChIP-Seq reads at CTCF peaks before mappability correction in

2 human cell lines showed a similar (~2-3 fold) increase of RNAPII reads at CTCF peaks rela-
tive to the control regions, as well as relative to the 250nt upstream and downstream (Fig 3B
and Figure A in S5 Fig), as observed before for alternatively spliced exons [1]. Importantly,

our analysis shows that the differences are statistically significant, and that the significant
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difference persists after accounting for mappability (Figure B in S5 Fig), explicitly showing that
the observed accumulation is not due to mappability biases.

The relationship between downstream CTCF binding and RNAPII pausing has been exam-
ined so far only in human, so we generated profiles in mouse MEF cell lines and observed the
same result as in human (Figure C in S5 Fig). The profiles centered at the 5' SS looked similar
to those at the exon center (Figures A and C in S5 Fig), indicating that differences between test
and control sets are not due to differences in exon length distribution. Thus, we recover the sig-
nificant accumulation of RNAPII ChIP-Seq reads at intragenic CTCF peaks within 1kb down-
stream of internal exons in both human and mouse, with similar fold-enrichment as observed
just for alternatively spliced exons [1]. We also noticed a significant accumulation of ChIP-Seq
input reads at CTCF peaks downstream of exons at comparable fold-enrichment as RNAPII
relative to control regions in both human and mouse (Fig 3C and Figure D in S5 Fig). More-
over, when we normalized the RNAPII read profiles by input reads (Methods), we found no
accumulation of RNAPII at CTCF peaks (Fig 3D and Figure E in S5 Fig); instead, there is actu-
ally a small but significant reduction in RNAPII reads per input read at CTCF peak centers rel-
ative to controls in the HepG2 profile, while there is no significant difference seen in the K562
and MEF profiles. Thus, in the three samples examined, the observed RNAPII accumulation of
non-duplicate RNAPII ChIP-Seq reads at CTCF peaks is due to increased input signal at CTCF
peaks. To investigate this further, we generated the profiles of sense-stranded GRO-Seq reads
from the MEF cell lines (Fig 3E and 3F). This analysis shows no significant difference in reads
at CTCF peaks compared with controls. Interestingly, there is a small but significant accumula-
tion of GRO-Seq reads downstream of exons with a CTCF peak over controls in the SRSF2wt
sample, but this accumulation is not related to the position of the CTCF peak (Fig 3E, right-
most panel). Although these GRO-Seq profiles do not consider mappability, we showed before
that the mappability bias at CTCF peaks would favor increased reads at CTCF peaks versus
controls. The profiles for IgG ChIP-Seq, often used as control experiment, for MEF at CTCF
peaks compared with controls show very sparse and randomly distributed signal, with none of
the comparisons being statistically significant (Figure F in S5 Fig).

Finally, the original finding of RNAPII accumulation at CTCF peaks was observed
downstream of exons that showed a significantly different splicing inclusion rate upon CTCF
knockdown (KD) [1]. We therefore took the subset of the exons affected by CTCF KD that
overlapped with our internal exon set and also had a downstream CTCF peak in HepG2. There
were a total of 42 such exons. The profiles of RNAPII, the corresponding input, and RNAPII/
input (Figure G in S5 Fig) show the same behavior as the profiles for the full internal exon set.
Thus the accumulation of RNAPII ChIP-Seq signal that we observe is due to a bias in the input
signal, regardless of whether or not the inclusion of exons is affected by CTCF KD. Our results
indicate that ChIP-Seq signal recapitulates in general the ChIP input signal, suggesting that
some ChIP-Seq datasets may contain unspecific binding information. We also show that nor-
malization by dividing by input reads yields results similar to the corresponding GRO-Seq pro-
files, both positive (in the case of RNAPII at TSSs), and negative (in the case of RNAPII at
downstream CTCEF peaks). Provided that the input sample uses the same protocol and has sim-
ilar sequencing depth as the samples, normalizing by input is likely to retain biological infor-
mation while eliminating the unspecific signals.

These results imply that ChIP of RNAPII alone is not sufficient to estimate RNAPII elonga-
tion rates. A careful consideration of the corresponding input signal, and its appropriate nor-
malization, are required to decouple signals due to input bias, PCR amplification bias, and
biological signal. Our profiling method addresses PCR bias by only considering non-duplicate
reads, and subsequently divides by non-duplicate input reads to address input bias. To our
knowledge, it is the first profiling method that individually addresses both biases mentioned,
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and it therefore should allow for more accurate estimation of RNAPII elongation rates than
previous genome-wide methods. These findings show explicitly that there is no RNAPII signal
beyond input at the majority of CTCF binding sites downstream of internal exons, and casts
doubt onto the hypothesis that a subset of such CTCF peaks cause RNAPII pausing at the bind-
ing site. We note, however, that the model system in which CTCF was shown explicitly to
cause RNAPII pausing in vitro [1] was a CTCF peak whose summit was contained in the exon
body. Our results are limited to intronic CTCF peaks and so do not contradict the result just
mentioned. More work is needed to resolve whether CTCF-mediated RNAPII pausing can
occur on introns.

Increased H3K4me3 signal at internal exons with a CTCF peak
downstream

CTCEF is well known as an insulator protein, dividing regions of open and closed chromatin
[16]. However, its functions have mainly been characterized in intergenic regions, and the
function at intragenic regions is only beginning to be elucidated. It was shown recently

that exons upstream of an intragenic CTCF peak in the STAT4 gene show higher levels of
H3K4me3 occupancy than exons downstream of the peak [17]. In particular, H3K4me3 has a
strong signal at the TSS, and a small, nonzero signal on exons up to the CTCF peak, at which
the H3K4me3 signal drops. In contrast, on the nearby, actively transcribed STAT1 gene, there
is no intragenic CTCF peak, and the H3K4me3 signal appears only at the TSS, while no signal
beyond noise is evident for internal exons [17]. Yet this represents only a single example,

and the signal is quite subtle. So, to provide further insights into the insulator function at intra-
genic regions, we used ProfileSeq to study the distribution of the signals for H3K4mel and
H3K4me3 around CTCF peaks using ENCODE data, correcting for both transcription levels
and distances of profiled regions to TSS locations (Methods). Our profiles show that exons
with a CT'CF peak downstream, within 1kb and centered on the intron, have increased levels of
H3K4me3 relative to controls, both within the exon body and at the SSs; whereas when CTCF
is bound upstream, no significant difference is seen compared with the controls (Fig 4A). In
contrast, no effect on H3K4mel levels is observed when CTCEF is bound either upstream or
downstream (Fig 4B). This suggests that intragenic CTCF also divides genomic regions in dif-
ferent chromatin states. Exons downstream of CTCF peaks contain background levels of
H3K4me3 signal, while exons upstream are enriched for that same mark.

H3K4me3 and H3K4mel signals play an important role in transcription and enhancer
activity [18,19]. Moreover, recently it has been shown that the activation of intragenic enhanc-
ers, which is concomitant with H3K4me3 and RNAPII signal enrichment [20], can be associ-
ated to alternative splicing of the host gene [21], which suggests a possible link between
H3K4me3 and exon definition. Taken together, these results suggest that when CTCF binds
intragenically, it could allow H3K4me3 to extend from the TSS up to the intragenic binding
site, whereas if CTCF does not bind intragenically, H3K4me3 does not extend onto the gene
body. This would also provide an alternative explanation why knocking down CTCEF results in
greater exclusion of internal exons, as it would result in reduced H3K4me3 on the immediately
upstream exon, resulting in reduced RNAPII accumulation, and hence increased exclusion of
weak exons.

Enrichment of chromatin interactions at CTCF peaks downstream of
internal exons

Above we have described and quantified various properties related to intragenic CTCF peaks.
As CTCEF plays an active role in joining distant chromatin regions to create DNA loops [16],
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we decided to test whether chromatin interactions might be involved in the function of intra-
genic CTCF. We examined the overlap of all the transcription factor (TF) peaks available from
ENCODE with ChIA-PET interactions for both RNAPII and CTCF, for the cell lines K562
and MCF?7. For both cell lines we compiled a list of internal exons that have an enrichment of
chromatin interactions with TF peaks that are either downstream or upstream, relative to

the overlap that is found genome-wide (S1 and S2 Tables). We found significantly more inter-
acting CTCF peaks downstream of internal exons compared to the remaining CTCF peaks
genome-wide (414 of 696, 59% and 16091 of 30900, 52%, respectively; Fisher's exact test P-
value = 0.00011) (Fig 5A). On the other hand, upstream CTCF peaks did not have a significant
difference, despite having a comparable number of peaks (Fig 5B). Similarly, there were
significantly more downstream CTCEF peaks that overlapped with a RNAPII interaction pair
relative to the genome-wide distribution (45% versus 41%, respectively; Fisher's exact test P-
value = 0.029) (Figure A in S6 Fig), while there was again no significant difference for upstream
CTCEF peaks (Figure B in S6 Fig). On the other hand, for MCF?7 there was no significant differ-
ence in the overlap of either upstream or downstream CTCF peaks with either CTCF or RNA-
PII interaction pairs (Figures C-F in S6 Fig). Interestingly, in both K562 and MCF?7 there were
significantly greater downstream RAD21 peaks overlapping with CTCF interactions than the
remaining RAD21 peaks (P-value = 0.043 and P-value = 0.005, respectively, both by Fisher's
exact test). RAD21 is a cohesin subunit that has been observed to have a high overlap with
CTCF binding sites and to occupy regions of enriched RNAPII ChIP signal [22]. Furthermore,
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we also observed significantly more upstream SPI1 (PU.1) peaks overlap with RNAPII ChIA-
PET interaction pairs than the rest of SPI1 peaks genome-wide (Fisher's exact test P-value =
0.041). SPI1 has also been identified as a transcription factor with some implication in tran-
scriptionally coupled alternative splicing regulation [23,24]. Finally, only a small fraction of
downstream and upstream CTCF peaks involved in a ChIA-PET interaction pair have the
other half of the pair within 1kb of any TSS for CTCF ChIA-PET in K562 (Fisher's exact test
P-value < 107%) (Figures G and H in S6 Fig), as well as RNAPII ChIA-PET in K562 (Figures I
and J in S6 Fig) (P-value < 107'°); hence, the majority of transcription factor peaks flanking
internal exons have significantly less interactions with the promoter-proximal region com-
pared with interactions that occur elsewhere on the genome, as can be seen in Figures G-J in
S6 Fig and S3 Table for K562, and Figures K-N in S6 Fig and S4 Table for MCF?7. These results
provide evidence that intragenic CTCF bound in introns downstream of internal exons are
involved in DNA looping and open the possibility that chromatin-mediated modulation of
alternative splicing may be mediated by long-range interactions, as suggested recently for
exonic peaks [25,26]. It is as yet unclear why the enrichment of chromatin interactions at
downstream CTCF peaks occurs only in K562 and not MCF7, which could be due to the differ-
ence between experiments or to cell-specific chromatin configurations.

Quantitative tests for the enrichment of RNA-binding protein (RBP)
motifs on exons

ProfileSeq can also be applied to motif data. We thus decided to determine quantitatively the
enrichment of RBP binding motifs around exons, comparing strong and weak SSs. We first
determined the occurrences of a recent compendium of motifs for RNA binding proteins [27],
including SRSF1, SRSF2 and PTBP1 around the SSs. Analyzing the motifs in the upper and
lower quartile of SS strengths using the full internal exon set (S1 File) as well as only internal
exons longer than 100nt (S2 File), we observed an enrichment of SRSF1 and SRSF2 motifs in
exons compared with introns, and on weak exons compared with strong ones (Fig 6A and 6B),
consistent with their role as splicing enhancers. This behavior was also observed for SRSF9 and
SRSF10, but not for SRSF7 (Figures A-C in S7 Fig). The percentage of motif hits in introns for
the SR proteins is close to but generally above 0.1, consistent with the P-value cutoff of 0.001
used in determining if a sequence is a hit based on the nucleotide frequency matrix for each
motif (S1 and S2 Files). Interestingly, significantly more motif hits were seen in introns
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flanking exons with strong 3’SSs compared with weak ones for SRSF1 and SRSF2 motifs

(Fig 6A and 6B). The significant increase in mappability in introns of strong vs weak exons
described above (see Fig 2) suggests greater sequence complexity in the introns flanking strong
exons compared with those flanking weak ones. However, no significant difference in intronic
reads was found in the CLIP-Seq profiles (see Fig 2F and Figures A and B in 54 Fig). Moreover,
even though motif hit frequencies can vary in regions where there might not be actual RBP
binding, e.g. in the vicinity of SSs, the motif and CLIP profiles for SRSF1 and SRSF2 all consis-
tently show more occurrences in exons than introns, and significantly more on weak exons
than strong ones, consistent with their known ESE binding activity.

For two members of the STAR family of proteins, QKI and SF1, we found a significant
enrichment of motifs upstream of weak 3'SSs relative to strong ones (Fig 6C and 6D). Both fac-
tors show most of their binding affinity upstream the 3’SS, consistent with their binding to
branch point (BP) and BP-like sequences [28]. In contrast to QKI and SF1, the profile of
U2AF2, shows enrichment just upstream of strong 3'SSs relative to weak ones, in agreement
with their function in constitutive splicing (Figure D in S7 Fig). Interestingly, HNRNPA1 and
HNRNPA2BI1 show a less uniform profile and, although there are more motif hits upstream of
3'SSs, both RBPs show an enrichment downstream of exons with weak 5' SSs compared with
strong ones (Figures E and F in S7 Fig), consistent with their known binding activity on intro-
nic splicing silencers [12].

Potential coordination of chromatin factors and RBPs in the regulation of
splicing

In order to obtain further insights into the role of protein factors binding chromatin in splicing
regulation, we analyzed CTCF and SPI1 peaks near internal exons. We considered CTCF and
SPI1 peaks from 8 (K562, HepG2, MCF7, A549 EtOH, A549 Dex, Eccl, Hct, and T47D) and 2
(K562 and Gm12878) human cell lines, respectively. For CTCF, there were 944 internal exons
with a reproducible peak (at least 50% overlap between 2 replicates) within 1kb upstream of an
exon, and 920 exons with a reproducible CTCF peak within 1kb downstream, in at least one of
the 8 samples. For SPI1, there were 424 exons with an upstream peak and 377 with a down-
stream peak, in at least one of the two cell lines. We compared the distribution of SS strengths
of each of these exon sets to the rest of internal exons and found that the 3'SS scores of exons
with a CT'CF peak downstream had significantly larger SS strengths than exons without a
CTCF peak downstream in all of the samples tested (Fig 7A), whereas no significant difference
was observed for the other comparisons. On the other hand, there was no significant difference
in either 3' or 5' SS strengths for the corresponding SPI1 comparisons.

Furthermore, exons that had a significant difference in CTCF ChIP-Seq reads between the
ENCODE MCF?7 and K562 cell lines in the 1kb downstream (DS) region, had significant
changes in inclusion levels (PSI) in both directions, regardless of the direction of the change in
DS CTCEF signal (Figure A in S8 Fig). There was no detectable difference in PSI values at exons
with DS CTCEF vs. without in MCF7 (Figure B in S8 Fig) or K562 (data not shown) for exons
that are either annotated as being skipped on at least one transcript, or had PSI < 1. We also
found no significant difference in the distribution of PSI values between HepG2 and K562
ENCODE data at exons where a CTCF peak was present in K562 but not HepG2. Similar
results hold for SPI1 (Figures D and E in S8 Fig). These results suggest that the presence of
CTCF downstream of exons can not only enhance splicing, as originally suggested [1], but it
may also repress it. A similar behavior is expected for SPI1.

The observation that the presence or absence of transcription factor binding can affect PSI
values in a bidirectional manner suggests that more than a single factor determines the splicing
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outcome of individual exons. In particular, we hypothesized that binding of RBPs as well as
chromatin and transcription factors simultaneously determine what the final splicing outcome
will be. This raises the question of whether there is some coordination between transcription
and splicing factors in determining the splicing outcome, or if on the contrary, they act in an
independent, additive manner. To gain insights into this question, we generated profiles of the
RNA compete motifs [27] around SSs, comparing exons with or without US or DS transcrip-
tion factor peaks. Additionally, exons were separated according to the strength of their SSs.
Profiles for the RNA binding motifs around exons with and without CTCF or SPI1 binding for
both weak and strong SSs are available in S3, S4, S5 and S6 Files.

Interestingly, we found that exons with weak SSs and with a DS SPI1 peak show significant
enrichment of motifs for multiple RBPs binding to AC-rich motifs, including HNRNPL,
HNRNPLL, IGF2BP2 and IGF2BP3 (Fig 7B and S5 File). The location of the enrichment is
~175-275nt upstream of the 3'SS, while SPI1 binding is downstream of the 5'SS, and reduced
enrichment is observed when SPI1 binds upstream (Fig 7B). This pattern is diminished or not
present at strong exons (Figure A in S9 Fig and S6 File), suggesting that there might be a regula-
tory mechanism involving SPI1 and an RBP binding to AC-rich sequences, like HNRNPL,
which is known to act both as a splicing repressor or enhancer in a position-dependent manner
[12].

We acquired putative HNRNPL binding sites based on CLIP-Seq from the doRiNA data-
base [29]. 4 samples from 2 human cell lines were used (CD4(+) and Jurkat). Only 9 of 293
exons that had a DS SPI1 peak in at least 1 of the 2 ENCODE cell lines also contained a putative
HNRNPL binding event from -275 to -175nt upstream of the 3' SS. Even though these numbers
are small, 8 of these 9 exons with both a DS SPI1 peak and HNRNPL binding upstream were in
the weak set, while there were 143 weak exons with DS SPI1 and no HNRNPL and 150 exons
with strong SSs. This difference was statistically significant (Fisher's exact test P-value = 0.036),
consistent with the results of our profiles, which show that an increase in HNRNPL motif hits
-275 to -175nt from the 3' SS at exons with DS SPI1 peaks vs. controls is greater in weak than
strong exons. The extremely low number of exons with both HNRNPL and SPI1 binding
observed may be due simply to the fact that the HNRNPL and SPI1 data are in different cell
lines. In fact, there were 388 exons with a DS SPI1 peak in Gm12878, and 189 in K562, with an
overlap of only 75 exons in both, suggesting a high degree of variation in SPI1 binding between
cell lines. When considering all exons regardless of strength, and expanding the region to
include -300 to -150nt from the 3'SS, 16 of 458 exons with a DS SPI1 peak had an HNRNPL
binding site in the region just indicated, while 55 of 3092 exons without a DS SPI1 peak, from
the same set of transcripts as exons with peaks, had an HNRNPL binding site. The proportion
of exons with HNRNPL binding upstream was significantly larger for exons with a DS SPI1
peak (Fisher's exact test P-value = 0.018).

We also checked whether the presence or absence of a motif hit would affect the overall dis-
tribution of PSI values for alternative exons (either annotated as alternative or with PSI < 1
from RNA-Seq). We observed a significant difference in PSI values of alternative exons in
Gm12878 without a DS SPII peak, comparing those with or without a HNRNPL motif hit (see
S7 File), while the same comparison for alternative exons with a DS SPI1 peak showed no sig-
nificant difference. The same trend was observed in K562 (S7 File). As only 23 alternative
exons had both a DS SPI1 peak and HNRNPL motif hit (-275 to -175nt US) in Gm12878 for
which PSI could be calculated, and similarly only 11 alternative exons in K562, it is not clear
from these data whether the presence of a DS SPI1 peak reverses the effect on PSI values when
HNRNPL binds, or whether the observed lack of significance is simply due to a small number
of data points. Further work would be needed to uncover the mechanism behind the described
association and the combinatorial affects of SPI1 with specific RBPs on splicing.
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Although there are no reports on IGF2BP2 involvement on splicing, its motif profile is simi-
lar to HRNPL, and there is RNA-Seq data available for the knockdown of IGF2BP2 from the
ENCODE project (https://www.encodeproject.org) for K562 cells. We calculated PSI values for
both the knockdown (KD) and control (wt) datasets (Methods), and checked whether the dis-
tribution of changes in PSI (delta PSI) differed for exons with DS SPI1 peaks with or without
an IGF2BP2 motif hit from -275 to -175nt from the 3'SS, but there was no distinguishable dif-
ference. There was also no distinguishable difference in delta PSI distribution between exons
with an IGF2BP2 motif hit in the stated region with vs. without a DS SPI1 peak. These negative
results involving IGF2BP2 are consistent with its characterization as functioning in the cyto-
plasm [30]

We also observed various RBPs that have significant differences in motif hits comparing
exons with and without CTCF peaks (S3 and S4 Files). Several of these enrichments are specific
to either strong or weak exons. For example, a significant enrichment of HNRNPL motif hits is
observed upstream of strong exons with a DS CTCF peak, whereas no significant enrichment is
observed for weak exons with DS CTCF peaks (Figures B and C in S9 Fig). No significant dif-
ference was observed in HNRNPL CLIP-Seq binding sites from -300 to -150nt from the 3'SS
for all exons, regardless of strength, with DS CTCF peaks vs. no peaks. Strong exons with DS
CTCF peaks had a larger proportion of cases with HNRNPL binding US from CLIP than weak
exons, with marginal significance (9 of 381 vs. 2 of 381; Fisher's exact test P-value = 0.064,).

We also found LIN28A motifs significantly enriched around exons with nearby CTCF
peaks (Fig 7C and Figure D in S9 Fig). The enrichment was found primarily upstream of the
3'SS and on the exon body near the 3'SS of exons with a CTCF peak DS. We confirmed an
enrichment of LIN28A binding sites (doRiNA) from -300 to +25nt from the 3'SS of exons with
CTCEF DS (combined ENCODE peaks): 29 of 1149 exons with a DS CTCF peak had a LIN28A
binding event in the region mentioned, compared with 125 of 8782 exons without a DS CTCF
peak; the proportion was significantly larger for exons with DS CTCF than without (Fisher's
exact test P-value = 0.007). Although LIN28A protein has been seen to bind predominantly to
mRNA transcripts and be related to translation regulation [31], it can localize to the nucleus to
repress the biogenesis of pre-miRNAs [32]. Our analysis brings up the possibility that LIN28A
binding to intronic pre-miRNAs is related to the activity of CTCF.

We have seen some examples where the frequency of RBP motif hits depends both on the
position of TF binding relative to the exon, as well as SS strength. This suggests that a possible
coordination of position-specific RBP and TF binding could be involved in splicing and/or
transcription regulation. Our earlier observation that CTCF divides regions of H3K4 methyla-
tion status also raises the interesting possibility of a correlation between chromatin state and
the affinity for RBP binding. In light of this, our profiles suggest the possibility of coordination
between CTCF binding, histone modifications, RNAPII activity, and the binding of specific
RBPs.

Conclusions

ProfileSeq provides a quantitative approach for the comparison of profiles between a reference
and a control set. Additionally, it allows for straightforward determination and correction of
confounding factors. We have validated ProfileSeq by recovering several qualitative results
from the literature, and by providing a quantitative test for them. In addition, ProfileSeq allows
taking into account mappability and input signal to perform the quantification. We found that,
despite the fact that frequent observable differences in mappability between test and control
profiles, correcting for mappability for reads of lengths ranging between 32-51nt has negligible
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effect on all cases examined. Thus ProfileSeq is robust to mappability biases over a range of
scenarios.

We have also shown that ChIP input biases can have significant confounding effects on pro-
files. In particular, although we reproduce the accumulation of RNAPII ChIP-Seq reads at
CTCF peaks downstream of internal exons in human and mouse, this RNAPII accumulation
could be explained by the input signal. Although this does not contradict previous findings [1],
they do suggest that the interpretation of RNAPII accumulation as pausing at the binding site
of CTCF may be limited to a small number of cases. On the other had, we showed that the
accumulation of RNAPII ChIP-Seq reads at the TSS persists after normalizing by input reads.

Using ProfileSeq, we have also found that SRSF1 and SRSF2 binding motif profiles agree
with their corresponding CLIP-Seq profiles. Moreover, we quantified the enrichment of the
CLIP and motif signal for these SR proteins on exons with weak splice-sites relative to exons
with strong sites. Using a different description for the SRSF1 and SRSF2 motifs, Wang et al.
[33] found the same result for SRSF1 motifs, but the opposite for SRSF2 motifs, as well as no
significant difference of either SRSF1 or SRSF2 on the basis of 3' SS strength. Our quantitative
analysis clarifies this result and shows that there is a significant enrichment of both proteins for
motifs and CLIP signals, consistent with their role as spicing enhancers.

Finally, we found a potential coordination between SPI1 bound downstream of internal
exons, and RBPs that bind to AC-rich motifs upstream of internal exons. The fact that the
association is strong at weak exons, but diminished at strong exons, suggests a link with exon
definition. We also found a co-occurrence of CTCF bound nearby exons and enrichment of
binding sites for LIN28A, suggesting their association in pre-miRNA regulation. In summary,
ProfileSeq provides a robust way to quantify genome-wide coordinate-based signals.

Materials and Methods
Annotation data sets

We used the human and mouse Gencode annotations (http://www.gencodegenes.org/), v7 and
VM1, respectively. Entries in the GTF files were filtered out if they corresponded to “chrM” in
column 1, “pseudogene” in column 3 or 6, “processed_transcript” or “TEC” in column 6, or
“PUTATIVE” in column 7. From the filtered file we kept all exons (“exon” in column 3) that
were not the first or last exon in the gene, and only if the 1kb region upstream and downstream
of the exon did not have any overlap with any other exon, or any UTR or TSS. The set of entries
whose third column was “transcript” were also extracted from the filtered file described above,
from which the 5' end and 3' end of each entry was used in the file of TSSs and pA-sites, respec-
tively, for the ChIP-Seq and GRO-Seq validation profiles. The exons for human and mouse are
listed in S5-S8 Tables. S5 and S7 Tables were used in all analyses and profiles where it is men-
tioned that we use “internal exons” for human and mouse, respectively. The exceptions to this
are the CLIP-Seq profiles at strong vs. weak exons and the analysis involving ChIA-PET inter-
actions, in which cases exons from S6 Table were used in addition to the exons in S5 Table for
human, and the exons in S8 Table were used in addition to the exons in S7 Table for mouse.

Mappability analysis

The sequence of each region extending from 2kb upstream of the 3'SS to 2kb downstream of
the 5' SS were obtained (http://genome.ucsc.edu/cgi-bin/das/) for the internal exon sets of
human (hgl9) and mouse (mm?9). All reads of a given length were processed in FASTA format:
for a read length r at an exon with starting at position s and ending position e, sequences of
length r starting at s-2000+i were extracted and added as a single entry into the FASTA file, for
all integers i from 0 to e+2000-s-r+1. A single FASTA file was used for each chromosome and
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each read length, which was then aligned, filtered, and reduced to a BED file of a single nucleo-
tide position at the center of the read, using the same approach as for the profiles. This proce-
dure was carried out for read lengths 27, 28, 30, 32, 36, 47, and 51nt for human, and 34, 36, and
40nt for mouse. These read lengths were chosen because they were the most commonly used
amongst the ENCODE [34] datasets used in this study.

Processing and filtering of high-throughput data

For publicly available ChIP-Seq data, the FASTQ files were downloaded and aligned to the
human (hgl19) and mouse (mm?9) reference genomes using Bowtie2 [35] with flags—no-unal-
x-U-S. SAM files thus obtained were then filtered to remove reads that were shorter than the
maximum read length (thus ensuring that all reads are the same length), reads that contain one
or more “N” in the sequence, and reads with MAPQ < = 30. Resulting files were converted to
BAM using samtools view [36]. The same exact procedure was done for the CLIP-Seq data
from [2]. On the other hand, for the CLIP-Seq data from [13] used in this study, fastx_trimmer
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) was first used to trim 8 nucleotides from
the 3" end of each read, and only reads of length 28nt were kept, using the flags-t 8-m 28-Q 33,
to ensure that adaptor sequences were not contained on reads, while at the same time keeping
a constant read length, which allows for exact quantification according to mappability at that
read length. For RNA-Seq ENCODE data, previously aligned BAM files of Poly-A+ junction
reads were downloaded from (http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/encodeDCC/
wgEncodeCaltechRnaSeq/ and http://hgdownload.cse.ucsc.edu/goldenPath/mm9/
encodeDCC/wgEncodeLicrRnaSeq/).

Duplicate reads were removed from BAM files for ChIP-Seq, CLIP-Seq, and RNA-Seq
using samtools rmdup with forced single end read mode (-S flag) after sorting with samtools
sort, and the resulting BAM files were converted to SAM [36] with samtools view. This process
was performed separately for each biological replicate. Posterior pooling of biological replicates
was done using the unix command sort-m-k3,3-k4n,4 after applying sort-k3,3-k4n,4 to each
individual replicate file. We have included as supplementary material the script used for the
post-alignment processing steps just described for ChIP-Seq and CLIP-Seq (S1 Script) as well
as RNA-Seq (S2 Script). Both scripts are suitable for use on a computer cluster.

Preparation of processed SAM files for profiling

SAM files of the individual processed replicates, as well as the pooled files, were converted to
BED using pyicos (version 1.0.6c) convert [37]. Closed coordinates were used for BED files
rather than the standard half-open format. Reads were then truncated to the center position: a
new BED file was created from the original BED file where the start and end position of a line
in the new file were both the position halfway between the start and end position of the original
file. For the cases where the halfway point was a half integer, it was rounded to the closest inte-
ger value. The script for this process is included as Supplementary Material (S3 Script). For
GRO-Seq data, except for the fact that the 5' end was used instead of the read center position,
the processing steps were the same as described before for the ChIP-Seq and CLIP-Seq
datasets.

Building profiles

Given a processed BED file as described above, together with a list of reference positions and a
specified bin size as inputs, we count the number of reads occurring in the bed file at specified
distances from the reference position with the program count_occurrences. For a user-defined
number of bins of a specified length surrounding the set of reference regions,
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Table 1. Contingency matrix for P-value calculations in ProfileSeq.

Reads mapped Reads not mapped
Sample Nq1 Nyo
Control No1 N2

doi:10.1371/journal.pone.0132448.1001

count_occurrences will count the number of reads that overlap with each bin; the source code
for count_occurrences is available at https://bitbucket.org/regulatorygenomicsupf/profileseq/.

The resulting.occ file contains the count of reads at each bin for each reference region. Each.
occ file produces a single profile. The number of replicates pooled is used to determine the
maximum number of possible reads that can occur within each bin based on the filtering pro-
cedure described before. The percentage of possible reads occurring at each bin are then plotted
using the R function splines() to generate a smooth curve that passes through most data points.
Similarly, the.occ files of mappable reads or input reads are used to calculate and plot the per-
centage of mappable reads or input reads that occurred in the sample, which we have referred
to as normalization. For 2-sample profiles, P-values to compare the occurrences of one sample
to the other at each bin are calculated as follows: At each bin, a 2x2 contingency matrix is built
as shown in Table 1:where n;; gives the number of reads that occurred in the test set, n,; the
number of reads occurring in control, n;,, is computed as the maximum possible reads (or
mappable reads) in that bin minus the mapped reads. If input reads are used, n;, is the number
of input reads that occurred in the test set; n,, is calculated similarly for the control reads.
From this table a Fisher's exact test P-value is calculated (using R). In addition, ProfileSeq
counts the total number of reads in a central region of a specified length, and the total number
of reads in the two flanking regions. These two flanking regions are such that they add up to
the same nucleotide length as the centered region. In this case a contingency matrix analogous
to Table 1 is built to determine a P-value based on Fisher's exact test to compare the centered
region with the flanking regions.

Empirical determination of False Discovery Rates

To further determine the robustness of the P-value calculation described above, a false discov-
ery rate (FDR) is determined for every profile comparison. The test and control.occ files used
in a profile are combined into a single file, randomly shuffled using the unix command, shuf,
and split into two files of equal size. The two resulting.occ files are used to generate a profile
each and quantify the differences between them. The P-value at each bin is stored into a file,
and then the proportion of P-values below each cutoff, i.e, 0.01, 0.001, . . .1e-10 is calculated.
This process is then repeated such that the file of P-values contains all P-values attained from
all previous shuffling iterations as well as the current one. At the end of each iteration, the FDR
for p< 0.01 is calculated as the proportion of total P-values less than 0.01. The FDR from the
current iteration is then compared to the corresponding FDR from the previous iteration, and
the process is continued until these two FDRs differ by less than 0.001 for 10 consecutive itera-
tions, giving confidence of convergence to the true average.

For cases where a file of mappable reads or input reads is provided, the same procedure is
performed, except that the test.occ file of sample counts and mappability/input counts is first
combined into a single file, such that each line of the.occ file contains the information about
both the sample and mappability/input for a single reference region. The same is done for the
control set of regions. These two files are then pooled, shuffled, and split into 2 sets, as before.
The file with the information for each set is then split into two.occ files, one for the sample
count data, and the other for the mappability/input count data. Profiles and P-values are then
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generated for successive shuffling iterations as before until the convergence criterion stated
before is met.

Calculation of Percent Spliced In (PSI) values

RNA-Seq reads were processed as described above and sjcount [38] was used to count the num-
ber of junction reads at each annotated junction using Gencode version 7 for human and M1
for mouse. Given i, the sum of the 3'and 5' junction reads of that exon, and e, the skipping
junction reads, i.e. one end is upstream of the 3'SS of the exon and the other end is downstream
of the 5' SS, the PSI was calculated as PSI = i/(i+2e). PSI was also calculated using only junction
reads from either the 3' or 5'SS of internal exons, i; and is, respectively: 3' PSI = i5/(is+e); 5’

PSI =is/(is+e).

Splices-site scores

SS scores were calculated using maxEntScan [39] using for the 3’ SS -20 and 3nt on either side
of the intron-exon boundary, and using for the 5° SS -3 and 6nt on either side of the exon-
intron boundary. The extreme values of the SS strengths obtained from maxEntScan were pre-
dictive of extreme values of PSI calculated by the method we have described (see S8 File).

ChIP-Seq peaks

Previously processed broadPeak files were downloaded from ENCODE [34] for both human
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTtbs/) and
mouse (http://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeLicrTtbs/).
Files were converted from half-open to closed format. For biological replicates, only peaks that
overlapped by at least 50% of the smaller peak length in both replicates were used. The overlap-
ping peaks from the file that originated from the dataset with the larger number of reads were
then used to generate a file of reference positions at the center of the peak interval. For mouse,
a single BED file of peaks was provided for each biological sample since replicates were pooled
before calling peaks. The reference positions for mouse were generated directly from these files.
A set of US and DS peaks was constructed from the filtered peak data. US peaks were those
whose center position falls within -1 and -1000nt upstream of the 3'SS of any of the exons
from the internal exon set (described in “Annotation data sets”). DS peaks were similarly those
peaks whose center falls within +1 and +1000nt downstream of the 5' SS.

Profiles of RNAPII at CTCF peaks

Exons with US and DS peaks, for CTCF, SPI1, etc., attained as described above, were paired
with exons on the same transcript that did not contain a US or DS peak. For example, an exon
with a DS CTCF peak was paired with an exon on the same transcript that did not contain a
DS CTCEF peak. If no such exon was available, the exon with DS peak was discarded. If multiple
exons were available, the one with the length closest to the length of the exon with DS peak was
selected. A paired US and DS peak set was constructed for each sample analyzed. Furthermore,
control positions were calculated in the following way: Let d; be distance from the peak center
to the nearest end of the exon for the ith DS exon (the same applies to US exons). That is, d; is
the distance from the 5' SS to the center of a DS peak (or the distance from the 3'SS to the cen-
ter of an US peak). Then the control position for exon i is taken to be d; nt from the nearest end
of the control exon, thereby preserving the distance to the nearest SS between test and control
regions.
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For the profiles at peaks DS of exons affected by CTCF KD (Figure G in S5 Fig), we first
took the set of all exons classified as “downstream”—that is, all exons where KD of a CTCF
binding site DS had a significant effect on PSI-from Supplementary Table 4 of [1]. Since there
was a small number of these exons that were contained in the internal exon set we have been
using throughout this text, we expanded the exon set by ignoring the intronic behavior
upstream of the exons. That is, the original exon set consists only of exons with a 1kb intronic
region upstream that does not overlap with any annotated exon or UTR (and similarly for
downstream). The expanded set only required that the downstream region satisfy the require-
ments just stated. We then took exons in the expanded set that were also in the set extracted
from [1]. We required that the exon start and end coordinates matched exactly in order to be
considered. We then eliminated exons from the remaining list that did not contain a DS CTCF
peak in the HepG2 samples from ENCODE. The exons used to produce the profiles are listed
in S9 Table.

ChlA-PET analysis

ChIA-PET interaction BED files were downloaded from ENCODE (http://genome.ucsc.edu/
cgi-bin/hgFileUi?db = hg19&g = wgEncodeGisChiaPet) and converted into closed format. For
each transcription factor, peaks whose center overlapped with one half of a ChIA-PET interac-
tion pair were obtained with the tool fjoin [40], using the peaks files for transcription factors
and the closed BED files containing half of a ChIA-PET interaction pair per line. When 2
ChIA-PET replicates were available, the procedure described above was repeated successively
for each replicate and only peaks whose centers were contained in one half of a ChIA-PET
interaction from both replicates were used. For K562 CTCF ChIA-PET only one replicate was
used as there was only one available from ENCODE. For some cases, the number of interaction
pairs varied by more than an order of magnitude between replicates, so we removed replicates
containing less than 10,000 total interaction pairs from the analysis. So even though 4 replicates
were available for some samples, e.g. MCF7 RNAPII interactions, after removing small-sized
replicates, each sample analyzed had only 1 or 2 replicates remaining. After obtaining the set of
peaks that overlap with ChIA-PET interactions, the number of peaks whose center fell within
the 1kb region upstream, and the 1kb region downstream, of our internal exon set were
counted. These counts were used to construct 2x2 contingency tables (Table 2), e.g.

The first column contains the number of peaks overlapping with ChIA-PET, whereas the
2nd column contains the number of peaks that did not overlap. The first row was for the peak
in either the US or DS 1kb region, whereas in the 2" row, the remaining genome-wide counts
were used. Each contingency matrix was used to calculate a P-value using Fisher's exact test.

Contingency matrices were also constructed for interactions with the TSS as follows: The
count of DS peaks which overlap with half a ChIA-PET interaction pair were divided into two
columns (Table 3):

n;; gives the count of peaks where the center of the other half of the interaction pair (the
one that the peak does not overlap) is contained within 1kb of any TSS, while n;, is the count
of peaks where the center of the other half of the ChIA-PET interaction is not contained within
1kb of any TSS. The 2™ row of the matrix divides the counts into the same categories by

Table 2. Contingency matrix for genome-wide ChlA-PET and ChIP-Seq overlaps.

Overlap No overlap
US/DS N4 Nq2
Genome-wide Noq Noo

doi:10.1371/journal.pone.0132448.t002
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Table 3. Contingency matrix for ChIA-PET/ChIP-Seq overlaps involving a TSS.

Interaction with TSS No-interaction with TSS
US/DS nqq Ni2
Genome-wide Noq N2o

doi:10.1371/journal.pone.0132448.t003

column for the remaining peaks genome-wide, i.e. peaks whose centers are not contained
within 1 kb downstream of any of the exons in our internal exon set. Contingency matrices
were similarly built for US peaks, and all P-values were calculated as above.

Profiles of H3K4me1 and H3K4me3 at exons with or without CTCF
peaks

CTCF peaks from the MEF cell line from ENCODE were used. Starting with the same US and
DS paired CTCEF peak sets described in the “Profiles of RNAPII at CTCF peaks” subsection, we
considered in this analysis only exons longer than 100nt in order to avoid profile biases within
the exon body. From the US and DS exon pairs longer than 100nt, we calculated the distance to
the nearest TSS to each reference position (using all annotated TSSs from Gencode V7). Pairs
were removed if the difference was longer than 10kb, or if either the test or control reference
position was less than 1100nt from the nearest TSS. From here, the sum of all distances to the
nearest TSS was calculated for both the test and control set, and the difference was taken. If the
difference was greater than 800nt, the exon pair with the greatest discrepancy in distances to
the TSS between test and control reference positions was removed, and the procedure was
repeated until the total the difference mentioned above was smaller than 800nt. This left 327
downstream peak pairs, and 272 upstream peak pairs. In order to ensure that no biases
remained between test and control sets in relation to their distribution of distances to the near-
est TSS, a paired Wilcoxon rank-sum test was performed. In both cases, P-value > 0.6 was
obtained, ensuring that there was no statistically relevant bias in distances to the TSS between
the CTCF peak and non-peak exon pairs.

Scanning for RBP motif hits

Human nucleotide sequences were obtained (http://genome.ucsc.edu/cgi-bin/das/hg19/) in the
range -300 to +100nt from the 3'SS, and -100 to +300nt from the 5'SS, of each internal exon
from the set described previously, which contains no annotated exons overlapping with the
flanking intronic regions on either side within 1kb. The tool Fimo [41] was used to scan RNA-
compete motifs in these sequences with a cut-off of P-value < 0.001.

RBP motif profiles around exons

All transcription factor peaks were downloaded from ENCODE ((http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTtbs/) for the cell lines described in the text.
US and DS peaks were selected as described above. For a given transcription factor, all exons
with US peaks from all cell lines were combined into a single file (and similarly for DS peaks).
The remaining set of exons without a peak in any of the samples was then used as a pool from
which to draw the control exon set. The following procedure was conducted separately for 5'
and 3' SSs: The maximum and minimum maxEntScan score was determined for the set of
exons with peaks and then the pool of potential control exons was reduced to only those exons
whose SS score were between the minimum and maximum values for the peak set. Then, a ran-
dom subset of the control pool was sampled such that it was the same size as the peak set. The
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distributions of SS scores, exon lengths, and GC-content for the peak set were each compared
to the corresponding distributions of the random control subset. GC content distributions
were matched separately for the 1kb region upstream and downstream, and the whole exon
body. Distributions were compared between peak and random control subsets with a Wilcoxon
rank-sum test. If the P-values for both the 3' and 5' comparisons were larger than a minimum
cutoff, the random subset was kept as the control set of exons. Otherwise the procedure was
repeated until the condition described in the previous sentence was met. For the comparison of
SPI1 peaks vs. controls, the minimum cutoff was 0.6, and the procedure was repeated for 101
iterations, while for the CTCF comparison, the minimum cutoff was 0.5, and only 33 iterations
were performed. The median count for all iterations was the value used for each bin of the con-
trol profile. Note that only exons of at least 104nt in length in this analysis were considered, as
these are more useful for the generation of unbiased profiles within exon bodies. These consist
of more than half the total set of internal exons.

Supporting Information

S1 Fig. Additional mappability validation profiles. (Figure A) Comparison of the mappabil-
ity profiles for the upper and lower 20% of transcript lengths from Fig 1A using ProfileSeq_ss.
(Figure B) Same as Figure A for 51nt reads. (Figure C) Same as Figure A for 36nt reads in
mouse (mm9) (N = 11248). (Figure D) Cumulative distribution of exon lengths for the splice
sites represented in Figures A and B. (Figure E) Same as Figure B, but limited to cases where
the exon length is greater than 100nt. (Figure F) Same as Figure C, but limited to cases where
the exon length is greater than 100nt. Test vs. control P-values/bin are as shown in Fig 1B, with
the lightest shade of grey corresponding to P-value < 0.01.

(PDF)

$2 Fig. Mappability by splice site strength. (Figure A) Mappability at the upper vs. lower
quartile of splice site strengths, “strong” and “weak”, respectively. Same as Fig 2B, but for 40nt
mouse (mm?9) reads. (Figure B) Same as Fig 2B, but limited to exons longer than 100nt. Test vs.
control P-values/bin are as shown in Fig 1B, with the lightest shade of grey corresponding to P-
value < 0.01.

(PDF)

S3 Fig. Additional ChIP-Seq and Gro-seq validation profiles. All profiles shown centered at
the polyA-site have been inverted such that positive x-axis values indicate distance into tran-
script body and negative values indicate distance outside of transcript body. (Figure C) SRSF1
wt is a conditional SRSF1-knock cell line in which SRSF1 is not knocked out; SRSF2 is defined
similarly. Test vs. control P-values/bin are as shown in Fig 1B, with the lightest shade of grey
corresponding to P-value < 0.01.

(PDF)

S4 Fig. Additional CLIP-Seq validation profiles. All profiles here are normalized by mapp-
ability. Test vs. control P-values/bin are as shown in Fig 1B, with the lightest shade of grey cor-
responding to P-value < 0.01.

(PDF)

S5 Fig. Additional profiles at CTCF peaks vs. controls. DS = peak center within 1kb down-
stream of 5'ss. Test vs. control P-values/bin are as shown in Fig 1B, with the lightest shade of

grey corresponding to P-value < 0.01.
(PDF)
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S6 Fig. Fraction of ChIP-Seq peaks overlapping ChIA-PET interactions. Diagonal line is of
y = x. Statistically significant data points (Fisher's Exact Test P-value < 0.05) are shown with a
number, whereas nonsignificant points are shown with an empty circle. Each point represents
a set of peaks. The first 5 letters of the symbol for the numered points are listed here. (Figures
A-F) Same format as in Fig 5. (Figure A) 1. Creb1 2. Ctcfc 3. Egr1V 4. Elfls 5. Ets1V 6. GabpV
7. MaxV0 8. Pmlsc 9. Pol24 10. Pol2V 11. Six5P 12. Sp1Pc 13. SrfV0 14. Stat5 15. Tead4 16.
Zbtb3 (Figure B) 1. Atf3V 2. Crebl 3. E2f6s 4. E2f6V 5. Egr1V 6. Elfls 7. Pmlsc 8. Pol24 9.
Pol2V 10. PulPc 11. Sp2sc 12. SrfVO0 13. Stat5 14. Taf7s 15. UsflV 16. Yylsc 17. Yy1VO0 18.
Yy1VO (Figure C) 1. Rad21 (Figure D) 1. Sin3a (Figure E) 1. EIf1V 2. GabpV 3. MaxV0 4. Sin3a
(Figure F) 1. EIf1V 2. GabpV 3. MaxV0 4. Rad21 (Figure G) 1. Cbx3s 2. Ctcfc 3. Ctcfl 4. E2f6s
5.E2f6V 6. Egr1V 7. Elfls 8. Hdac2 9. MaxV0 10. Nr2{2 11. NrsfV 12. Pol24 13. Pol2V 14.
Rad21 15. Tead4 16. Zbtb7 (Figure H) 1. Ctcfc 2. Ctcfl 3. Egr1V 4. Elfls 5. GabpV 6. MaxV0 7.
Nr2f2 8. Pol24 9. Pol2V 10. Rad21 11. Tead4 12. Zbtb7 (Figure I) 1. Atf3V 2. Atf3V 3. Cbx3s 4.
Cebpb 5. Cebpd 6. Crebl 7. Ctcfc 8. Ctcfl 9. E2f6s 10. E2f6V 11. Egr1V 12. Elfls 13. Ets1V 14.
Fosll 15. GabpV 16. Gata2 17. Hdac2 18. Hey1P 19. MaxV0 20. Mef2a 21. Nr2f2 22. NrstV 23.
Pmlsc 24. Pol24 25. Pol2V 26. PulPc 27. Rad21 28. Six5P 29. Six5V 30. Sp2sc 31. Stat5 32.
TaflV 33. Tead4 34. Trim2 35. Usf1V 36. Yylsc 37. Yy1VO0 38. Zbtb3 39. Zbtb7 (Figure J) 1.
Atf3V 2. Atf3V 3. Cbx3s 4. Cebpb 5. Cebpd 6. Creb1 7. Ctcfc 8. Ctcfl 9. E2f6s 10. E2f6V 11.
Egr1V 12. Elfls 13. GabpV 14. Hdac2 15. Hey1P 16. MaxV0 17. Nr2f2 18. NrsfV 19. Pmlsc 20.
Pol24 21. Pol2V 22. PulPc 23. Rad21 24. Sp2sc 25. Taf1V 26. Tead4 27. Usf1V 28. Yy1V0 29.
Zbtb7 (Figure K) 1. MaxV0 2. Rad21 (Figure L) 1. Rad21 (Figure M) 1. Cebpb 2. EIf1V 3. Gata3
4. Hdac2 5. MaxV0 6. Nr2f2 7. Rad21 8. Sin3a (Figure N) 1. Cebpb 2. EIf1V 3. Gata3 4. Hdac2
5. MaxV0 6. Nr2f2 7. Rad21 8. Sin3a

(PDF)

S7 Fig. Additional RBP motif validation profiles. Same format as Fig 6. Only considers exons
longer than 100nt. Test vs. control P-values/bin are as shown in Fig 1B, with the lightest shade
of grey corresponding to P-value < 0.01.

(PDF)

S8 Fig. Changes in PSI and transcription factor binding. All P-values displayed below plots
are based on the Wilcoxon test. (Figure A) Corr = correlation. The x-axis shows the log-fold
change of CTCF ChIP-Seq reads between the indicated cell lines (M) in the 1 kb region down-
stream of internal exons, calculated by “pyicos enrichment” [37], while the y-axis shows the
difference in PSI between the same cell lines based on RNA-Seq, calculated by MISO. Only
points with a Baye's Facotr (BF) > 2 (MISO) and ||z| > 2 (pyicos) are displayed, i.e. points that
have both signifcant changes in PSI and ChIP-Seq read density between the cell lines. (Figures
B and D) PSI values calculated as described in the Methods for the indicated cell lines. Only
exons that were either annotated as being skiped on at least one transcript, or had PSI < 1,
were considered. (Figures C and E) PSI values calculated from MISO. CI: confidence interval
for delta Psi (MISO). DS = peak center within 1kb downstream of 5'SS.

(PDF)

S9 Fig. Additional RBP motif comparisons at exons with or without peaks nearby. Same
format as Fig 7. Pul = SPI1/PU.1 gene. Test vs. control P-values at teach bin are as shown in
Fig 1B, with the lightest shade of grey corresponding to P-value < 0.01.

(PDF)

S1 File. Profiles of RNA-compete motifs at strong vs. weak splice sites. Each row consists of
the profiles for a single motif, whose name is listed above each profile, and whose position-
weight matrix is shown in the far-right column; “strong” is the upper quartile of splice site
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strengths for all internal exons, whereas “weak” is the lower quartile. The first two columns
give the profiles centered at the 3' and 5' splice sites for the comparison of strong vs. weak 3'
splice sites. The next two columns are the same profiles for the comparison of strong vs. weak
5' splice sites. Test vs. control P-values/bin are as shown in Fig 1B, with the lightest shade of
grey corresponding to P-value < 0.01. In these profiles, only bins whose P-value cutoff had an
empirical FDR < 0.05 were displayed in grey scale at the bottom, and the largest of the largest
of the P-value cutoffs with FDR < 0.05 is written at the bottom of each plot.

(PDF)

S2 File. Profiles of RNA-compete motifs at strong vs. weak splice sites for exons more than
100nt in length. This is exactly the same as in S1 File, except that only exons longer than 100nt
were considered. So in this case “strong” is the upper quartile of splice site strengths amongst
exons longer than 100nt, and similarly for “weak”.

(PDF)

$3 File. RNA-compete motifs at weak exons with or without a CTCF peak nearby.

US = peak center within 1kb upstream of 3'ss. DS = peak center within 1kb downstream of
5'SS, “weak” means the lowest half of 3'SS strengths for profiles centered at the 3'ss, and the
lowest half of 5'SS strengths for profiles centered at the 5' ss. Test vs. control P-values/bin are as
shown in Fig 1B, with the lightest shade of grey corresponding to P-value < 0.01.

(PDF)

$4 File. RNA-compete motifs at strong exons with or without a CTCF peak nearby. Same
format as S3 File; “strong” is defined in the same way as “weak” from S3 File, but for the largest
half of splice site strengths. Test vs. control P-values/bin are as shown in Fig 1B, with the light-
est shade of grey corresponding to P-value < 0.01.

(PDF)

S5 File. RNA-compete motifs at weak exons with or without a SPI1 peak nearby. Same for-
mat as S3 File, Pul = SPI1/PU.1 gene.
(PDF)

S6 File. RNA-compete motifs at strong exons with or without a SPI1 peak nearby. Same for-
mat as S5 File.
(PDF)

S7 File. Boxplots of PSI distributions for exons with or without DS SPI1 peaks and/or AC-
rich RBP motif hits. PSI values are from RNA-Seq from 1 of 2 cell lines—either Gm12878 or
K562 - as indicated above each plot. Pul DS = a reproducible SPI1/PU.1 peak is found within
1 kb downstream of all internal exons considered in the given cell line. No Pul DS = only
exons without a reproducible DS SPI1/PU.1 peak are considered. The left boxplot in each set of
axes is the set of exons with an RBP motif hit from -275 to -175nt upstream of the 3' SS for the
RBP indicated below the plot. The right boxplot corresponds to the exons without a motif hit
in the same region (unlabeled). The P-value underneath each pair of axes is based on a Wil-
coxon test. Only exons with PSI < 1 from RNA-Seq, or annotated as a skipped exon, are used
in all boxplots.

(PDF)

S8 File. Comparison of maxEntScan splice site score distributions at high and low PSI. “3'
PSI”, was calculated using only 3' junction reads (see Methods); “5' PSI” was similarly calcu-
lated for 5' junction reads, and “PSI” uses the average of 5' and 3' junction reads. The ENCODE
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cell line from which RNA-Seq data was derived is listed at the top of each plot.
(PNG)

S1 Script. Bash script for post-allignment filtering of SAM files. This was used to filter reads
of the ChIP-Seq and CLIP-Seq data used in the paper, after alignment in Bowtie2. “Usage”
shows the command used to run the script on a cluster. It may also be used with the Unix com-
mand “sh”.

(SH)

S2 Script. Bash script for post-alignment filtering of SAM files. Performs the same filtering
as S1 Script. It was used to filter the pre-aligned RNA-Seq data from ENCODE that was used
in the analysis of the paper. This script was needed because the SAM files used from ENCODE
had a slightly different format than those obtained from alignment in Bowtie2.

(SH)

$3 Script. Commands to prepare filtered SAM files for use in ProfileSeq. This converts a
SAM file into BED format, and then retains only the center coordinate. This was used through-
out the paper to prepare filtered data (SAM format) for profiling. It requires Pyicoteo 1.0.6¢
(https://bitbucket.org/regulatorygenomicsupf/pyicoteo) to be installed. The BED file output
may be directly used in ProfileSeq, or converted to a.pos file by using only columns 1, 2, and 6
of each line, for faster processing by ProfileSeq.

(SH)

S1 Table. Comparison of the overlap of K562 peaks near internal exons with ChIA-PET
interactions from ENCODE to peaks genome-wide. “X peaks Y pairs” indicates the overlap
of transcription factor X with Y ChIA-PET interactions, where Y = RNAPII or CTCF. DS = the
peak center falls in an intronic region within 1kb downstream of an internal exon. US is simi-
larly defined but for 1kb upstream; “more” indicates that significantly greater number of US or
DS peaks of X overlapped half a Y ChIA-PET interaction pair than the remaining peaks of X
genome-wide, whereas “less” indicates the opposite. Note that “more” and “less” are regardless
of significance level. The last column gives the P-value for the null hypothesis that neither
“more” nor “less” is true based on Fisher's exact test.

(TSV)

S$2 Table. Comparison of the overlap of MCF7 peaks near internal exons with ChIA-PET
interactions from ENCODE to peaks genome-wide. Same as S1 Table, but for MCF?7.
(TSV)

$3 Table. Comparison of counts of peaks flanking internal exons that interact with a TSS
to peaks not flanking internal exons that interact with a TSS based on K562 ChIP-Seq and
ChIA-PET. “X peaks Y pairs” indicates that the overlap of transcription factor X with Y
ChIA-PET interactions, where Y = RNAPII or CTCF. US = peak center within 1 kb upstream
of 3'ss. DS = peak center within 1 kb downstream of 5'ss; “more” indicates that significantly
greater US or DS peaks of X overlapped half a Y ChIA-PET interaction pair whose other half's
center is within 1kb of any TSS than the remaining peaks of X overlapping Y genome-wide,
whereas “less” indicates the opposite. Note that “more” and “less” are regardless of significance
level. The last column gives the P-value for the null hypothesis that neither “more” nor “less” is
true based on Fisher's exact test.

(TSV)

$4 Table. Comparison of counts of peaks flanking internal exons that interact with a TSS
to peaks not flanking internal exons that interact with a TSS based on MCF7 ChIP-seq and
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ChIA-PET. Same as S3 Table except for MCF7
(TSV)

S5 Table. Coordinates of the human internal exon set. This is a.bed file in closed-coordinates
format, i.e. with the first nucleotide at position 1. A list of all internal exons with the 1kb flank-
ing intronic regions not overlapping with any other exon.

(BED)

S6 Table. Additional. Human internal exon coordinates. Same format as S5 Table. Internal
exons that do not contain an internal exon in the 1 kb flanking intronic regions from the same
transcript, but that overlap with an internal exon from another transcript.

(BED)

S7 Table. Coordinates of the mouse internal exon set. Same as S5 Table but for mouse.
(BED)

S8 Table. Additional. Human internal exon coordinates. Same format as S6 Table but for
mouse.

(BED)
$9 Table. Exons affected by CTCF KD with a DS CTCF peak in HepG2. This list uses the.ref

« »

format described in the text (fields separated by “.”). The id (first field) contains the coordinates
of the exon in closed format, separated by “:”, and ending with the strand. The last field of each
line contains the center of the CTCF peak downstream of the exon in the HepG2 sample.

DS = the peak center falls in an intronic region within 1kb downstream of an internal exon.

(REF)

$10 Table. Sources of data used in this study.
(PDF)
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