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Abstract
There has been increasing awareness in the wider biological community of the role of clonal

phenotypic heterogeneity in playing key roles in phenomena such as cellular bet-hedging

and decision making, as in the case of the phage-λ lysis/lysogeny and B. Subtilis compe-

tence/vegetative pathways. Here, we report on the effect of stochasticity in growth rate, cel-

lular memory/intermittency, and its relation to phenotypic heterogeneity. We first present a

linear stochastic differential model with finite auto-correlation time, where a randomly fluctu-

ating growth rate with a negative average is shown to result in exponential growth for suffi-

ciently large fluctuations in growth rate. We then present a non-linear stochastic self-

regulation model where the loss of coherent self-regulation and an increase in noise can

induce a shift from bounded to unbounded growth. An important consequence of these

models is that while the average change in phenotype may not differ for various parameter

sets, the variance of the resulting distributions may considerably change. This demon-

strates the necessity of understanding the influence of variance and heterogeneity within

seemingly identical clonal populations, while providing a mechanism for varying functional

consequences of such heterogeneity. Our results highlight the importance of a paradigm

shift from a deterministic to a probabilistic view of clonality in understanding selection as an

optimization problem on noise-driven processes, resulting in a wide range of biological

implications, from robustness to environmental stress to the development of drug

resistance.

Introduction
With the advent of new technologies allowing for precise, quantitative measurement of protein
levels at cellular resolution, there has been greater awareness in the wider biological community
challenging the assumption that all observed experimental noise in biological systems is an
inherent artifact of experimental processes. Rather, randomly varying elements inherent to
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individual cells, such as fluctuating protein levels [1], contribute to cell-to-cell heterogeneity
and are key contributors to processes that control a variety of biological phenomenon on multi-
ple scales, ranging from cellular decision-making [2, 3], to the evolutionary fitness of monoclo-
nal yeast colonies [4]. A recent essay [5] highlighted the key role of non-heritable cellular
variability in the evolution processes of cancer.

Stochasticity is inherent in any well mixed chemical solution [6]. Therefore noise will exist
in biological systems regardless of how precisely these systems can be measured. Furthermore,
as there are always factors that are inaccessible to observers at any given resolution, taking into
account all relevant physical/biochemical processes when modeling biological systems across
multiple scales is practically impossible. The totality of these processes are treated here as sto-
chastic noise, covering many biological, chemical, and physical processes including epigenetic
and environmental effects. In this paper, we model noise-driven growth in biological systems
in the scenario of simple multiplicative noise as well as that of a first-order self-regulation. It is
important to note that the noise considered here always has a mean value of zero. As such, ran-
dom deviations from mean growth rates make mean values inadequate representations of our
system, necessitating a probabilistic approach by using probability distribution functions (e.g.
see [7, 8]). The clonal populations described here have identical genetic compositions and
therefore identical model parameters, but reside in varying areas of state-space due to the sto-
chasticity of the system. Such phenomena have been observed in the form of multiple, discrete
colonies of yeast, where it has been posited that such phenotypic variability provides a mecha-
nism for evolutionary bet-hedging [4]. We introduce a mathematical formalism that can
describe bet-hedging and other similar phenomena.

1 Models
Wemodel the consequences of noise driven growth as solutions to stochastic differential equa-
tions (SDEs) in the form of probability distribution functions (PDFs), thereby highlighting the
necessity of probabilistic approaches when understanding the issue of cellular heterogeneity
within clonal sub-populations. In general, stochastic differential equations contain both a
deterministic and stochastic component, where the stochastic component is written as the
product of a deterministic coefficient and a Gaussian noise with zero mean. In our models, we
consider two types of Gaussian noise—Gaussian white noise and Gaussian colored noise. An
important distinction between the two is that white noise has no intrinsic memory, while col-
ored noise has a finite auto-correlation time. Gaussian white noise (short correlation time τc),
gw(t), is represented as gwðtÞ ¼ dW

dt
with the property 〈gw(t)gw(t0)〉 = Dτc δ(jt − t0j), whereW is a

continuous-time Wiener process and δ is a delta function. Gaussian colored noise, gc(t), can be
described as the solution to the equation

dgcðtÞ
dt

¼ �tcgcðtÞ þ tcgwðtÞ; ð1Þ

with the auto-correlation property

hgcðtÞgcðt0Þi ¼ De
�t=tc ; ð2Þ

where τc is the auto-correlation time and D is the magnitude of noise (S1 Fig). It is important
to note that both gw(t) and gc(t) both share identical means and variances whose distributions
cannot be distinguished at any single point in time. Auto-correlated noise, similar to that
described Eq 2, has been previously observed as a driving factor in biological systems [1, 9].

In our models, intermittency, or a stochastic change in state, is introduced by way of the
finite auto-correlation time. While the trajectories of the Gaussian colored noise cannot be
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considered as Markov processes, we can highlight the essential effect of the auto-correlation
time τc by decomposing our random process into a two-state Markov process. By assigning
negative values of gw(t) and gc(t) to state 0 and positive values of gw(t) and gc(t) to state 1, we
can see that an increase of the auto-correlation time, τc, would result in an increase of the 0!
0 and 1! 1 transition probability, thereby resulting in a net increase in intermittency as
shown by a decreased probability of state transitions. (S2 Fig) In the context of our linear
model, the decomposition of positive and negative values to binary states can be interpreted as
either decay (state 0) or growth (state 1). To clarify, sub-populations of the linear model can be
either growing or decaying, with transitions between each state being stochastic. As such, these
systems are intermittent. With lower transition probabilities, the expected times between state
transitions increase and thus have higher intermittency.

1.1 Stochastic Differential Equations
The models presented in the following section are solutions to the stochastic differential
equation

dCl

dt
¼ gcCl; ð3Þ

for the standard multiplicative noise scenario, referred to as our linear model. Similar models
have been previously proposed for describing diverse biological phenomena, from the sur-
vival times of cancer patients to spine sizes in the neocortex [10, 11]. Further studies of this
linear model have also been previously described for similar colored noise regimes [12].

We also present our non-linear model as the coupled SDEs

dCn

dt
¼ GCn; ð4Þ

and

dG
dt

¼ g� ZCn � G; ð5Þ

where Cl (linear) and Cn (non-linear) are a continuous valued functions representing cellular
populations, G represents the overall growth input from various molecular pathways, γ is a
constitutive input of growth, and η is a reflection of self-regulation of G by Cn. The overall
effect of self-regulation of the total growth input is described as

Z ¼ �þ gcðtÞ; ð6Þ

where � is a positive constant describing the degree of coherent self-regulation.
For the statistically steady state, dG

dt
� 0, we model a loss of coherent population-based self-

regulation by proposing the following generalized logistic-type model

G � g� ð�þ gcÞCn; ð7Þ

where Eq 4 becomes

dCn

dt
¼ gCn � ð�þ gcÞC2

n: ð8Þ
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1.2 Solutions
PDFs. As the value of Cl changes stochastically with a stochastic noise gc, we quantify the

evolution of Cl by the PDF of Cl, denoted by P(Cl). Interestingly, to the first order in τc, Eq 3
gives the Fokker-Planck equation for P(Cl) where the effect of τc disappears (c.f. [13]). In order
to capture the effect of τc without using a small τc approximation, we derive P(Cl) directly from

Eqs 2 and 3. To this end, we express Eq 3 in terms of GðtÞ ¼ R t

0
gcðt1Þdt1 to obtain.

ln
Cl

C0

¼ G; ð9Þ

where C0 = Cl(t = 0) is the initial value of Cl at t = 0. Eq 9 gives dΓ/dCl = 1/Cl, which is then
used to link the PDFs of Cl and Γ as follows:

PðClÞ ¼ PðGÞ dG
dCl

¼ 1

Cl

PðGÞ: ð10Þ

P(Γ) in Eq 12 can be computed by using its characteristic function 〈eikΓ〉 as:

PðGÞ ¼ 1

2p

Z
dke�ikGheikGi

¼ 1

2p

Z
dke�ikGe�k2hG2i=2:

ð11Þ

〈Γ2〉 in Eq 11 is obtained by using Eq 2 as:

hG2i ¼
Z t

0

dt1

Z t

0

dt2hgcðt1Þgcðt2Þi

¼ 2D
Z t

0

dt1

Z t1

0

dt2e
½�ðt1�t2Þ=tc �

¼ 2Dtc ½t � tcð1� e�t=tcÞ�:

ð12Þ

By performing the integral over k in Eq 11 by using Eq 12 and substituting it to Eq 10, we
obtain the solution to Eq 3 as described by the probability distribution function

PðClÞ ¼
1

2Cl

ffiffiffiffiffiffiffi
atp

p exp ½� ½ lnCl=C0�2
4at

�: ð13Þ

where

a ¼ Dtc 1� tc
t
ð1� e�t=tcÞ

h i
:

Note that in the limit of a short correlation time τc ! 0, α! Dτc
Here, we recover a log-normal distribution, as is expected for stochastic systems driven

solely by Gaussian multiplicative noise. To illustrate this, we show P(Cl, t) for three different
values of τc and D (Fig 1). In doing this, we keep the same value for τc D since taking the limit
of short correlation time requires keeping τc D constant. Specifically, (Fig 1a and 1b) are for τc
= 0.01 and D = 100 and for τc = 1 and D = 1, respectively. For the initial delta-function PDF, P
(C0, 0) = δ(C0 − 1) (C0 = Cl(0)), PDFs are shown at t = 0.0001 + 0.4n where n = 0, 1, 2, . . .10. In
both cases, we can see that as time increases, the peak of the PDF moves towards the value Cl =
0 while the right PDF tail stretches out to larger values of Cl with its height increasing with
time. This stretched PDF is due to colonies of large population size increasing in time, and is a
manifestation of intermittency. It is important to note that the growth rates of each colony is
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uniquely determined and non-synchronous. The comparison between Fig 1a and 1b reveals
that the evolution of the PDF with a longer correlation time τc = 1 in Fig 1b keeps its original
PDF longer, with its peak around Cl = 1, demonstrating the dynamic relationship between cor-
relation time and dispersion.

This result demonstrates an intrinsic trade-off between accessible state-space and growth
stability, which may be of particular relevance during recovery after a given selection sweep.
After a selective sweep, remaining survivors are selected by virtue of having adopted a selec-
tively favorable state during the application of selection. Notably, survivors can either be stati-
cally or transiently in such a selectively favorable state While continuously residing in the
neighborhood of a particular state may be advantageous for a small range of selective sweeps at
many time points, transiently residing in a wider range of states can be thought of as conferring
fitness advantages for a larger range of selective sweeps, though only for only a select amount
of time. For large clonal populations composed of many discrete sub-populations or colonies,
the latter scenario allows for an overall larger range of states to be simultaneously accessed.
Thus, in anticipation for a wide range of potential sweeps, it may be advantageous for certain
populations to adopt such bet-hedging strategies that may increase overall variability, allowing

Fig 1. Variability of population is influenced by both the magnitude and auto-correlation properties of noise. Time evolution of P(Cl, t) shown at
t = 0.001 + 0.4n (n = 0, 1, 2, . . .10) for C0 = 1. τc = 0.01 and D = 100 in panel (A); τc = 1 and D = 1 in panel (B); τc = 0.01 and D = 1 in panel (C). Time increases
from narrower to wider distributions in each panel.

doi:10.1371/journal.pone.0132397.g001
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for an increased probability of survival. However, such bet-hedging strategies are constrained
by inherent growth instabilities that may arise due to excess variability.

To derive the solutions to Eq 8, we first compute the PDF of population P(Cn). To this end,
we recast Eq 8 in terms of y = 1/Cn as follows:

dy
dt

¼ gy � �þ gc: ð14Þ

The solution to Eq (14) is then found as:

y � yð0Þe�gt � �

g
½1� e�gt� ¼

Z t

0

dt1e
�gðt�t1Þgcðt1Þ � z; ð15Þ

where y(0) = 1/C(0) is the initial value of y at t = 0. The PDF of z can then be obtained from its
characteristic function, following a similar analysis as for Cl:

PðzÞ ¼ 1

2p

Z
dke�ikzheikzi

¼ 1

2p

Z
dke�ikze�k2hz2i=2;

ð16Þ

where 〈z2〉 in Eq (16) is obtained by using Eq (2) as:

hz2i ¼
Z t

0

dt1

Z t

0

dt2e
�gðt�t1Þ�gðt�t2Þhgcðt1Þgcðt2Þi

¼ D
g

1

gþ t�1
c

� 2g
g2 � t�2

c

e�ðgþt�1
c Þt þ 1

g� t�1
c

e�2gt

� �
:

ð17Þ

The substitution of Eq (17) in Eq (16) and the evaluation of the Gaussian integral then gives us

PðCnÞ ¼
N
C2

n

exp �b
1

Cn

� e�gt

Cð0Þ �
�

g
ð1� e�gtÞ

� �2
" #

: ð18Þ

Here N�1 ¼ R1
�A dze

�bz2 is the normalization factor, A ¼ e�gt

Cð0Þ þ �
g ð1� e�gtÞ, β = (2〈z2〉)−1 and

PðCnÞ ¼ PðzÞ=C2
n were used.

It must be noted here as well that the driving noise, gc, is determined uniquely for each col-
ony and is non-synchronous. These solutions have been computationally validated using a sto-
chastic Runge-Kutta method for Gaussian colored noise (S3 and S4 Figs and S1 Text) [14].

To understand how this system grows in general, we show P(Cn) at different times t = 0.001
+ 0.4n (where n = 0, 1, 2, 3, . . ., 9, 10) for fixed values of C0 = 1. The three cases shown in Fig 2
(a)–2(c) are for the parameter values:

• Fig 2(a): γ = 1, � = 0.5, β = 500 (C� = 2);

• Fig 2(b): γ = 1, � = 0.5, β = 50 (C� = 2);

• Fig 2(c): γ = 0.5, � = 0.5, β = 5 (C� = 1).

The first two cases have the same carrying capacity C� = γ/� = 2 while the strength of sto-
chastic noise increases from Fig 2a and 2b as β decreases from 500 to 50. For the case with the
smallest stochastic noise β = 500 in Fig 2a, the PDF starting from a delta-function at Cn = 1
(shown in a dotted vertical line) moves slowly to C� = 2, with little broadening of its width, and
converges to a stationary PDF plotted as a thick solid line, with a peak forming around its car-
rying capacity C� = 2. When β decreases from 500 to 50 by a factor of 10 as the stochastic noise
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increases by a factor of 10, the PDF becomes broader, and a long tail develops on the right
(large Cn) and also somewhat on the left (small Cn). This is shown in Fig 2b, which is taken at
the same times as in Fig 2a.

A further decrease in β by a factor of 5 not only broadens the PDF further, but also causes a
shift of the PDF peak to a smaller value of Cn < C�. This case however is not shown in Fig 2.
Instead, as both γ and gc act to promote growth, in Fig 2c, we show the case where γ is reduced
by a factor of 2 when β is further reduced (i.e. for larger gc). Taken at the same times as in Fig
2a and 2b, Fig 2c shows a broader distribution with a heavier right PDF tail. Stationary PDFs in
Fig 2a–2c are superimposed in Fig 2d to facilitate the comparison among the three cases. It is
notable that the right PDF tail is much heavier than the left PDF tail, with skewness increasing
with the loss of self-regulation.

Mean and Variance. From the movement of the peaks of our PDFs alone, it is not entirely
clear if the average increases or decreases in time. For the linear model Eq 3, we thus compute

Fig 2. P(Cn, t) converges on a stationary distribution. P(Cn, t) for C0 = 1 and t = 0.001 + 0.4n where n = 0, 1, 2, 3, . . .10 for the parameter values of γ = 1, �
= 0.5, β = 500 [panel (A)]; γ = 1, � = 0.5, β = 50 [panel (B)]; γ = 0.5, � = 0.5, β = 5 [panel (C)]. The initial PDF P(C0, 0) = δ(C0 − 1) is shown in a vertical dotted
line; the stationary PDF at t = 4 is shown in a thick solid line in panels (A)-(C). Stationary PDFs in panels (A)-(C) are superimposed in panel (D).

doi:10.1371/journal.pone.0132397.g002
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the average and also the dispersion of Cl as follows.

hCli ¼ C0e
at ð19Þ

DCl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC2

l i � hCli2
q

¼ C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4at � e2at

p
� C0e

2at; ð20Þ

where again C0 = Cl(t = 0) is the initial value of Cl at t = 0 (additional derivations for these
quantities can be found in S1 Text). Thus, despite the movement of the peak of the PDFs
towards smaller values, Eq 19 reveals that a system driven by purely stochastic noise grows

exponentially in time with a time-varying growth rate a ¼ Dtc 1� tc
t
ð1� e

�t
tc Þ

h i
. This is due to

the contribution from the heavy PDF tail, as noted above. Eq 20 also shows that the dispersion
ΔCl grows at an even faster rate 2α, signifying a rapid growth of intermittency (heterogeneity)
as the system progresses.

For our non-linear model Eq 8, it is interesting to find the average population 〈Cn〉 in the
limits of large and small β, corresponding to small and large stochastic noises gc (small and
large D), respectively. First, in the limit of β!1, we can show that

hCni ! g=�;

which recovers the result for a deterministic logistic saturation where Cn saturates to its carry-
ing capacity C� = γ/� (Fig 3) (additional derivations can be found in S1 Text). Mathematically,
this is expected for logistic functions as the loss of higher-order non-linear terms leaves just the
first-order exponential component. Intuitively, this relationship demonstrates the expected
property of boundless growth due to a derepression of a coherent auto-inhibition of growth.

In the opposite limit of β! 0,

hCni / �
ffiffiffi
b
p

r
ln

�2

gD

� �
:

Thus, as the coherent self-regulation vanishes as �! 0, the average population 〈Cn〉 diverges
logarithmically. This behavior can be seen from Fig 4, where the value of 〈Cn〉 becomes very
large as � becomes small, reflecting the fact that stochastic self-regulation alone cannot limit
the population to a finite value. This also leads to unbounded growth as previously noted.

1.3 Implications
Negative Growth Rate. Our analysis above demonstrates not only that random noise with

zero average can drive exponentially growing populations (linear model), but also that popula-
tions starting from the same initial conditions generate populations of differing size, with rap-
idly increasing intermittency in time. In addition to a purely random noise gw, when the
growth rate also has a constant part γ (with the total growth rate γ + gw), the constant value γ
can simply be added to Eqs (19) and (20). Specifically, Eq (19) becomes

hCli / eðgþaÞt; DCl / eðgþ2aÞt: ð21Þ
The implication of Eq (21) is that 〈Cl〉 can grow even when γ is negative as long as jγj< α due
to the growth of the large population. Furthermore, even when jγj< α with a total negative
growth rate γ + α< 0, the dispersion ΔCl can still grow exponentially as long as jγj< 2α. That
is, colonies of large population size can grow even when the average growth rate is negative.

Adjustable Variance. Another interesting consequence is that the average growth rate
remains the same as long as the total growth rate γ + α is the same regardless of the value of
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stochasticity (α). To illustrate this, let us consider a population CL driven by a constant γL and
stochastic growth rate with αL where αL = 0.01α and γL = γ + 0.99α. For CL, Eq (21) becomes

hCLi / eðgLþaLÞt ¼ eðgþaÞt; DCL / eðgLþ2aLÞt ¼ eðgþ1:01aÞt: ð22Þ

Therefore, Cl and CL grow at the same rate on average while CL has a much smaller dispersion
than Cl, meaning that CL has a much narrower distribution than Cl. An example of such case of
CL is illustrated in Fig 1c where D = 1 and τc = 0.01, to be compared with the distribution of Cl

in Fig 1a.
Growth Rate Variability. To understand the relationship between growth rate variability

and population size, it is useful to examine how growth rate changes in relation to population.
The growth rate of the average population 〈Cn〉 at time t is given by

1

hCni
@hCni
@t

¼ 1R1
0

dCnCnPðCn; tÞ
Z 1

0

dCnCn

@PðCn; tÞ
@t

: ð23Þ

To obtain the growth rate at a specific population, rather than for average populations, we con-
sider the average of Cn over a small interval dCn � 1 around Cn and define a local growth rate
χ(Cn, t) at Cn and t:

wðCn; tÞ ¼
1

PðCn; tÞ
@PðCn; tÞ

@t
: ð24Þ

Fig 3. The time evolution of 〈Cn〉. Time evolution of 〈Cn〉 corresponding to the three cases in Fig 2(A), 2(B) and 2(C) shown in solid, dotted and dashed lines,
respectively.

doi:10.1371/journal.pone.0132397.g003
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From Eqs (24) and (18), we then obtain

wðCn; tÞ � ge�2gt

1� e�2gt
�1þ 2b

1

Cn

� e�gt

Cð0Þ �
�

g
ð1� e�gtÞ

� �2
" #

�2b
1

Cn

� e�gt

Cð0Þ �
�

g
ð1� e�gtÞ

� �
g
C0

� �

� �
e�gt:

ð25Þ

We plot a local growth rate χ(Cn, t) as defined in Eq (25) in Fig 5 for the cases shown in Fig
2. Specifically, Fig 5a–5c show snap-shots at different times, with time increasing from the top
to the bottom lines; the negative growth rate at small Cn is not shown. χ(Cn, t) at t = 0.8 in
panel (a), (b) and (c) are plotted together in panel (d). We observe from Fig 5(a)–5(c) that χ
decreases in time, even becoming negative for small Cn, until χ becomes zero. Specifically, after
a sufficiently long time (say, t> 4), χ(Cn, t) becomes zero at all Cn as the PDFs converge to sta-
tionary profiles. Interestingly, in all cases, for Cn < C�, χ decreases with Cn, in agreement with
the data [15, 16]. For Cn > C�, the value of χ is very small with the tendency of a slight increase
with Cn. Our results thus clearly illustrate the strong variability of growth rate with respect to
differing population size.

Fig 4. High- and low-β limits for hCni. Various trajectories for hCni for increasing �/η plotted for various β at γ = 0.5. Shown are β values where β = 10n (n =
−0.5, 0, 0.5, . . ., 2.0). Trajectories of hCni approach a limit as β increases from small β = 10−0.5 (long dashes) to large β = 102 (right-most solid).

doi:10.1371/journal.pone.0132397.g004
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1.4 Fitness
We propose that under a known fitness function describing probability of survival, we can
recast the problem of evolutionary selection as an optimization/maximization problem in the
context of clonal phenotypic variability. In particular, by modeling clonal populations as exist-
ing as a collection of stochastically varying sub-populations, such as in a collection of isogenic
yeast colonies, we can mathematically describe how individual sub-populations may yield dif-
ferential responses to some defined selection sweep. Such differential responses have been pre-
viously described in the literature, such as with the phage-λ [2] or B. subtilis [3]. These
responses have been generally described as belonging to a set of binary phenotypes which
inherently confer differing evolutionary advantages. With the introduction of a fitness func-
tion, we introduce two binary phenotypes—that of death and survival.

Consider a collection of co-cultured isogenic yeast colonies beginning in identical initial
conditions. Due to stochastic fluctuations in growth rate, each colony begins to adopt unique
growth trajectories thereby increasing the accessible state-space of the collection of colonies. At
some later time, a toxic substance is introduced into the media. Intake of this toxic substance

would be a function of the total surface area in contact with the media (surface area/ C
2=3)

thereby relating increasing colony size to increasing risk of death. Therefore, the probability of

Fig 5. Growth rate variability ofCn. Local growth rates of χ(Cn, t) corresponding to the three cases in Fig 2(A), 2(B) and 2(C) shown in solid, dotted and
dashed lines, respectively. Negative growth rates are not shown in panel (A)-(C). χ(Cn, t) at t = 0.8 in panel (A), (B), and (C) are plotted together in panel (D).

doi:10.1371/journal.pone.0132397.g005
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survival may be quantified as some function of colony size, f(C) (Fig 6). As f(C) is a probability
distribution function, the probability of survival after selection for populations in a state on [C,
C + dC] is given by f(C)P(C)dC. In the context of such a fitness function, we hypothesize that
under repeated application of identical selection pressure the net genetic changes, reflected by
our model parameters τc, �, γ, etc., will be to maximize the total fraction of survivors after selec-
tion, described by the survivability coefficient S, where

S ¼
Z 1

0

f ðCÞPðCÞdC: ð26Þ

2 Conclusion and Discussion

2.1 Evolution
In [17], it was proposed that an increase of epigenetic variability in phenotype, as opposed to a
shift in the mean phenotype, could be a driving force of evolutionary adaptation. A similar
view has been proposed that such mechanisms could be a crucial mechanism for evolutionary
processes in cancer [5]. Here we present a mathematical formalism, in the form of the surviv-
ability coefficient, that reveals how such an increase of phenotypic variability may affect evolu-
tionary processes by linking cellular survival and biological noise. While it is yet to be
determined whether such evolutionary tuning via changes in variability may be the result of
heritable genetic variation as presented in [17] or the result of non-heritable processes as pre-
sented in [5], we demonstrate here that stochastic processes alone can provide the mechanism
for adjusting phenotypic variability. Moreover, a unification between both paradigms can be
achieved by simply considering a mixture of stochastically evolving systems occupying multiple
points in parameter-space.

While our probabilistic approach to survival in the context of phenotypic heterogeneity pro-
vides a key alternative paradigm for understanding evolutionary processes, rigorously defined
models of stochastic processes via intrinsic chemical noise [6, 18] have led to many other suc-
cessful predictions of biological phenomena. Such predictions based upon molecular fluctua-
tions generally attempt to predict binary phenotypes that emerge probabilistically on a
macroscopic scale [2, 3]. In contrast, we present a more nuanced perspective of phenotypic

Fig 6. Evolution under noisy selection regimes. Initial distributions (solid line) and fitness functions (dotted line) are plotted for various selection regimes.
Panel (A) is representative of a directed (positive) selection regime, panel (B) is representative of a stabilizing selection regime, while panel (C) is
representative of a selection regime representative of therapeutic treatment.

doi:10.1371/journal.pone.0132397.g006
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heterogeneity that, with the application of a probabilistic fitness function, can yield a differen-
tial evolutionary response through our examination of the effects of stochasticity. Despite the
Poissonian nature of microscopic processes, stochastic behavior of a variety of types can
emerge at a macroscopic level, such as the geometric distribution of translational noise in pro-
karyotes [19]. However, as our model is not directly based on molecular counts or chemical
concentrations, the source of stochasticity is thus not limited to only chemical noise—our aim
was to explore the implications of stochasticity via the action of a randomly (Gaussian) distrib-
uted growth rate utilizing a probabilistic methodology. As described in [1], protein levels of
individual cells can vary drastically with auto-correlation characteristics similar to Eq (2),
which can be ascribed to inherent variability associated with upstream regulatory components
as well as transcriptional and translational bursting [1, 20]. Instead, we present a phenomeno-
logical model of noise-driven growth that reveals deeper scientific implications of the relation-
ship between stochasticity and cellular heterogeneity.

A key factor in the model we have presented is the finite correlation time (τc), which is
related to the idea of cellular memory [1, 9, 21]. Each sub-population (individual iterations of
Cl or Cn) acts independently of another, while the driving noise measured of at any two time
points yield identical, but not independent, distributions depending on the degree of auto-cor-
relation. With increased auto-correlation, intermittency decreases, as fewer fluctuations occur
in the time-course of individual sub-populations. In that case, fast growing sub-populations
will tend to remain in a fast-growing state, while slow growers will similarly tend to remain in a
slow-growing state. This, in essence, increases the overall variance of the entire population (the
ensemble of all sub-populations), thereby increasing the chances of producing survivors under
repeated, identical selection events. Similarly, having a shorter auto-correlation time allows
sub-populations to more rapidly switch states (higher intermittency). However, this generates
an evolutionary trade-off, as a re-population of formerly occupied states are regained quickly,
but a smaller overall area of state-space will be sampled.

To the extent that a stochastic growth rate and the loss of coherent self-regulation can drive
phenotypic variability, such de-regulation can be seen as a process of decanalization. According
to C. H. Waddington, canalization describes the phenomenon where, “the genotype can, as it
were, absorb a certain amount of its own variation without exhibiting any alteration in devel-
opment.” [22]. Roughly speaking, we can consider canalization as the process by which com-
plex gene regulatory networks, when selected for developmental stability, become insensitive to
genetic mutations with respect to phenotype [23]. We present here an alternative mathematical
framework of canalization where a particular genotype is indicative of a particular set of
parameters, such as τc or �. Given a series of mutations that decreases coherent self-regulation
(decreased �), and increases self-regulatory stochasticity (increased hg2c i), the subsequent phe-
notypic variability will, according to our model, increase (increased ΔCn).

The non-linear model brings out the essential effects of a loss of coherent self-regulation by
multiplicative noise. That is to say, the lack of such a self-regulation mechanism yields bound-
less growth which may be reversed with the implementation of a self-regulation mechanism.
Such self-regulation, which may be variously coherent or stochastic, induces convergence to a
stationary steady-state distribution while still allowing for heterogeneity on an individual level.
Unlike in the un-regulated case, there are constraints on which states will likely be accessed as
defined by the steady-state distribution. This property remains true even in the case of the total
loss of coherent self-regulation, where coherent self-regulation is replaced with a wholly sto-
chastic self-regulation. The net effect of stochastic self-regulation is a subsequent expansion of
the allowable state-space of the isogenic population.
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The models can also provide a mechanism for the transient entrance of bacterial subpopula-
tions into a persister state. When our models are compared to distributions of persister and
replicator states (c.f. [24]), we find that we can explain certain features of these distributions. In
particular, we observe that the distribution of persisters (no growth) is less skewed than the dis-
tribution of replicators (high growth). This is indicative of the slow growing distribution having
smaller mean growth as well as having a smaller fraction of large subpopulations (high Cn val-
ues). Similarly, the distribution for fast growers have a larger fraction of large subpopulations.
This set of observations are consistent with our model in that distributions from parameter sets
with smaller mean growth are more Gaussian and less intermittent in nature.

2.2 Cancer
One motivation for the development of this model was to propose a mathematical framework
within which we can understand resistance to treatment under the Frank-Rosner paradigm of
drug resistance [5]. While most previous work on tumor growth modeling [25–33] has largely
focused on the deterministic growth of tumors for mean values, heterogeneity and variability
are key factors in understanding the development of tumors [5, 34, 35]. It has been observed
that cancerous cells have greater variability in growth rate than do normal cells [36], confirm-
ing that there is merit to the assumption that growth rate is driven by a random process. In par-
ticular, we propose that stochasticity in growth rate and a loss of coherent self-regulation can
provide the basis for the mechanism of short-range search as described in [5]. Randomly fluc-
tuating elements within identical cells can produce a range of responses to any particular stim-
ulus. As described by Frank and Rosner, differential responses would, therefore, be expected to
any particular therapeutic drug due to phenotypic variability. For example, given a correlation
between a sub-population’s surface area and that sub-population’s metabolic uptake, and given
that a particular cancer therapeutic can induce lethality only in cells with metabolic uptake
above a certain threshold, there would always remain a non-zero probability that one or more
sub-populations below that threshold exists and are, according to our model, resistant to treat-
ment (i.e. tumor size too small to sufficiently induce lethality). Beginning with that sub-popula-
tion’s resistant state, a new population can be derived, using that resistant sub-population’s
current state as a new initial condition. In this context, phenotypic variability within isogenic
populations provide a buffering, or bet-hedging, against dramatic fitness events, such as the
introduction of a cancer drug into the body or sudden heat-shock. In contrast with the stan-
dard deterministic approaches utilized in mathematical models of cancer growth, our stochas-
tic cancer growth model provides both a mechanism for cellular bet-hedging as well as the
dynamics following a dramatic selection sweep. Bet-hedging phenomena, similar to that
described above, have been demonstrated and studied in yeast [4], while recent efforts [37]
have begun to explore the relationship between heterogeneity and drug-resistance.

An important feature of the model regards the limits of the mean value for our models. The
linear model shows that the mean population value is exponentially increasing. However, inter-
estingly the non-linear model shows two regimes of stability. In particular, in the large �
regime, the mean population value results in a logistic growth where the mean value reaches a
steady-state distribution. In contrast, in the small � regime, the mean population value grows
in an unbounded manner. We predict that the transition between a normal and cancerous
state in any given tissue may be accompanied by a set of genetic or epigenetic changes that will
lead to a transition of the population from a large � to a small � regime.

The results of our model have specific implications for designing a potential treatment regi-
men for cancer patients. The first consideration involves the overall variance of a heteroge-
neous cancer population while the second is in regards to the role of intermittency in particular
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cancer sub-populations. We must first caution that while the predictions of our model may
have potential therapeutic implications, the level of detail presented in our models remains at a
wholly phenomenological level. As such, given a future progression towards more chemically
oriented models, the predicted therapeutic implications could be provided at a higher level of
detail.

It may be possible to increase the efficacy of a given treatment by engaging a patient with
one or more neo-adjuvant therapies with the goal of reducing the overall phenotypic variability
of all tumor sub-populations. It is important to note that the purpose of this neo-adjuvant ther-
apy would not be to reduce the volume of a tumor (summation over all sub-populations), but
instead to reduce the heterogeneity and phenotypic variability of individual subpopulations
(ΔCn). This reduction of phenotypic variance would thereby reduce the probability that any
sub-populations would survive a given cancer treatment, essentially by reducing the action of
cellular bet-hedging. Just as serum-starvation can increase the efficiency of an experimental
protocol by synchronizing cells to the same stage of the cell cycle, this neo-adjuvant therapy
need not be a cancer therapeutic—it would simply need to reduce the overall non-genetic het-
erogeneity of all cancer cells.

The second implication of our model for treatment involves the role of intermittency in
treatment. Assuming we begin the post-treatment period with a collection of residual sub-
populations that survived treatment, the state-space available to these sub-populations is lim-
ited by the degree of intermittency that is inherent to those cells’ genotype. In particular, this
intermittency is defined by the auto-correlation property (τc) of the noise described in our
model. The auto-correlation property serves to reflect, roughly, how rapidly a given system
may change its random rate through time. In this post-treatment scenario, it serves to effec-
tively limit the accessible state-space for surviving tumor sub-populations. For example, if the
surviving sub-populations demonstrated low auto-correlation immediately following treat-
ment, these surviving sub-populations could rapidly transition into a state where they are sus-
ceptible to a second round of treatment. Alternatively, if the surviving sub-populations
demonstrated high auto-correlation, these other surviving sub-populations are likely to stay
in a treatment-resistant state, as they were already in a treatment-resistant state immediately
following treatment. As the time to transition into a treatment-susceptible state is, on average,
longer for sub-populations with higher auto-correlation, further treatment for highly auto-
correlated tumors would likely be ineffective until the tumor regains its former levels of
heterogeneity.

Supporting Information
S1 Text. Computational Validation. Details on the computational validation of solutions are
presented.
(PDF)

S1 Fig. Auto-correlation of noise as implemented by the numerical solver. Shown are calcu-
lated correlation values for 〈gc(t)gc(t0)〉 = D exp [−jt − t0j/τc] with τc = en where n = 1 (leftmost
curve), 2, 3, 4, and 5 (rightmost curve). Ensembles consisted of 1000 replications with time
steps of 0.1 seconds.
(TIFF)

S2 Fig. Individual solution trajectories. Three individual solutions are shown above for times
between 0 and 1, where τc = 0.01 and D = 100. As evident in the figure, individual solutions
adopt differing and independent trajectories.
(TIFF)
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S3 Fig. Computational validation of probability distribution functions of Cl. Three PDFs
are shown above for times t = 0.05, 0.15, and 0.25 seconds, where τc = 0.01 and D = 100. The
model presented here is described by Eq 3 of the main text. The empirical histograms are plot-
ted and matching analytical solutions are overlaid in red, dashed lines.
(TIFF)

S4 Fig. Computational validation of probability distribution functions of Cn. Three PDFs
are shown above for times t = 0.05, 0.2, and 0.35 seconds, where τc = 0.01, D = 100, γ = 1, and �
= 0.5. The model presented here is described by Eq 8 of the main text. The empirical histo-
grams are plotted and matching analytical solutions are overlaid in red, dashed lines.
(TIFF)
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