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Abstract
Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medi-

cine, while nowadays various rosemary formulations are increasingly exploited by alterna-

tive medicine to cure or prevent a wide range of health disorders. Rosemary’s bioproperties

have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-

inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components.

Although there is a growing body of experimental work, information about rosemary’s anti-

cancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is

very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose

diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high

resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very

helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroal-

coholic extract on the viability of the human melanoma A375 cell line. Main components of

rosemary extract were identified by liquid chromatography coupled to tandemmass spec-

trometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the

proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell

cycle was investigated by using flow cytometry, and the alteration of the cellular redox state

was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore,

in order to get information about the molecular mechanisms of cytotoxicity, a comparative

proteomic investigation was performed.

Introduction
Rosemary (Rosmarinus officinalis L.), is a shrub of the Lamiaceace family, which has been widely
used in the Mediterranean area since ancient times, both as a culinary spice, in order to preserve
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food or improve its taste, as well as in folk medicine, as a medicinal herb. Nowadays rosemary
extracts, in various formulations, are increasingly exploited by the alternative medicine or by the
functional food industry, due to their benefits on human health. In fact, traditional medicine
used rosemary for centuries to cure various disorders, i.e. as antispasmodic in renal colic or dys-
menorrhea, as a relief for respiratory disorders and as smooth muscle relaxant [1]. In more
recent years, a growing body of experimental investigation confirmed the pharmacological
potential of rosemary, expanding also the range of its possible therapeutic applications. In fact,
administration of crude extracts to mice, rats or rabbits demonstrated chemoprotective effects
against hepatotoxicity [2] or cirrhosis [3], against arterial thrombotic diseases [4], gastric ulcera-
tive lesions [5], hyperglycaemia [6], neurogenic and inflammatory pain [7], as well as antibacte-
rial and antioxidant activities [8,9]. On the other hand, modern techniques of analysis have led
to the isolation and identification of many of the components of rosemary extracts, thereby
prompting studies on the pharmacological effects of pure bioactive principles and allowing the
investigation of the underlying molecular mechanisms. The phenolic diterpenes carnosol and
carnosic acid and the phenolic acid rosmarinic acid are the main antioxidant components, while
a number of flavonoids are usually also present, among which scutellarin, luteolin, genkwanin
and kaempferol are major constituents [9,10]. A growing body of evidence indicates that rose-
mary exerts anticancer effects on various in vitro and in vivomodel systems and that different
cellular mechanisms may be involved. Rosemary extracts exhibited anti-proliferative activity in
a number of different tumor cell lines [9,11,12], a property which has been correlated to the
occurrence of specific compounds, particularly carnosol, carnosic acid, rosmarinic acid [13] and
partially to their antioxidant power [9]. Rosmarinic acid induced apoptosis in colorectal cancer
cells [14], possibly interfering with the MAPK/ERK pathway. Rosemary essential oil down-regu-
lated the expression of the bcl-2 gene, while up-regulated that of the bax gene, in liver cancer
cells [15]. Carnosic acid inhibited proliferation of human myeloid leukemia cells without induc-
ing apoptosis [16]. Carnosol inhibited the migration of metastatic mouse melanoma B16/F10
cells in vitro by suppressing the expression of metalloproteinase-9 [17]. Rosemary antitumor
activity was evidenced also in vivo: survival of rats with acute myeloid leukemia was increased
by administration of rosemary crude extracts or carnosol, in combination with 1α-25 dihydroxy
vitamin D (3), which determined a strong antiproliferative effect [18,19]. Carnosol was able to
reduce tumor molteplicity in a mouse model of colonic tumorigenesis [20]. In vitro and in vivo
data indicated also that rosemary crude extracts or purified components exerted chemoprotec-
tive effects, by inhibiting early phases of tumor development, or contrasting the effect of chemi-
cal mutagenic compounds [21,22,23,24]. Mechanisms of chemoprotection probably involved
inhibition of phase I enzymes of carcinogenesis, as well as increased expression of detoxifying
enzymes [25]. Melanoma is a skin malignant tumor induced by transformation of melanocytes
[26], whose incidence rate is rapidly increasing in the world [27]. Metastatic melanoma has a
very poor prognosis, a fact that is in part due to its high resistance to cytotoxic agents [28,29].
Hence, finding new sources of anti-cancer compounds, to improve melanoma prognosis is a rel-
evant research issue and plant extracts, containing many constituents with diverse and synergis-
tic biological effects may greatly contribute to integrate or enhance chemical treatments. In the
present paper we present data about the effect of a Rosmarinus officinals L. hydroalcoholic
extract, on the viability of the human melanoma A375 cell line. Main components of rosemary
extract were identified by liquid chromatography coupled to tandemmass spectrometry (LC/
ESI-MS/MS) and the effect of crude extract or of pure components on the proliferation of cancer
cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by
flow cytometry and alteration of the cellular redox state evaluated by intracellular ROS produc-
tion determination and protein carbonylation analysis. Finally, to obtain hints about underlying
molecular mechanisms, a comparative proteomic analysis was performed.
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Materials and Methods

Preparation of Rosmarinus officinalis extract
The hydroalcoholic extract of Rosmarinus officinalis was kindly supplied by the phytochemical
company Sarandrea Marco & Co. S.r.l., Collepardo (FR), Italy. The extract was made using leaves
of Rosmarinus officinalis specimens endemic of the Ciociaria area in the Lazio region, in central
Italy. Leaves were harvested from plants in the vegetative stage and, within 24 hours of collection,
ground into fine powder and suspended at 330g/L in a solution of 65% (w/w) ethanol/water, for
21 days at room temperature. The extract was then filtered and stored to -20°C until use.

Liquid chromatography
Chromatographic separation was performed using an HPLC apparatus equipped with two
Micropumps Series 200 (PerkinElmer, Shellton, CT, USA) and a Prodigy ODS3 100 Å column
(250 mm × 4.6 mm, particle size 5 μm) (Phenomenex, CA, USA). The eluents were: solvent A:
water containing 0.2% formic acid; solvent B: CH3CN/CH3OH (60:40, v/v). The gradient pro-
gram was as follows: 50% B (0 min), 100% B (15 min), 100% B (15–35 min), 50% B (40 min),
50% B (40–45 min) at a constant flow of 0.8 mL/min. The LC flow was split and 0.2 mL/min
was sent to the mass spectrometry. Three injections were performed for each sample. Injection
volume was 20 μL. Mass spectrometry analyses of extracts were performed on an API 3000 tri-
ple quadrupole mass spectrometer (Applied Biosystems, Canada) equipped with a TurboIon-
Spray source, working both in the negative and positive ion mode. The analyses were
performed using the following settings: drying gas (air) was heated to 400°C, capillary voltage
(IS) was set to 4000 V and 5000 V in negative and positive ion mode, respectively.

Quantitative HPLC analysis of main components was performed on a LC-20 Prominence
HPLC system (Shimadzu, Japan), equipped with a LC-20AT quaternary gradient pump, a
SPD-M20A photo diode array detector (PDAD) and a SIL-20 AH autosampler or a Rheodyne
7725i valve, with a 20 μLfixed loop. The extract was separated on a Phenomenex Kinetex C18

column (2.6 μm, 100 x 4.60 mm; Phenomenex, CA, USA). The mobile phase consisted of: sol-
vent A: water containing 0.2% (v/v) TFA; solvent B: CH3CN/CH3OH (60:40, v/v). A binary gra-
dient was used for elution: 15% B (0 min), 35% B (3 min), 75% B (9 min), 15% B (11–15 min).
The mobile phase flow rate was 0.8 mL/min; spectra were recorded between 190–400 nm. Col-
umn temperature was controlled at 40°C. Separated compounds were identified by comparison
of their retention times and UV spectra with those of the following authentic standards: api-
genin (A3145 Sigma), luteolin (72511, Sigma), caffeic acid (CO265, Sigma), scutellarin (73577,
Sigma), carnosol (C9617, Sigma), rosmarinic acid (00390580, Sigma), respectively. These com-
pounds were also used to build up calibration curves in the range 5 to 500 μg/mL. For quantita-
tive analysis different concentrations of unknown samples were injected in triplicate. Reported
values represent the means ± SD of three independent extractions.

Cell culture
Human melanoma A375 cells (ATCC; Manassas, VA, USA) or B16-F10 murine melanoma
cells (ATCC; Manassas, VA, USA) were cultured in RPMI-1640 medium, supplemented with
10% (v/v) fetal bovine serum (FBS), 1% L-glutamine (v/v), 100 units/mL penicillin and 100 μg/
mL streptomycin. The cells were grown at 37°C with 5% CO2 in a humidified atmosphere.

Determination of cell viability
Cell viability was assessed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bro-
mide] and Trypan blue assays. For MTT assay, 2x103 cell/well were seeded into sterile 96-well
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plates and incubated overnight. The day after, cells were treated with increasing concentrations
of rosemary extract, or of main pure components, namely luteolin, carnosol, scutellarin, ros-
marinic acid and apigenin, and incubated for 24, 48 and 72 h, respectively. After incubation,
0.5μg/μL MTT (Sigma) was added and cells incubated for additional 4 h at 37°C in the dark.
Then, the medium was removed and formazan crystals were dissolved in DMSO and cellular
metabolism was determined by monitoring the color development at 570 nm, in a multi-well
scanning spectrophotometer (Sunrise, Tecan, CH). IC50 values were estimated following 72 h
incubation. For Trypan blue assay, A375 cells were seeded at a density of 2 x104 cells/well in
sterile 24-well plates. After 24 h, cells were treated with increasing concentrations of rosemary
extract and incubated for 24, 48 and 72 h. Then, adherent cells were washed, detached with
trypsin 0.05% (w/v), EDTA 0.02% (w/v), (Sigma), stained with 0.4% Trypan blue (w/v),
(Sigma) and counted in triplicate in an optic microscope, to estimate the number of live cells.
Cell viability was expressed as a percentage of live treated cells with respect to live control cells.

Flow cytometry analysis of cell cycle
2 x104 cell/well were seeded into sterile 24-well plates and after 24 h, rosemary extract at 1: 120
and 1:240 dilution, or main components of the rosemary extract at a concentration of 20 μM,
were added to the cell culture medium. Cells were also treated with ethanol, as vehicle control.
After incubation for 24, 48 and 72 h, cells were detached with trypsin-EDTA, washed with
PBS, collected by centrifugation at 450 x g for 10 min and stained with propidium iodide (PI)
staining solution (Sigma), containing 50 μg/mL PI (w/v), 0.5% RNase A (w/v) (Sigma) and
0.1% Triton-X 100 (v/v), After incubation for 30 min at 4°C in the dark, cell cycle distribution
was analyzed by flow cytometry on a FACS Calibur flow cytometer (Becton-Dickinson, Moun-
tain View, CA). A total of 10,000 events in each sample was acquired. Cells cycle distribution
was determined by using the Cellquest Pro software (Becton-Dickinson).

Determination of intracellular reactive oxygen species (ROS)
Intracellular ROS generation was measured by using the fluorescent probe 5-(and 6)-chloro-
methyl-20,70-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA, Molecular
Probes/Invitrogen; Carlsbad, CA, USA). 3 x105 cell/well were seeded into sterile 24-well plates.
After 24 h, rosemary extract was added to the cell culture medium at 1:120 and 1:240 dilutions.
After incubation at 37°C in 5% CO2, for 24 h, cells were detached with trypsin and incubated
with 5 μMCM-H2DCFDA, in the dark, at 37°C. After 30 minutes of incubation, cells were cen-
trifuged and the pellet was washed twice with ice-cold PBS. The pellet was then resuspended in
FACS buffer (0.5% BSA (w/v), 0.1% sodium azide (w/v) in PBS) and radical formation assessed
by flow cytometry, in a FACS Calibur flow cytometer (Becton-Dickinson, Mountain View, CA).
CM-H2DCFDAmean fluorescence was measured in FL-1 with an excitation wavelength of 488
nm and an emission wavelength of 530 nm. 10,000 events were evaluated for each analysis.

Analysis of protein carbonylation
Carbonyl groups in side chains of proteins were detected using the OxyBlot protein oxidation
detection kit (Millipore). Cells were cultured as above reported and treated with rosemary
extract (1:120 and 1:240 dilutions) for 24h. After incubation, cells were detached with trypsin,
washed twice with ice-cold PBS and centrifuged. The pellet was resuspended and incubated in
Lysis Buffer (50 mM Tris-HCl pH 7.4, 1% Triton-X-100 (v/v), 250 mM NaCl, 5 mM EDTA) at
4°C, overnight. Cell lysates were centrifuged at 14,000 x g for 20 min and protein concentration
in the supernatant determined by Bradford assay. Proteins were derivatized to 2,4-dinitrophe-
nylhydrazone by 2,4-dinitrophenylhydrazine (DNPH), according to the manufacturer’s
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instructions, separated by SDS-PAGE and subjected to Western Blot. Oxidized proteins were
detected by anti-2,4-dinitrophenylhydrazone antibodies.

Two-dimensional gel electrophoresis (2D-E)
Sample preparation: cells were cultured as above reported and treated with rosemary extract
(1:240) for 24h. After incubation, cells were detached with trypsin, washed twice with ice-cold
PBS and centrifuged. Cell pellet was resuspend in Lysis Buffer (50 mM Tris-HCl pH 7.4, 1%
Triton-X-100 (v/v), 250 mMNaCl, 5 mM EDTA) and incubated overnight at 4°C. Cell lysates
were centrifuged at 14,000 x g for 20 min and protein concentration in the supernatant was
determined by Bradford assay. Equivalent protein amounts (300 μg) of control and treated cell
samples were desalted by precipitation with cold ethanol (overnight at -20°C). Precipitates
were centrifuged at 15,000 x g for 15 min and pellets solubilised in 200 μL of rehydration buffer
(5 M urea, 2 M thiourea, 50 mM DTT, 2% (w/v) CHAPS, 0.2% (v/v), ampholytes pH 3–10).
For first-dimension electrophoresis, sample solutions were loaded onto non linear pH 3–10
IPG ReadyStrips (Bio-Rad Laboratories S.r.l., Segrate, Milano, Italy). After passive rehydration
for 12 h at 20°C, IEF was performed in a Protean IEF Cell Apparatus (Bio-Rad) as follows: (i)
250 V for 15 min; (ii) 250–8000 V in 2.5 h; (iii) 8000V for 5 h. Before second-dimension elec-
trophoresis, strips were equilibrated for 15 min in 50 mM Tris-HCl (pH 6.8) containing 6 M
urea, 2% (w/v) sodium dodecilsulfate (SDS), 20% (v/v) glycerol and 130 mM dithiothreitol,
and then for other 15 min in the same buffer, containing 135 mM iodoacetamide, in place of
dithiothreitol. The second dimension was carried out on pre-casted 4–12% Bis-Tris gels, by
using a Criterion apparatus (Bio-Rad) and MES-SDS solution as running buffer (Bio-Rad),
applying a ramping voltage (from 100 to 200 V). The 2-D gels were stained with colloidal Coo-
massie. After destaining, gels were digitalized using a computing densitometer (GS-710 Imag-
ing Densitometer; Bio-Rad). The images were analyzed for the detection, matching and
quantification of protein spots, using PD Quest software [version 8.0.1 (Bio-Rad)], according
to the manufacturer’s procedures. Manual inspection of the spots was performed to verify the
accuracy of automated gel matching; any errors in the automatic procedure were corrected
prior to quantitative analysis. After normalization of the spot densities against the whole gel
densities, the percentage volume of each spot was averaged for nine gels (three replicates of
three different biological samples) and compared between groups (control and treated with the
rosemary extract) to find out statistically significant (Student’s t-test, P� 0.05) differences. A
two-fold change in normalized spot densities was considered indicative of a differentially
expressed component.

Protein identification by mass spectrometry
Selected spots were manually excised and subjected to in-gel trypsin proteolysis. Briefly, after
destaining steps, using 50 mMNH4HCO3 (15 min), 50% CH3CN in 50 mMNH4HCO3 (v/v),
(10 min) and 100% CH3CN (15 min), 100 ng of trypsin (Trypsin Gold, Mass Spectrometry
Grade, Promega, Madison, WI, USA), solubilized in 10 μL of 25 mMNH4HCO3 digestion
buffer, were added to vacuum-dried gel. Digestion was performed at 37°C overnight. An ali-
quot of each peptide mixture was mixed with the same volume of CHCA matrix solution (5
mg/mL) in 70% CH3CN, containing 0.1% TFA (v/v) and spotted onto an appropriate MALDI
target plate. MALDI-ToF MS analyses were performed with an AutoFlex II instrument (Bruker
Daltonics, Bremen, Germany), equipped with a 337 nm nitrogen laser and operating in reflec-
tor positive mode. Two tryptic autolytic peptides were used for the internal calibration (m/
z842.5100 and 2211.1046). Data were analyzed by flex Analysis program (Bruker Daltonics,
Bremen, Germany). Identification by peptide mass fingerprint (PMF), with the mono-isotopic
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mass list, was performed using BioTools program (Bruker Daltonics, Bremen, Germany), by
the Mascot search engine, against human SwissProt database [(SwissProt 2014_01 (542258
sequences; 192776118 residues)]. Up to two missed cleavage, 50 ppm measurement tolerance,
oxidation at methionine (variable modification) and carbamidomethylation at cysteine (fixed
modification) were considered. Identifications were validated when the probability-based
Mowse proteins core was significant according to Mascot [30].

Western blot analysis
Protein extracts (approximately, 15 μg) were resolved on 4–15%Mini-PROTEAN TGX Pre-
casted gels by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE;
200 V, 45 min). The protein bands were electrotransferred to nitrocellulose membranes (80 V,
120 min). Membranes were then treated with a 5% enhanced chemiluminescence (ECL) block-
ing agent (GE Healthcare Bio-Sciences) in a saline buffer (T-TBS) containing 0.1% Tween-20,
10 mM Tris-HCl, 150 mMNaCl, 1 mM CaCl2, and 1 mMMgCl2, pH 7.4, for 1 h and then
incubated with the primary antibody overnight at 4°C. Subsequently, membranes were washed
three times in T-TBS, and the bound antibodies were detected using appropriate horseradish
peroxidase-conjugated secondary antibodies, followed by an ECL Plus Western blotting detec-
tion system (GE Healthcare Bio-Sciences). ECL was detected using a Molecular Imagers Che-
miDoc mod. MP System (Bio-Rad Laboratories), and acquired using ImageLab Software, ver.
4.1. Immunodetection was carried out using goat polyclonal antibodies (SantaCruz Biotechnol-
ogy) against poly (rC)-binding protein 1 (PCB1; sc-16504, dilution 1:200), poly (rC)-binding
protein 2 (PCB2; sc-30725, dilution 1:200), neutral alpha-glucosidase AB (GANAB; sc-20279,
dilution 1:200), Lamin A (LMN A/C; sc-6215 dilution 1:200). The anti-PDIA3 antibody was
gift by prof. Fabio Altieri (dilution 1:2000). In each analysed sample, the signal of the target
protein was normalized to the corresponding Glyceraldehyde 3-phosphate dehydrogenase
(Santa Cruz Biotechnology, GAPDH; sc-32233 dilution 1:500). Three replicates were per-
formed, one for each biological sample. All results are expressed as mean ± SD. Differences
between experimental groups were determined by Student’s t-test. The P-value of� 0.05 was
considered statistically significant.

Results and Discussion

Identification and quantification of rosemary extract components
Principal components of the rosemary extract were successfully identified using LC-MS/MS.
The MS chromatogram is shown in Fig 1. The compounds were identified interpreting their
MS, MS/MS and UV spectra (not shown) and comparing their data with those reported in the
literature [31,32,33,34]. The identified compounds are listed in Table 1, including retention
times, molecular weight, MS/MS fragments, as well as their proposed identifications. The
quantitative composition of the extract was carried out by HPLC with diode array detection
and calibration curves with pure standards. As reported in Table 1, major components were:
rosmarinic acid, luteolin, apigenin, carnosol, caffeic acid and scutellarin. On the overall, the
profile of metabolites of the rosemary extract appears qualitatively in accordance with others
reported in the literature [9,10,31,33].

Effect of rosemary extract treatment on the viability of melanoma cells
The effect of the hydroalcoholic extract of Rosmarinus officinalis on the viability of human mel-
anoma A375 cell line (ATCC; Manassas, VA, USA), was assayed measuring the mitochondrial
activity of living cells, by the MTT test. Results, reported in Fig 2 (panel A), showed that
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Fig 1. Total Ion Chromatogram (TIC) of rosemary extract. Numbers refer to compounds listed in Table 1.

doi:10.1371/journal.pone.0132439.g001

Table 1. List of metabolites occurring in the Rosmarinus officinalis extract identified by LCMS/MS.

Peak Retention Time (min) m/z +/- Major fragments (m/z) Compound Concentration (μg/ml)

1 5.18–6.28 461 - 299/284 Homoplantaginin n. d.

2 5.60 359 - 197/179/161 Rosmarinic acid 398.1

3 6.28 461 - 285 Scutellarin 23.6

4 7.65 285 - 151 Luteolin 199.5

5 7.74 285 - 267/241 Scutellarein n. d.

6 8.52 179 - 135 Caffeic Acid 114.4

7 9.25 269 - 151 Apigenin 39.6

8 10.96 347 + 301/283 Rosmanol n. d.

9 11.30 315 + 297/300/282 Cirsimaritin n. d.

10 11.92 329 - 285/211 Carnosol 80.1

11 11.93 331 - 287 Carnosic Acid n. d.

12 32.07 373 - 329/293 Rosmarinic acid methylester n. d.

Concentrations were determined by means of calibration curves with pure standards, as reported in material and methods (n. d. = not determined).

doi:10.1371/journal.pone.0132439.t001
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rosemary extract reduced cell growth in a time and dose-dependent manner. 1:120, 1:240 and
1:480 extract dilutions drastically reduced cellular metabolic activity. The anti-proliferative
effect was evident already at 24 h and was enhanced at 48 and 72 h of incubation, whereas the
1:960 dilution was substantially ineffective at each time of incubation tested. The IC50 esti-
mated after 72 h incubation, was 1:480.

MTT is an indirect colorimetric assay assessing metabolic activity, hence, in order to con-
firm the loss of survival rate through a more direct assay, a Trypan blue exclusion test was per-
formed. Results, reported in Fig 2 (panel B), showed that the extract treatment brought about a
time and dose-dependent reduction of melanoma cells proliferation, with a trend very similar
to that observed in the MTT test. In fact, 1:120 and 1:240 dilutions, after 72 h incubation deter-
mined a drastic loss of cell proliferation, whereas the 1:960 dilution was ineffective. Further-
more, washing of treated cells, reseeding and culturing in the absence of the extract, did not
result in recovery of growth (data not shown), indicating that the effect was irreversible, and
therefore likely due to induction of differentiation processes. Similar results but at lower extract
dilutions (1:60–1:240) were obtained on B16-F10 murine melanoma cells (S1 Fig). Hence on
the overall, results suggested that treatment inhibited cell proliferation, consistently with previ-
ous studies demonstrating that rosemary extracts were able to inhibit growth of various tumor
cells lines [9,11,35].

In order to ascertain to which substance(s) the antiproliferative activity could be ascribed,
luteolin, carnosol, scutellarin, rosmarinic acid and apigenin [36,37], namely five major constit-
uents of the rosemary extract (Table 1), were separately assayed by MTT test at 24, 48 and 72 h

Fig 2. Effect ofRosmarinus officinalis extract on A375melanoma cells. (A) Metabolic activity (MTT test).
(B) Cell viability (Trypan blue exclusion test). Data are expressed as % of cell survival with respect to control.
Results are the mean ± SD from three independent experiments. * P� 0.05 versus vehicle control.

doi:10.1371/journal.pone.0132439.g002
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of incubation. Results, showed in Fig 3, indicated that, apigenin, luteolin and carnosol were
much more effective than scutellarin and rosmarinic acid. These data are comparable to those
from other authors, demonstrating a lower inhibitory activity for rosmarinic acid [12] and scu-
tellarin [38] as compared to carnosol [39,40], luteolin [41,42,43] and apigenin [36,37,44]. How-
ever, since single substances resulted effective at concentrations (20, 50 μM) far exceeding
those occurring in the rosemary extract, results suggested that cytotoxicity of the total extract
resulted from the combination of different activities, possibly due to diverse molecules. In fact,
indirect evidence exists that in herbal medicines multi-factorial effects can occur, which
decrease the active concentration of pure components [45]. To test this possibility, the five
pure compounds were tested in the MTT assay at the same concentrations occurring in the
total extract (1: 120 dilution), as a reconstituted mixture. Under these conditions results were
negative: the reconstituted mixture didn’t show any significant growth inhibitory activity (data
not shown). A possible interpretation of this discrepancy is that additional compounds present
in the total extract (as shown by HPLC-ms) significantly contribute to its overall cytotoxic
activity, bringing about a network of combined effects more complex than that occurring in
the reconstituted mixture.

Effect of rosemary extract treatment on cell the cycle of melanoma cells
The inhibition of cell viability could result from the induction of apoptosis and/or cell growth
arrest, so, in order to get information about the cellular processes possibly affected by the rose-
mary extract, the effect on cell cycle was investigated by flow cytometry. To this purpose A375
melanoma cells were incubated with different dilutions of crude extract, for 24, 48 and 72 h,
then labelled with propidium iodide and subjected to FACS analysis. Results reported in Fig 4,
showed that treatments at 1:120 and 1:240 dilutions profoundly affected cell cycle, whereas
higher dilutions were ineffective (data not shown). In particular, 1:120 dilution promoted an
increase up to 30% of cells in sub-G0 phase, presumably dead by apoptosis, in a time-depen-
dent manner, with a strong reduction of G0/G1 phase population, whereas 1:240 dilution
induced a strong reduction of G0/G1 phase, counterbalanced by an arrest in the G2/M phase,
followed by the appearance of hyperploid cells. Literature reports show that many molecules
with antiproliferative effects on cancer cells, block cell cycle in the G2/M phase [46,47,48] as
well as that different mechanisms could be implied, including DNA damage, or interference
with formation of the mitotic spindle. Regardless of the specific mechanism involved, some of
these cells can progress through a delayed mitosis and die in mitosis or finally exit mitosis, pro-
ducing a single 4N G1 cell, which arrests in G1 or continues to cycle, consequently forming
hyperploid cells [49]. In summary, comparing these last data with those obtained with direct
cell counting, it appeared that rosemary extract could inhibit cell proliferation trough both
cytotoxic and cytostatic mechanisms, in a dose and time-dependent manner, as observed for
many substances with anticancer properties.

Effect of rosemary extract treatment on intracellular ROS concentration
and on protein carbonylation
Since the anti-proliferative effects of different phytochemicals on various cancer cell lines has
been attributed to their pro-oxidant, rather than anti-oxidant properties [50], the intracellular
ROS concentration of melanoma cells treated with rosemary crude extract, compared to that of
control cells, was estimated by FACS, using CM-H2DCFDA as fluorescent probe. Results from
FACS analysis, reported in Fig 5 (panel A) showed that treating melanoma cells with 1: 120
and 1:240 dilutions of the extract for 24 h, brought about a significant reduction of intracellular
ROS levels, thereby indicating that cytotoxicity was not triggered by cellular oxidative damage.
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This result was confirmed also by protein carbonylation analysis. Carbonylation is a common
protein modification induced by cellular oxidative imbalance and can be easily detected by pro-
tein derivatization with DNHP and recognition with anti protein-hydrazone antibodies. The
overall carbonylation level of proteins from control and treated cells was quantified by estimat-
ing the total optical density of extracted proteins after SDS PAGE, Western Blotting and immu-
nodecoration, using the Quantity One software from Bio-rad. Results reported in Fig 5 (Panel
B) demonstrated that treatments with 1:120 and 1:240 extract dilutions after 24 h incubation,
determined a reduction of cell protein carbonylation, thus confirming the anti-oxidant action
of the rosemary extract under our experimental conditions.

Effect of rosemary extract treatment on the protein repertoire of
melanoma cells
In order to get hints about the molecular mechanism underlying rosemary extract cytotoxicity,
a proteomic analysis was carried out, to ascertain qualitative and/or quantitative modification

Fig 3. Effect of apigenin (A), carnosol (B), luteolin (C), scutellarin (D) and rosmarinic acid (E) onmetabolic activity of A375melanoma cells,
assayed by MTT assay. Data are expressed as % of cell survival with respect to control. Results are the mean ± SD from three independent experiments. *
P� 0.05 versus vehicle control.

doi:10.1371/journal.pone.0132439.g003
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of the protein profile of melanoma cells subjected to rosemary extract treatment, as compared
to control cells. To this purpose, total proteins were extracted from cells treated with 1:240 dilu-
tion of rosemary extract for 24 h, or from untreated cells and resolved by two dimensional gel
electrophoresis (2-DE). To detect quantitative changes in relative spot volumes of proteins
from treated cells as compared to control ones, colloidal Coomassie-stained gels were subjected
to software-assisted image analysis. Statistical evaluation of the relative spot volumes allowed
to detect spots significantly varying (P� 0.05) in abundance. Representative 2-D gel is shown
in Fig 6. The overall 2-DE profiles of control and treated cells were similar, however, 5 protein
spots were detected, whose abundance was at least two-fold reduced in response to rosemary
challenge; no proteins with a corresponding increase were detected. The differential spots were
excised from the gel, proteolysed and subjected to MS analysis. The database search with results
from Peptide Mass Fingerprinting MALDI-ToF experiments, allowed the identification of pro-
tein spots. The list of the identified polypeptides is reported in Table 2. All reported proteins
had good sequence coverage, significant protein scores, as well as similar experimental and the-
oretical Mw/pI.

In order to verify proteomic results, validation experiments were carried out by western
blotting of down-regulated proteins, probed with specific antibodies. Results, reported in S2

Fig 4. Cell cycle analysis of A375 melanoma cells treated with Rosmarinus officinalis extract. The figure shows the DNA content flow cytometric
histograms of A375 cells (A-C) and the corresponding percentages of cell cycle distribution after treatment with Rosmarinus officinalis extract (B-D). Plots A
and C show vehicle treated cells (black line) and cells treated for 24 (green line), 48 (fuchsia line) and 72 h (blue line) with 1:120 and 1:240 dilutions of
Rosmarinus officinalis extract. M1, M2, M3, M4 and M5 are representative virtual markers of subG0/G1, G0/G1, S, G2/M and hyperploid phases of cell cycle,
respectively. After treatment, cells were stained with propidium iodide and flow cytometric analysis was performed as described in Materials and Methods.
The data shown in A and C are representative of three independent analyses. Results shown in B and D are the mean ± SD from three independent
experiments. *P�0.05 versus vehicle treated control cells.

doi:10.1371/journal.pone.0132439.g004
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Fig, showed a decrease in treated samples of all of tested proteins, thereby confirming the same
behaviour detected by proteomic analysis. As far as PDIA3 is concerned, the decrease observed
in the western blotting analysis is less dramatic with respect to that observed in the 2-DE exper-
iment. The reason may reside on the presence of different post-translation modifications on
the PDIA3 that may alter its pI. These isoforms, dispersed in the 2DE gel, are instead all
detected in the western blotting analysis.

All these identified proteins which are down-regulated could be related with the effect of
rosemary treatment on melanoma cells.

Protein disulfide-isomerase A3 (PDIA3) belongs to the wide protein-disulfide isomerase
family (PDI), a class of proteins which catalyzes disulfide bond formation, breakage or rear-
rangement and possess chaperone activity [51]. Mediating protein folding in the endoplasmic
reticulum, PDIs are essential for cellular homeostasis maintenance; changes in PDI expression
and/or enzymatic activity are associated with protein misfolding and ER stress at cellular level
[51] and correlated to neurodegenerative and cardiovascular diseases [52]. Interestingly, a
growing body of literature data indicates that PDI high expression is correlated to survival and
progression of different types of cancer [52], thereby indicating that this protein could be a
promising target for cancer treatment. PDIA5 has been involved in the chemoresistance mech-
anism mediated by activation of the oncogenic transcription factor ATF6α [53] whereas
PDIA3 has been identified by a proteomic approach, as a chemoprevention target in human

Fig 5. Intracellular ROS levels (panel A) and carbonylation of total proteins (panel B) of A375
melanoma cells treated with Rosmarinus officinalis extract. (A) Cells were incubated with 1:120 and
1:240 dilutions of the rosemary extract for 24 h. ROS production was evaluated as CM-H2DCFDA
fluorescence. Values are expressed as relative fluorescence of treated samples as compared to control ones
and are the mean ± SD from three independent experiments. *P�0.05 versus vehicle treated control cells.
(B) Carbonylation was evaluated by derivatization of extracted proteins with 2,4-dinitrophenylhydrazine,
SDS-PAGE separation and immunoblotting with anti 2,4-dinitrophenylhydrazone antibodies. Values are
expressed as relative optical density of treated samples as compared to control ones and are the mean ± SD
from three independent experiments. *P�0.05 versus vehicle treated control cells.

doi:10.1371/journal.pone.0132439.g005
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colon cancer cells [54]. Although the effects of PDIs in sustaining tumor progression are proba-
bly diverse, depending on the cancer type, it has been reported that, in melanoma, PDIs pro-
tected cells from apoptosis, and that their inhibition enhanced the efficacy of compounds
triggering cell death [55].

Neutral alpha-glucosidase AB (GANAB), also known as glucosidase II-alpha subunit, is an
ER-located enzyme which is essential to maturation of newly synthesized glycoproteins
[56,57]; its disregulation causes accumulation of misfolded proteins in the ER and

Fig 6. Representative 2-DEmap of control A375melanoma cells. Proteins were electrophoretically separated in the non-linear pH range 3–10 and the
200–15 kDa molecular mass range and visualized by colloidal Coomassie staining. The encircled spots indicate the proteins affected by rosemary extract
(1:240; 24h) treatment. The relative intensities, between control and treated samples, are shown in panels. Data significance was evaluated by a Student’s t-
test (P�0.05). PDA3, protein disulfide-isomerase A3; GANAB, Neutral alpha-glucosidase AB; PCBP1, poly(rC)- binding protein 1; PCBP2, poly(rC)-binding
protein 2; LMNA, lamin A.

doi:10.1371/journal.pone.0132439.g006

Table 2. MALDI ToF identification of down-regulated proteins in A375melanoma cells treated with Rosmarinus officinalis extract.

Protein namea UniProtKB accession number Mw/pIb Mascot Score N. of mached peptide Sequence coverage %

Proteindisulfide-isomerase A3 P30101 57146/5.98 295 34 53

Neutralalpha-glucosidase AB Q14697 107263/5.74 334 37 40

Lamin-A Q5TCJ2 74380/6.57 425 63 66

Poly(rC)-bindingprotein 1 Q15365 37987/6.66 183 23 74

Poly(rC)-bindingprotein 2 Q6IPF4 38955/6.33 109 11 32

aName of protein according to UniProtKb databank
bTheoretical molecular mass/pI

doi:10.1371/journal.pone.0132439.t002
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consequently ER stress and the unfolded protein response (UPR) [57]. Although it has been
shown by a proteomic approach that its levels are strongly increased during FGF2-induced
proliferation of osteoblasts [58], correlation between level and/or enzymatic activity alteration
and diseases, apart from polycystic liver disease [59] is very poor. Recently, it has been shown
that its down-regulation is associated to increased migration and survival of invasive lines of
head and neck cancer cells [60]. At discrepancy, the observed down-regulation induced by
rosemary extract treatment suggests that, at least in melanoma A375 cell line, it may be associ-
ated to reduction of cell proliferation, possibly by eliciting ER stress. Two members of the poly
(rC)-binding protein family (PCB1 and PCB2) were also identified as down-regulated proteins
in rosemary-treated melanoma cells. PCBs bind to single-stranded poly (C) motifs of client
mRNAs and regulate diverse post-transcriptional and translational events [61]. Remarkably,
different PCBs isoforms have been reported to be over-expressed in various cancers, where
they appear necessary to tumor survival and development. PCB2 for instance, is up-regulated
in gastric and prostate cancer cells [62,63], leukemic blasts [64] and human glioma tissue and
cell lines, where knockdown of PCB2 gene inhibits glioma growth [65]. PCB1 has been identi-
fied by a proteomic study as a highly up-regulated protein in neuroendocrine pulmonary
tumors [65].

Finally, a reduction of lamin A was observed as a consequence of rosemary treatment of
melanoma cells. Lamins are components of the nuclear envelope, where they are essential to its
organization and stability [66]. The nuclear lamina is involved in the regulation of fundamental
cellular processes including DNA replication, transcription and cell cycle progression, and
mutations within lamin genes give rise to a broad range of diseases known as laminopathies
[66]. The link between alteration of lamin levels and cancer is poorly investigated but, interest-
ingly, it has been shown that geraniol, inhibiting farnesylation of G proteins, among which
lamin A and B, is able to suppress hepatomas and melanomas growth in transplanted rats and
mice [67]. In general, factors affecting lamin maturation can lead to different downstream
effects, all detrimental to cell survival and longevity, hence the observed decrease of lamin in
our conditions points to a role of lamin in sustaining growth of melanoma cells, thereby sug-
gesting that this protein may be a promising target for pharmacological therapy.

Conclusions
In summary, this study allowed to ascertain that a 65% (v/v) hydroalcoholic extract of Rosmari-
nus officinals L. was able to efficiently reduce, in a dose and time dependent manner, the prolif-
eration of the human melanoma A375 cell line, usually highly resistant to cytotoxic agents.
Investigation of cell cycle indicated that rosemary extract inhibited cell proliferation through
both cytotoxic and cytostatic effects. Evaluation of cellular ROS production and of protein car-
bonylation indicated that the antiproliferative effect was not due to a pro-oxidant activity of
the extract. The compositional characterization carried out, allowed to test pure single compo-
nents and results suggested that the antiproliferative activity was a property of the whole
extract, very likely resulting from multi-factorial effects which involve most of its components.
Proteomic analysis, performed in order to get hints about molecular targets involved, showed
that rosemary treatment of melanoma cells induced a significant reduction of levels of proteins
crucial for cellular homeostasis maintenance, whose down-regulation can hamper cellular
functions by inducing ER stress. In general, in vitro cellular and proteomic evidence indicate
that combinations of plant secondary metabolites have the potentiality to integrate chemother-
apy and prompt further studies to confirm in vivo efficacy and to unravel the molecular basis
of their polyvalent action.
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Supporting Information
S1 Fig. Effect of Rosmarinus officinalis extract on B16-F10 murine melanoma cells. (A)
Metabolic activity (MTT test). (B) Cell viability (Trypan blue exclusion test). Data are
expressed as % of cell survival with respect to control. Results are the mean ± SD from three
independent experiments. � P� 0.05 versus vehicle control.
(TIF)

S2 Fig. Expression levels of down-regulated proteins in cell after treatment with Rosmari-
nus officinalis extract.On the left, immunodetection of GANAB, LMNA, PDIA3, PCBP1 and
PCBP2 in treated (+) and untreated (-) cells. All the three independent cell preparations are
reported. On the right, relative intensities of the optical densities of each of the protein bands
and the corresponding GAPDH band. Quantitative data are expressed as a percentage with
respect to the ratio value determined in the untreated cells. Data were collected from indepen-
dent cell preparations (n = 3), and averaged (%SD). Statistical analysis was performed by Stu-
dent’s t-test. � P� 0.05.
(TIFF)
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