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Abstract

Speech intelligibility tests are conducted on hearing-impaired people for the purpose of
evaluating the performance of a hearing device under varying listening conditions and
device settings or algorithms. The speech reception threshold (SRT) is typically defined as
the signal-to-noise ratio (SNR) at which a subject scores 50% correct on a speech intelligi-
bility test. An SRT is conventionally measured with an adaptive procedure, in which the
SNR of successive sentences is adjusted based on the subject's scores on previous sen-
tences. The SRT can be estimated as the mean of a subset of the SNR levels, or by fitting a
psychometric function. A set of SRT results is typically analyzed with a repeated measures
analysis of variance. We propose an alternative approach for analysis, a zero-and-one
inflated beta regression model, in which an observation is a single sentence score rather
than an SRT. A parametrization of the model is defined that allows efficient maximum likeli-
hood estimation of the parameters. Fitted values from this model, when plotted against
SNR, are analogous to a mean psychometric function in the traditional approach. Confi-
dence intervals for the fitted value curves are obtained by parametric bootstrap. The pro-
posed approach was applied retrospectively to data from two studies that assessed the
speech perception of cochlear implant recipients using different sound processing algo-
rithms under different listening conditions. The proposed approach yielded mean SRTs for
each condition that were consistent with the traditional approach, but were more informa-
tive. It provided the mean psychometric curve of each condition, revealing differences in
slope, i.e. differential performance at different parts of the SNR spectrum. Another advan-
tage of the new method of analysis is that results are stated in terms of differences in per-
cent correct scores, which is more interpretable than results from the traditional analysis.

Introduction

Measuring speech intelligibility in noise is an important endeavor in the clinical management
of hearing loss. It can be used to assess the benefit a person receives from a hearing aid or
cochlear implant, and to track their performance over time. It is also used in the research and
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processing algorithms that may be incorporated into
future Cochlear Ltd. products. This does not alter the
authors’ adherence to all the PLOS ONE policies on
sharing data and materials.

development of hearing devices, to compare the effectiveness of alternative sound processing
algorithms.

A common approach is to play a pre-recorded sentence, mixed with noise, to the subject,
who attempts to verbally repeat it. The clinician then records a score for the sentence based on
the number of words that the subject repeated correctly. Alternatively, scores can be based on
only the key words in the sentence, or based on morphemes, a linguistic unit (for example, in
the sentence “He hits the ball”, the word “hits” contains two morphemes, “hit” and “s”). A sub-
ject is typically tested with a list of 10 to 32 sentences taken from a corpus of sentences com-
piled for this purpose [1] [2] [3] [4].

Speech in noise tests are sometimes performed at a fixed signal-to-noise ratio (SNR), to give
a percent-correct measure of intelligibility. If the test is repeated at different SNRs, and the
scores are plotted as a function of SNR, the resulting curve is known as a psychometric function
that is typically S-shaped, for example the logistic function [5]. When designing a study into
the effects of a sound processing algorithm, the differences in performance between subjects
can be so large that testing all subjects at the same SNR would be prone to floor or ceiling
effects. An alternative is to measure the speech reception threshold (SRT) of each subject,
which is typically defined as the SNR at which the subject scores 50% correct. The SRT is con-
ventionally estimated by an adaptive procedure, in which the SNR of each sentence is adjusted
based on the subject’s previous responses. Adaptive threshold estimation methods were ini-
tially developed for experiments in which the subject provides a binomial response on each
trial [6]; for example, identifying the correct interval in an N-alternative forced-choice test.
These methods can readily be applied to sentence tests; if the subject correctly identifies more
than half of the words in the sentence, then the SNR is reduced (making the next sentence
more difficult), and conversely if the subject correctly identifies less than half of the words,
then the SNR is increased (making the next sentence easier). With an appropriate adaptive
rule, the SNR should converge to the SRT [3]. Two example adaptive tracks are shown in Fig 1.

The SRT can be estimated as the mean of the SNR levels, excluding some initial sentences
[1] [3]; or by the mean of the SNR levels at the turns, where a turn (or reversal) is defined as a
trial in which the adaptive rule changed direction [6]; or by fitting a psychometric function [7]
[4]. A set of SRT estimates is usually analyzed using a simple statistical method such as a t-test
or repeated measures analysis of variance (ANOVA).

Although Dawson et al. [4] found that fitting a psychometric function provided the best
SRT test-retest reliability, there are some limitations in this approach. Occasionally, a subject’s
average scores are not a monotonically increasing function of SNR; an example is shown in Fig
1. This could be due to random fluctuation, or a lapse in the subject’s concentration, or a run of
more difficult sentences (despite efforts to equalise sentence difficulty [4]). Such cases can pro-
duce a poor fit. Furthermore, the fitting method assumed a binomial distribution [5], but the
assumption that a sentence containing K words consists of K independent Bernoulli trials is
violated, because recognition of one word is not independent of the other words. Sentences rep-
resentative of everyday conversation have contextual cues, meaning that if the subject recog-
nises the first few words, then they are more likely to recognise the remaining words. At the
SRT, although the average word score is 50%, it is relatively uncommon to score near 50% for
any particular sentence; instead some sentences receive scores near 100%, and a roughly equal
number of sentences receive scores near 0%. A histogram of the sentence scores for Study One
(described in the next section), with large spikes at values 0% and 100%, is shown in Fig 2.

Regardless of the method used to calculate the SRT, summarizing an entire adaptive track
by a single number suffers from a loss of information. Applying repeated measures ANOVA to
a set of SRT estimates implicitly assumes that the psychometric functions for the different con-
ditions are of similar shapes, differing only in the SRT values, and differences in the slope of
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Fig 1. Two example adaptive tracks and psychometric curves from study one. Each part of the figure
shows a track of 20 sentences for subject B1, corresponding to Table 1. The top panel of each part shows the
adaptive track, with sentence number running down the page; each sentence is represented by a circle, with
its horizontal location indicating the SNR, and its gray-scale fill indicating the score, with 100% correct as
white, and 0% as black. The green vertical line shows the SRT estimate obtained by averaging the SNRs of
the final 16 sentences. The bottom panel of each part shows the mean percent correct score at each SNR,
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with the size of each square proportional to the number of sentences that were presented at that SNR, and a
confidence interval calculated according to the binomial distribution. It also shows the fitted psychometric
curve, and the blue vertical line indicates the corresponding SRT estimate [4].

doi:10.1371/journal.pone.0132409.g001
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Fig 2. Study One: Histogram of percent correct.

doi:10.1371/journal.pone.0132409.g002

the psychometric function or its asymptotic value are ignored. We propose an alternative
approach, a zero-and-one inflated beta regression model, in which an observation is a single
sentence score rather than an SRT. This model makes fewer assumptions about the data and
provides more valuable information.

Materials and Methods
The speech perception data sets

The two studies described below were approved by the Human Research Ethics Committee of
the Royal Victorian Eye & Ear Hospital, Melbourne, and each subject provided written
informed consent.

The new statistical method was applied to data from two studies involving Nucleus cochlear
implant recipients. The two studies shared a number of characteristics. Both studies used a
repeated-measures design, in which each subject served as their own control, and the aim was
to compare performance with different sound processing algorithms under one or more
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listening conditions. The two studies administered an adaptive SRT test, using the Australian
Sentence Test in Noise (AuSTIN) [4]. The target speech was presented at 65 dB SPL, and the
level of the interfering noise was adjusted based on the subject’s responses. Morpheme scoring
was used. Each adaptive track used a list of 20 sentences, and the SRT was calculated as the
mean of the SNRs of the final 16 sentences.

Study One

The first study compared the speech recognition of seven bilateral cochlear implant recipients
in the presence of an interfering talker. The first factor of interest was the sound processing
algorithm (“algorithm™). The details of the sound processing algorithms are not relevant to the
statistical analysis of the results, so the three algorithms are simply labelled “A”, “B” and “C”,
and the question was whether the three algorithms yielded differences in the subjects’ perfor-
mance. The second factor was the direction of the interfering talker (“noise direction”), which
was either from the front (“F”) or from both sides (“S”). As the target speech was presented
from the front, it was hypothesized that performance would be better for side interferers, as
subjects could potentially use the difference in spatial location to segregate the two voices. The
third factor was the gender of the interfering talker (“noise gender”). As the target voice was
female, it was hypothesized that performance would be better for a male interferer, as subjects
could potentially use the difference in voice pitch to segregate the two voices. For the noise
direction and noise gender factors, interaction with the algorithm factor would indicate that
the sound processing algorithms differed in their effectiveness in conveying spatial or pitch
cues. The SRT for each subject was measured four times (i.e. four adaptive tracks, totalling 80
sentences), for each of the 12 conditions (3 algorithms x 2 noise directions x 2 noise genders).
The adaptive rule used a 4 dB step size for the initial four sentences and a 2 dB step size for the
remaining sentences.

Study Two

The second study [8] compared speech intelligibility as a function of a single factor, the sound
processing algorithm (“algorithm”), consisting of a standard algorithm (“Beam”) and five vari-
ants of a spatial noise reduction algorithm, labeled “SpS0”, “SpZ-3”, “SpZ0”, “SpZ+3”, “SpZ+6”
(again, the details of the sound processing algorithms are not relevant here). Twelve subjects
participated. The target speech was presented from the front, while the noise consisted of four
interfering talkers, each presented from a separate loudspeaker in the rear half-circle, with loca-
tions that changed from sentence to sentence. The SRT for each subject was measured twice
(i.e. two adaptive tracks, totalling 40 sentences), for each of the six algorithms. The adaptive
rule was the same as in the first study, with the exception that the SNR for the fifth sentence
was equal to the average of the SNRs of the initial four sentences and the SNR at which the fifth
sentence would have been presented in response to the score of the fourth sentence [3]. The
primary hypothesis was that the spatial noise reduction algorithms would give better perfor-
mance than Beam, with a secondary goal to determine which variant of spatial noise reduction
gave the best performance.

Traditional Approach

The traditional approach used SRT as the response variable in ANOVA models. A single obser-
vation was therefore the SRT calculated over a track of 20 sentences. In both studies, every sub-
ject was evaluated across all factors, and repeated measures ANOV A was applied. The
underlying assumption of sphericity was assessed by Mauchly’s test of sphericity. The Green-
house-Geisser adjustment was applied to adjust the degrees of freedom in case of violation of
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the sphericity assumption. The significance level was set as 0.05. If the main effect was found to
be significant, multiple comparisons were performed subsequently to generate inferences.

The Statistical Model of The New Approach

In this approach, a single observation is a sentence. The response variable y in the statistical
model is the proportion of morphemes correctly identified, i.e. y = /N, where N is the number
of morphemes in a sentence and r is the number of morphemes correctly identified. A binomial
model may seem an obvious choice for y, but clearly the independence assumption of the bino-
mial model is not met, due to context effects. As y is a proportion, a promising probability
model is the beta distribution:

i, p) = 1=y y€(0,1) (1)

1
B(, )’

which has mean E(y) = a/(a+p). It is advantageous, in regression modeling, for the response
distribution to be expressed in a parametrization in which the mean is a parameter. We there-
fore base our modeling on the following alternative parametrization of the beta distribution
[9]:

1 #ioe) ) (-wi-c?) ;

fz(}’?ﬂ»a):B(’u(lJQ) (1,“)(10'2))y 7 1=y = ye(1)

(2)

a2

O<u<l; O<ox1

which has the advantage that E(y) = u. We have Var (y) = 0> u(1-u), and the parameters  and
o are connected with the original parameters & and in Eq (1) with relations a = y(1-0%)/0
and S = (l—y)(l—oz)/oz. A feature of the beta distribution is that the endpoints y=0and y =1
are inadmissible. If the data had small frequencies at either endpoint, with most observations
lying in the interior of (0, 1), this could be accommodated by scaling y to lie in the interior of
(0, 1). However in our data we observe high frequencies at zero (no morphemes recognized)
and one (all morphemes correctly identified). This feature is accommodated by the zero-and-
one-inflated beta distribution [10], which has parameters p, and p, for probability spikes at
zero and one, respectively. We write this as a mixed discrete-continuous probability function:

Po y=0
J%O/;:uvaapovpl) = (1 — Dy _pl) ‘fz()’%/l,a) yE (Ov ]-) (3)
b y=1

which has overall mean E(y) = (1-po—p;)p+p1. However, we need to reparametrize once more,
because in estimating parameters of the probability Eq (3), we have to respect the constraint 0
< po + p1 < 1, which is awkward to achieve numerically. In addition, parameter estimates p,,
and p, are negatively correlated, which is not a good property. We use instead

v

- -0
1+v+71 Y
fimovt) ={ —— f(yimo) ye (1)
4%#7 3V - 1+V+T 2)’7#7 )’ b
T
- =1
1+v+71 Y
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where v > 0 and 7 > 0. The probability masses of measures 0 and 1 are associated with the two
shape parameters v and 7 through the relations v = po/(1-po—p;) and 7 = p1/(1-po—p1).

The four parameters y, 0, v and 7 are modeled with covariates, as well as random effects to
account for within-subject correlation:

where x, z, h and k are vectors of known covariates, which may be overlapping or distinct; £, ¥,
A and p are corresponding coefficient vectors; and u; ~ N(0, 512) ,j=1,...,4isarandom
effect for subject. Logit links are used for the parameters constrained to (0, 1), i.e. y and 0, and
log links for those constrained to R* (v and 7), as is common practice in generalized linear
modeling. Parameter estimation is achieved in the R package gamlss, in which up to four dis-
tribution parameters may be modeled simultaneously [11, 12], using maximum (penalized)
likelihood estimation. Model selection was based on the Generalized Akaike Information Crite-
rion (GAIC).

Although parameters v and 7 determine the probability masses for proportion correct at
zero and one, the probabilities pg and p, are not modeled with regression structures directly,
and the effect of the covariates on these probabilities is difficult to interpret. For given covariate
values h and k, fitted values for proportion correct equal to zero (p,) and one (p,) are derived
algebraically, with random effects #; assumed to be zero:

A v B exp(h' )

Pom 57 + exp(hTA) + exp(kTp)
A 7 exp(k™p)
PSR T +exp(hT2) +exp(kTp)

To facilitate interpretation, fitted probabilities enhanced with confidence intervals are plotted
against the covariates. The confidence intervals are based on the parametric bootstrap [13].
Specifically, given estimates B, %, 4 and p, and for each combination of covariate values x, z,
h, k, the parameter estimates /i, 6, ¥ and 7 are computed, using Eq (4) and assuming

B = =i, =0
TR T4 R
ﬂ:M ; &zM ; v=exp(h'd); t=exp(k'p) .
1+ exp(x™fB) 1+exp(z'})

These estimates are then used to generate pseudo observations (bootstrap samples) from
model f;. Five hundred such bootstrap samples are generated, each of which contains the
same number of observations under every combination of covariate values, as in the original
data. Each sample is fitted with zero-and-one inflated beta regression, and the fitted overall
means of proportion correct are obtained. Endpoints of the 95% confidence intervals are
computed as the lower and upper 2.5% percentiles of the fitted proportions correct, at each
covariate combination.
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Results
Study One

An excerpt of the data from the first study is shown in Table 1, and the full dataset is given in
S1 Data. It shows the scores for two sentence lists of 20 sentences each, for the same subject
and listening condition. Corresponding plots are shown in Fig 1. For the purpose of the tradi-
tional analysis, the 40 sentence scores in Table 1 are aggregated to two SRT estimates, given in
Table 2.

Traditional Approach. A three-way repeated measures ANOVA was used and no viola-
tion of the sphericity assumption was found. With respect to main effects, algorithm and noise
direction were not significant. The noise gender factor, however, was significant, with esti-
mated marginal group means of SRT of 2.59 dB for male interferers, and 3.99 dB for female
interferers. The interaction term of noise gender and algorithm was also significant, and the
summary is given in Table 3.

Effects of algorithm were investigated by dividing the data into two subsets, with male and
female interferers separately. With female interferers, the effect of algorithm was significant
(F,,54 = 4.676, p = 0.013), and pairwise comparisons with Bonferroni adjustments suggested
that algorithm A had significantly better (lower) SRT than algorithm B (p = 0.021), with esti-
mated marginal mean difference of -0.918 dB. No other comparisons were significant. With
male interferers, the effect of algorithm, however, was not significant (F, 5, = 1.444, p = 0.245).

Effects of noise gender were also investigated by splitting the data by algorithm. The noise
gender factor was significant for each algorithm (A: F) ,; = 5.019, p = 0.033; B: F} 5, = 29.096,

p < 0.001; C: Fy ,; = 28.331, p < 0.001), suggesting that SRT estimates were significantly better
(lower) for male interferers than for female. No other terms were significant.

Proposed Approach. Parameter estimates for the modeling of y, 0, v and 7 are given in
Table 4. No covariates were significant for o. For y, v and 7, SNR, noise gender and algorithm
were all significant. In addition, noise gender-algorithm interaction was significant for y and 7;
SNR-algorithm interaction was significant for v; and SNR-noise gender interaction was signifi-
cant for 7.

The fitted overall means of percent correct (i.e. (1 — p, — p,)it + p,) for each algorithm are
shown in Fig 3, separately for both noise genders, together with confidence intervals con-
structed by parametric bootstrap. The curves for algorithms B and C largely overlap at all
SNRs, indicating little difference between those algorithms. However, the curve for algorithm
A has a steeper slope than those for algorithms B and C; for female interferers, the three curves
overlap at low SNRs, but start to separate at higher SNRs. This difference in slope between
algorithms was not detected in the traditional approach. Similarly, Fig 4 presents the fitted
value curves and confidence intervals, separately for each algorithm, showing the effect of noise
gender. For all three algorithms, the male interferer provided significantly better speech intelli-
gibility than the female, with the difference being larger for algorithms B and C.

The fitted zero-and-one inflated beta distribution is shown in Fig 5 for the subset of subjects
having algorithm = A, gender = Female, and SNR =5 (n = 312).

Study Two

Traditional Approach. The dataset is given in S2 Data. Following Hersbach et al. [8], a
one-way repeated measures ANOVA was used, in which marginal violation of the sphericity
assumption was found (p = 0.048) and the Greenhouse-Geisser adjustment was applied to the
degrees of freedom of F-statistics involved. The algorithm factor was significant (F; 457,79 506 =
47.401, p < 0.001). More specifically, the estimated means of SRT were 0.171 dB, -2.583 dB,
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Table 1. An excerpt of the sentence scores from study one. The table shows two adaptive tracks (tracks 2 and 7), each of 20 sentences, for subject B1.
Each row of the table contains data for one sentence. Each sentence score is specified by the number of morphemes repeated correctly (hum_correct), and
the number of morphemes in the sentence (num_items).

subject algorithm track noise_dir noise_gender speech_level snr num_correct num_items
B1 (0] 2 S F 65 5 0 6
B1 (0] 2 S F 65 9 4 4
B1 C 2 S F 65 5 7 7
B1 C 2 S F 65 1 1 7
B1 C 2 S F 65 3 0 5
B1 C 2 S F 65 5 7 8
B1 C 2 S F 65 3 3 6
B1 C 2 S F 65 1 5 7
B1 C 2 S F 65 -1 0 7
B1 C 2 S F 65 1 7 7
B1 C 2 S F 65 -1 0 6
B1 (0] 2 S F 65 1 1 6
B1 C 2 S F 65 3 4 6
B1 (0] 2 S F 65 1 3 6
B1 C 2 S F 65 -1 0 7
B1 C 2 S F 65 1 1 6
B1 C 2 S F 65 3 0 5
B1 C 2 S F 65 5 5 6
B1 C 2 S F 65 3 2 5
B1 C 2 S F 65 5 7 7
B1 C 7 S F 65 5 7 7
B1 C 7 S F 65 1 0 6
B1 C 7 S F 65 5 6 6
B1 (0] 7 S F 65 1 0 6
B1 C 7 S F 65 3 0 6
B1 C 7 S F 65 5 0 6
B1 C 7 S F 65 7 3 6
B1 C 7 S F 65 5 4 7
B1 C 7 S F 65 3 0 6
B1 C 7 S F 65 5 6 6
B1 C 7 S F 65 3 0 5
B1 C 7 S F 65 5 0 6
B1 C 7 S F 65 7 7 7
B1 (0] 7 S F 65 5 4 6
B1 C 7 S F 65 3 0 7
B1 (0] 7 S F 65 5 4 7
B1 C 7 S F 65 3 2 7
B1 C 7 S F 65 5 2 6
B1 C 7 S F 65 7 7 7
B1 C 7 S F 65 5 6 6

doi:10.1371/journal.pone.0132409.t001

PLOS ONE | DOI:10.1371/journal.pone.0132409 July 6, 2015 9/17



@’PLOS ‘ ONE

A Statistical Method for the Analysis of Speech Intelligibility Tests

Table 2. An excerpt of the SRT data from study one. In the traditional approach, the 40 sentence scores in
Table 1 are reduced to the two SRT estimates shown here.

subject algorithm track noise_dir noise_gender speech_level SRT
B1 C 2 S B 65 2.1
B1 C 7 S F 65 4.6

doi:10.1371/journal.pone.0132409.t002

Table 3. Tests of within-subjects effects in study one.

Effect Type Il SS F value P value
algorithm 4.096 0.543 0.584
noise_gender 165.060 50.490 0.000
noise_dir 0.771 0.179 0.676
algorithmxnoise_gender 34.576 7131 0.002
algorithmxnoise_dir 11.520 2.059 0.137
noise_genderxnoise_dir 2.555 1.633 0.212
algorithmxnoise_dirxnoise_gender 1.001 0.380 0.686

doi:10.1371/journal.pone.0132409.t003

-3.279 dB, -3.938 dB, -4.446 dB and -3.987 dB for Beam, SpS0, SpZ-3, SpZ0, SpZ+3 and SpZ+6
respectively. Pairwise comparisons with Bonferroni adjustments showed that Beam had signifi-
cantly worse SRT's than all five variants of the spatial noise reduction algorithm (p < 0.001). In
addition, SpS0 had significantly worse SRT's than SpZ0, SpZ+3 and SpZ+6 (p = 0.008,

p < 0.001, p = 0.005 respectively). Pairwise comparisons among the four variants of SpZ-3,
SpZ0, SpZ+3 and SpZ+6 suggested no significant differences.

Proposed Approach. Parameter estimates for the modeling of y, 0, v and 7 are given in
Table 5. No covariates were significant for o. Fig 6 shows the fitted overall means of percent
correct, i.e. the mean psychometric functions for the six algorithms. All curves appear to have
the same slope. A horizontal line at 50% correct intercepts each psychometric function at an
SNR equal to its SRT, illustrating the 4.6 dB SRT improvement of SpZ+3 over Beam, as found
in the traditional approach.

Confidence intervals for the mean psychometric functions, obtained by parametric boot-
strap, are presented in Fig 7, demonstrating that Beam had significantly lower speech intelligi-
bility scores than all five spatial noise reduction algorithm variants. The curves for SpZ0, SpZ
+3, and SpZ+6 overlap, suggesting that their performances can be viewed as indistinguishable.
The curve for SpS0 is separated from the curves of SpZ0, SpZ+3 and SpZ+6, indicating a signif-
icant difference.

Discussion and Conclusions

The traditional approach has two stages: firstly, an SRT estimate is computed for each adaptive
track; and secondly, a linear model is applied to the set of SRT estimates. The first stage, which
distils a set of sentence SNR levels and scores into a single number, the SRT estimate, discards
much of the available information. For example, the within-subject, within-condition variabil-
ity is measured by the spread of four SRT values in study one, and two SRT values in study two.
The corresponding set of sentence scores is a potential source of information regarding this
variability, but is ignored. A psychometric fit can provide an estimate of the slope of the
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Table 4. Modeling of u, o, v and 7in Study One.

Coefficients Estimate Std. Error t-value P-value

parameter u
link logit
Intercept -0.184 0.054 -3.406 <0.0001
snr 0.068 0.007 9.580 <0.0001
noise_gender

F — — — —

M -0.020 0.066 -0.305 0.760
algorithm

A = — = p—

B -0.036 0.066 -0.542 0.588

C -0.168 0.063 -2.687 0.007
noise_genderxalgorithm

M:B 0.184 0.092 1.995 0.046

M:C 0.213 0.089 2.406 0.016
parameter o
link logit
Intercept -0.302 0.020 -15.280 <0.0001
parameter v
link log
Intercept 1.129 0.083 13.556 <0.0001
snr -0.290 0.022 -13.198 <0.0001
noise_gender

F — — — —

M -0.315 0.058 -5.414 <0.0001
algorithm

A R = R E—

B -0.335 0.102 -3.283 0.001

C -0.366 0.105 -3.489 <0.001
snrxalgorithm

snr:B 0.119 0.028 4.312 <0.0001

snr:C 0.025 0.029 0.871 0.384
parameter T
link log
Intercept -0.866 0.098 -8.819 <0.0001
snr 0.241 0.016 14.790 <0.0001
noise_gender

F — — — —

M 0.262 0.132 1.984 0.047
algorithm

A R = R E—

B -0.179 0.098 -1.815 0.070

C -0.579 0.010 -5.808 <0.0001
noise_genderxalgorithm

M:B 0.132 0.138 0.961 0.336

M:C 0.389 0.138 2.810 0.005
snrxnoise_gender

snr:M -0.029 0.022 -1.298 0.194
doi:10.1371/journal.pone.0132409.t004
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Fig 3. Study One: Fitted overall means of percent correct, showing effect of algorithm. 95% confidence intervals were calculated using 500 parametric
bootstrap samples.
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Fig 4. Study One: Fitted overall means of percent correct, showing effect of noise gender. 95% confidence intervals were calculated using 500
parametric bootstrap samples.

doi:10.1371/journal.pone.0132409.9004
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Fig 5. Study One: Observed frequencies, and fitted zero-and-one inflated beta distribution. Algorithm = A, gender = Female, SNR =5 (312 subjects).

doi:10.1371/journal.pone.0132409.9005

psychometric function, with shallower slopes implying more variability in SRT estimates, but
there is no obvious means of incorporating slopes into the traditional approach.

In contrast, the proposed approach applies a generalized linear model to the entire set of
sentence scores, utilizing all available information. It can provide the mean SRTs of each condi-
tion, as in the traditional approach, but is more informative as it also provides estimates of the
entire mean psychometric function for each condition.

One limitation of a retrospective analysis of the data is that the adaptive rule used in these
studies started with a high SNR, then adjusted the SNR towards the 50% correct point. This
concentrates the observations near the 50% correct point, which is the most efficient placement
for estimating the SRT [6] but yields relatively few observations at lower SNRs. This makes dif-
ferences at the extremes of the SNR spectrum difficult to detect. If the goal of a study is to esti-
mate the entire mean psychometric function, then a different adaptive rule should be used.
One solution is to randomly interleave multiple adaptive tracks, each targeting different per-
cent correct scores, e.g. 30% and 70% correct [6] [7]. This is readily handled by the proposed
approach.
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Table 5. Modeling of u, g, vand 7in Study Two.

Coefficients

parameter
link
Intercept
snr
algorithm
Beam
SpS0
SpZ-3
SpZ+3
SpZ+6
SpZ0
parameter
link
Intercept
parameter
link
Intercept
snr
algorithm
Beam
SpS0O
SpZ-3
SpZ+3
SpZ+6
SpZ0
parameter
link
Intercept
snr
algorithm
Beam
SpS0
SpZ-3
SpZ+3
SpZ+6
SpZ0

Estimate

logit
0.071
0.071

0.200
0.236
0.391
0.365
0.336

logit
-0.333

log
-0.479
-0.289

-0.560
-1.028
-1.388
-1.170
-1.251

log
-0.624
0.254

1.009
0.943
1.092
1.193
1.160

doi:10.1371/journal.pone.0132409.t005

Std. Error

0.052
0.005

0.078
0.075
0.076
0.078
0.076

0.024

0.097
0.009

0.139
0.142
0.144
0.144
0.143

0.096
0.009

0.136
0.137
0.141
0.139
0.138

t-value

1.369
14.634

2.566
3.125
5.110
4.705
4.396

-14.040

-4.950
-30.838

-4.042
-7.260
-9.623
-8.148
-8.739

-6.490
29.143

7.443
6.876
7.752
8.569
8.384

P-value

0.171
<0.0001
<0.0001

0.010

0.002
<0.0001
<0.0001
<0.0001

<0.0001

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

The most practical benefit of the proposed approach is that it allows the difference between
two conditions to be expressed in terms of percent correct scores. For example, in study two,

the traditional approach states that the best spatial noise reduction algorithm gave a 4.6 dB

SRT benefit over Beam. However, terms such as decibels and SRT's are unfamiliar to most

cochlear implant recipients. Instead, the proposed approach allows the result to be better

understood: in a noisy situation, average scores improved from 25% correct with Beam to 62%

with the best spatial noise reduction algorithm.
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Fig 6. Study Two: Fitted overall means of percent correct.
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doi:10.1371/journal.pone.0132409.g006

Supporting Information

S1 Data. Study One data. StudyOne.xlsx is the full data set (as in Table 1), StudyOne_srt.xlsx

is the data set summarized as SRT (as in Table 2).
(ZIP)

S2 Data. Study Two data. StudyTwo.xlsx is the full data set, StudyTwo_srt.xlsx is the data set

summarized as SRT.
(ZIP)
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Fig 7. Study Two: Fitted overall means of percent correct, with confidence intervals. 95% confidence intervals were calculated using 500 parametric
bootstrap samples.
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