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Abstract
Preterm delivery increases the risk of infant mortality and morbidity, and therefore develop-

ing reliable methods for predicting its likelihood are of great importance. Previous work

using uterine electromyography (EMG) recordings has shown that they may provide a

promising and objective way for predicting risk of preterm delivery. However, to date

attempts at utilizing computational approaches to achieve sufficient predictive confidence,

in terms of area under the curve (AUC) values, have not achieved the high discrimination

accuracy that a clinical application requires. In our study, we propose a new analytical

approach for assessing the risk of preterm delivery using EMG recordings which firstly

employs Empirical Mode Decomposition (EMD) to obtain their Intrinsic Mode Functions

(IMF). Next, the entropy values of both instantaneous amplitude and instantaneous fre-

quency of the first ten IMF components are computed in order to derive ratios of these two

distinct components as features. Discrimination accuracy of this approach compared to

those proposed previously was then calculated using six differently representative classifi-

ers. Finally, three different electrode positions were analyzed for their prediction accuracy of

preterm delivery in order to establish which uterine EMG recording location was optimal sig-

nal data. Overall, our results show a clear improvement in prediction accuracy of preterm

delivery risk compared with previous approaches, achieving an impressive maximum AUC

value of 0.986 when using signals from an electrode positioned below the navel. In sum,

this provides a promising new method for analyzing uterine EMG signals to permit accurate

clinical assessment of preterm delivery risk.

Introduction
Preterm delivery, or premature birth, is defined as a baby being born at less than 37 weeks ges-
tation, whereas term delivery implies birth occurring at 37–42 weeks[1]. Preterm delivery of
babies increases their risk of mortality and morbidity and has a comparatively high average
incidence of 5–9% of births in developed countries, although in the USA even higher figures of
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12–13% have been reported over the last few decades[2]. In addition, the World Health Orga-
nization (WHO) has estimated that about one-third of low birth weight deliveries are caused
by preterm delivery [3]. Overall, nearly 10% of neonatal mortality worldwide (500,000 deaths
per year) are due to preterm delivery [3]. There are also numerous other health risks associated
with preterm neonates including reduced growth, cardiovascular complications, respiratory,
gastrointestinal and metabolic (hypoglycemia, hypothyroxinemia) problems, neurodevelop-
mental (cerebral palsy, mental retardation and sensory impairments) and cognitive dysfunc-
tion (impaired attention, executive function, working memory, cognitive flexibility) and major
difficulties in academic achievement [4–6]. Finally, preterm birth is costly in terms of health-
care even without taking into consideration the long-term expenses for individuals with subse-
quent disabilities. In 2007, Institute of Medicine (IOM) reported that the annual cost
associated with 550,000 premature babies born each year in the USA could reach up to $26 bil-
lion [7]. Thus, any approach which can effectively predict the likely risk of preterm delivery
with sufficient reliability to permit appropriate medical intervention will be of great value.

The exact causes of many preterm births are still unresolved, with factors contributing to at
least fifty percent of preterm births being unknown[8]. Apart from a number of potential can-
didates, such as medication, uterine over-distension, preterm premature rupture of membranes
(PPROM), intrauterine inflammation, precocious fetal endocrine activation, surgery, ethnicity
and lifestyle[9,10], there is still a large amount of uncertainty about their specific risks [11,12].
Hence, it is currently very difficult to make reliable predictions of preterm delivery risk based
on them.

Uterine electromyography (EMG) recordings from the abdominal wall of pregnant women
represent a noninvasive and economical approach which may provide a sensitive measure of
subtle changes in uterine activity indicating risk of preterm delivery [13,14]. Bipolar electrodes
spaced 2.5–7cm apart are generally placed over the surface of the abdomen of the pregnant
woman [15]. Although monitoring uterine activity using a tocodynamometer (TOCO) or mag-
netomyogram was also initially thought to be a promising approach for predicting risk of pre-
term delivery, recent studies have not confirmed this. Studies using uterine EMG recordings
have shown that this may be a better approach[16–22].

Many different signal processing techniques have been used to analyze uterine EMG signals.
G. Fele-Zorz et al. compared various linear and nonlinear signal processing techniques to sepa-
rate EMG records of term and preterm delivery groups and found that nonlinear ones achieve
the best results in discriminating between them [15]. A nonlinear correlation coefficient
approach has been shown to improve the utility of uterine EMG signals for clinical purposes
[17,18, 21–24]. Diab A et al. have also applied nonlinear analysis techniques to classify uterine
EMG signals during pregnancy and labor using a time reversibility method [25, 26]. The uterus
is comprised of many types of tissue that exhibit nonlinear and dynamic activity [27], thus it
seems reasonable to analyze uterine EMG using nonlinear signal processing approaches.
Indeed, it is widely proposed that the underlying mechanisms in all biological systems utilize
nonlinear rather than linear processes [23, 24, 28, 29].

PhysioBank is a widely used archive of well-characterized digital recordings of physiological
signals and related data for the purpose of global biomedical research[30]founded by the Har-
vard-MIT division of health sciences and technology.The uterine EMG dataset, known as
Term-Preterm ElectroHysteroGram (TPEHG) in PhysioBank, was recorded from 1997 to 2006
at the Department of Obstetrics and Gynecology, Medical Centre Ljubljana, Ljubljana [31]. It
should be noted that the TPEHG is one of the few good publically available datasets for uterine
EMG recordings and is the only one suitable for term and preterm delivery prediction. A num-
ber of previous studies have used this TPEHG dataset to develop a reliable preterm delivery
prediction. One such study generated moderate maximum and average Area Under the Curve
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(AUC) values of 0.8900 and 0.7833 respectively for preterm delivery prediction [32], whereas
another using a neural network classifier only achieved a best classification accuracy of 72.73%
[33]. Considering the importance of this issue, and the necessity of having very high levels of
predictive confidence in order to justify possible clinical intervention, a higher classification
accuracy is clearly required.

In our study, we also used the uterine TPEHG EMG recording dataset together with a new
analytical approach to investigate if we could achieve higher classification accuracy compared
with previous methods. Here data from the TPEHG dataset were first preprocessed by Empiri-
cal Mode Decomposition (EMD) to extract the number of Intrinsic Mode Functions (IMF)
from high to low frequency. Next, the instantaneous amplitude and the instantaneous fre-
quency of each IMF component were computed for further calculations of entropy ratios. In
addition, six different classifiers were implemented in order to evaluate the prediction perfor-
mance of preterm delivery. Finally, in order to evaluate whether a specific electrode position on
the abdomen gave the best preterm delivery prediction accuracy, the uterine EMG data from
three different positions were analyzed separately.

Materials and Methods

Uterine EMG signal records
In our study we utilized the TPEHG dataset in PhysioBank[31] for analysis, which contains a
total of 300 individual records (300 pregnancies, one record per pregnancy was recorded).
Each record lasts about 30 minutes and contains data from 3 recording channels (four elec-
trodes were attached to the abdominal surface of the pregnant women in two pairs symmetri-
cally under and above the navel, spaced 7cm apart.). The first, second and third channel
recordings were measured between the top two electrodes, the left two electrodes and the lower
two electrodes respectively. In these 300 uterine EMG data records, 262 records are from preg-
nancies where the deliveries were term (pregnancy duration =>37 weeks) and 38 records are
from pregnancies which ended prematurely (pregnancy duration<37 weeks). The average time
of data recording across the 300 pregnant women was 26.68 weeks of gestation. The sampling
frequency in the TPEHG dataset is 20 Hz. Fig 1 shows examples of raw uterine EMG signals. In
order to explore the approaches which could better classify these term and preterm delivery
uterine EMG records we first carried out a preprocessing filtering step. Frequency distributions
of uterine EMG signals are totally different from the traditionally analyzed musculoskeletal
EMG signals and previous research has suggested that the frequency band from 0.3 to 3 Hz
contains the most useful information and excludes most artifacts due to motion, respiration,
and cardiac signals (in the TPEHG dataset, the filtered uterine EMG signals are available with
various frequency bands, such as 0.08–4 Hz (Butterworth digital filter), 0.3–4Hz and 0.3–3Hz)
[15], [32]. A previous study chose the data in channel 3 (the two electrodes below the navel) for
analysis to achieve a relatively satisfactory discrimination accuracy[32]. In our study, we also
used recorded data from channel 3 with a 0.3–3Hz frequency distribution first. Next we made a
comparison between these recordings from the third channel and those from the other two
channels from different positions on the abdominal surface.

Empirical mode decomposition
EMD is a procedure for decomposing a signal into a finite and often-small number of IMFs
[33, 34]. The EMDmethod is self-adaptive and based on the local characteristic time scale of
the data. It is therefore highly efficient for processing non-linear, non-stationary and time vary-
ing data [35]. IMFs are a series of data sequences with different eigenscales. Each IMF function
has the same number of extrema and zero crossings, with its envelopes being symmetric with
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regard to zero[36]. The process of extracting an IMF is known as sifting and the detailed proce-
dures are as follows: (1) identification of the local extrema of x(t); (2) interpolation of the set of
maximal and minimal points to obtain an upper envelop xu(t) and a lower envelop xl(t), respec-
tively, and their averagem(t) = [xu(t)+xl(t)]/2; (3) subtraction of the average from the original
to get d(t) = x(t)-m(t), and (4) repetition of step (1–3) until d(t) satisfies the two conditions for
being an IMF. Once an IMF is generated, the residual signal r(t) = x(t)-IMF1(t) is regarded as
the original signal, and steps (1–4) are repeated to yield the second IMF, and so on. The proce-
dure is complete when the amplitude of the residue falls below a pre-determined small value so
that further sifting would not yield any useful components. These features guarantee the com-
putation of a finite number of IMFs within a finite number of iterations. The outcome of the
EMD procedure is the following decomposition of the original signal:

xðtÞ ¼
Xn

i¼1

IMFiðtÞ þ rðtÞ ð1Þ

where IMFi(t) is the ith IMF, n is the total number of IMFs, and r(t) is the final residue that has
near zero.

The EMDmethod decomposes the signal into a number of IMFs, which are sequentially
ranked from the high to the low frequency components, and then finally the residue. In our
study, we implemented the G-Rilling EMD toolbox to achieve IMFs[37].The first ten compo-
nents were selected for further analysis. Fig 2 shows the first three IMFs of the preterm delivery
record displayed in Fig 1.

Through the EMDmethod, each of the components can be expressed by means of a Hilbert
transform in order to calculate the instantaneous amplitude and the instantaneous frequency

Fig 1. Examples of raw uterine EMG signal records.Data were recorded in the 31th week of gestation. The upper and the lower traces are the examples
of preterm delivery (in the 35th week of gestation) and term delivery (in the 40th week of gestation) records respectively.

doi:10.1371/journal.pone.0132116.g001
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of that component[38–40]. The formula for the Hilbert transform is given below:

yðtÞ ¼ 1

p
P
Z 1

�1

IMFðtÞ
t � t

dt ð2Þ

where P is the Cauchy principal value. The analytic signal z(t) can be expressed as the composi-
tion of IMF(t) and y(t):

zðtÞ ¼ IMFðtÞ þ iyðtÞ ð3Þ

The time varying or instantaneous amplitude a(t) and phase θ(t) can be defined as:

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IMF2ðtÞ þ y2ðtÞ

p
ð4Þ

yðtÞ ¼ arctan
yðtÞ

IMFðtÞ
� �

ð5Þ

The instantaneous frequency can be derived from (5) and the equation is given below:

oðtÞ ¼ dyðtÞ
dt

ð6Þ

Figs 3 and 4 show the instantaneous amplitude and instantaneous frequency of the first
three IMFs of the preterm delivery record displayed in Fig 2.

Entropy is one of the most widely used complexity measures in biomedical signal analysis
[41]. In our study Shannon entropy was used to calculate the average uncertainty or unpredict-
ability of the instantaneous amplitude and the instantaneous frequency of the first ten IMF
components of the uterine EMG signals obtained by EMD. In this way twenty entropy values
can be derived from each EMG recording (ten entropy values for evaluating instantaneous
amplitude and ten entropy values for evaluating instantaneous frequency, respectively).

Fig 2. Empirical mode decomposition of a preterm delivery record. The top (C1), middle (C2) and bottom (C3) plots show the first three components of
the IMFs obtained by EMD.

doi:10.1371/journal.pone.0132116.g002

Preterm Delivery Prediction Using EMD Analysis of Uterine EMG Signals

PLOS ONE | DOI:10.1371/journal.pone.0132116 July 10, 2015 5 / 16



Intrinsic relations between IMFs have been shown to be important for exploring a variety of
biomedical information. The instantaneous amplitude ratio of the third and the first compo-
nent of the IMFs of Heart Rate Variability (HRV) can, for example, be calculated as a function
of time to detect postural changes in a subject from being seated to standing[42]. In addition,
the instantaneous frequency seems to be a good index for separating and tracking HRV
rhythms. Furthermore, an algorithm has been developed which can automatically detect epi-
leptic spikes in Electroencephalogram (EEG) recordings by comparing the instantaneous
amplitudes of the different IMF components [43]. Hence, in our study the entropy ratios of the
instantaneous amplitude and the instantaneous frequency of each two IMFs of the uterine
EMG signals were calculated for the purpose of exploring the intrinsic relations between IMFs,
given by Eqs (7) and (8).

Ramplitudeði; jÞ ¼
EamplitudeðiÞ
EamplitudeðjÞ

ði; j ¼ 1; . . . ; 10Þ ð7Þ

Rfrequencyði; jÞ ¼
EfrequencyðiÞ
EfrequencyðjÞ

ði; j ¼ 1; . . . ; 10Þ ð8Þ

Here Eamplitude(i) and Efrequency(i)denote the entropy values of the instantaneous amplitude
and the instantaneous frequency of ith component of IMFs of the uterine EMG signals, respec-
tively. Ramplitude(i,j) and Rfrequency(i,j)denote the entropy ratios of the instantaneous amplitude
and the instantaneous frequency of ith and jth component of IMFs of the uterine EMG signals,
respectively.

Fig 3. The instantaneous amplitude of the first three components obtained by EMD.

doi:10.1371/journal.pone.0132116.g003
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Preterm delivery prediction
In the TPEHG dataset, there are 38 positive values (preterm delivery, minority class) and 262
negative values (term delivery, majority class). Hence, the prior probabilities of the two class
datasets are not equal, which would result in classifiers being more sensitive in detecting the
majority class than the minority one. There are two approaches to address problems of unbal-
anced datasets: under sampling and over sampling[44]. If the under sampling method is uti-
lized, 224 pregnancy records will be removed in order to make the number of records of the
majority class equal to the minor one. Alternatively, with an over sampling approach additional
data is generated in the minority class in order to make the two class datasets balanced. Gener-
ally, the over-sampling approach avoids problems of data loss and provides more accurate
results than under-sampling methods in terms of the area under the ROC curve (AUC) [44].

A previous study has applied the synthetic minority over-sampling technique (SMOTE) to
classify the records of preterm and term delivery groups in the TPEHG dataset [32]. In our
study, the same SMOTE approach was also used. The main idea of SMOTE is to form new
minority class examples by interpolating between several minority class examples that lie
together. Thus, the overfitting problem is avoided and causes the decision boundaries for the
minority class to spread further into the majority class space [45]. New samples are generated

Fig 4. The instantaneous frequency of the first three components obtained by EMD.

doi:10.1371/journal.pone.0132116.g004
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in the following way: (1) Take the difference between the feature vector (minority class exam-
ple) under consideration and its nearest neighbor (2) Multiply this difference by a random
number between 0 and 1, and add it to the feature vector under consideration. This causes the
selection of a random point along the line segment between two specific features. This
approach effectively forces the decision region of the minority class to become more general.
Thus, it provides more related minority class samples to learn from and allows a learner to
form broader decision regions, leading to greater coverage of the minority class. As such,
SMOTE has become adopted as the standard method for resolving the unbalanced dataset
issue and has been widely used on clinical datasets in cancer and neuroscience research where
numbers of patients and controls are often unbalanced[46–48].

Machine learning techniques (specifically, the classification) were utilized to determine the
class membership of each dataset (262 preterm/262 term). Six different representative classifi-
ers were implemented using the Waikato Environment for Knowledge Analysis (WEKA) soft-
ware[49].Support vector machine (SVM) is an associated learning algorithm which is a model
for mapping examples of separate categories divided by a margin that is as wide as possible.
The idea behind SVM is to map the input data to some high dimensional space using a kernel
function where the data can be separated, thus providing good classification (or regression)
performance[49], [50]. In our study a polynomial kernel was implemented. Random forests
(RF) consist of many classification trees. Each tree is based on the values of random vectors
which are sampled independently and have the same distributions for all the other trees in the
forest. Next, one classification is given by each tree, and then the classification having the most
votes over all the trees in the forest is chosen[49,51]. Multilayer perception (MLP) is a com-
monly used feed-forward artificial neural network model which consists of multiple layers of
nodes where each layer is fully connected to the next one. Backpropagation is implemented in
the data training part by changing the layer connection weights through the least mean squares
(LMS) algorithm[49,52]. AdaBoost (AB) is a machine learning meta-algorithm which can
combine many other types of learning algorithms to improve their performance. AdaBoost is
an adaptive classifier which changes instance weights such that the learning algorithm can be
forced to focus on a particular set of instances that are previously misclassified [49,53]. In our
study the basic classifier used in AB is the decision tree. Bayesian network (BN) is a probabilis-
tic graphical model, which uses graphical structures to represent knowledge about an uncertain
domain. Each node in the graph represents a random variable, while the edges between the
nodes represent probabilistic dependencies among the corresponding random variables
[49,54]. Simple logistic regression (SLR) is a classifier for building linear logistical models[49].

In our study a 10-fold cross validation method was employed. This is a widely used model
validation technique for assessing the generalization capability of a classifier, where only one
sampled dataset is available. The original dataset was first divided into ten equal subsets, and
then one subset was tested using the classifier trained on the remaining nine subsets. This pro-
cedure was repeated until every subset had been used once for testing. The overall accuracy of
the classifier is based on the average performance over the ten classification runs. Area under
the curve (AUC) was then calculated for each classification method with a larger AUC value
indicating a greater discrimination potential[55].

Results
Independent t tests were carried out on measures of Ramplitude and Rfrequency between all term
(262 pregnant women) and preterm (38 pregnant women) subjects’ uterine EMG records.
Fig 5 shows the p values of Student’s t test of the entropy ratios of the instantaneous amplitude
of ith and jth component of IMFs of the uterine EMG signals. Fig 6 shows the p values for
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Student’s t test analysis of the entropy ratios of the instantaneous frequency of the ith and jth
components of IMFs for the uterine EMG signals. It should be noted that the p values across
the diagonal in Figs 5 and 6 were not considered in the analysis and so in Fig 5 the number of

Fig 5. p values of Student’s t test of the entropy ratios of the instantaneous amplitude of ith and jth component of IMFs of the uterine EMG signals.

doi:10.1371/journal.pone.0132116.g005

Fig 6. p values of Student’s t test of the entropy ratios of the instantaneous frequency of ith and jth component of IMFs of the uterine EMG signals.

doi:10.1371/journal.pone.0132116.g006
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significant values(p<0.05) is 22 (out of 90), and in Fig 6 it is 21 (out of 90). All statistical tests
were performed using SPSS software (version 17.0 SPSS Inc., Chicago, IL, USA).

Table 1 shows the classification performances of the extracted features from channel 3
based on both the EMD (180 entropy ratios) and non-EMDmethods (P. Ferguset al. used four
extracted features together: root mean square, median frequency, peak frequency and sample
entropy [30]), respectively. Table 2 displays the ANOVA of the AUC values shown in Table 1
for factor analysis. The results show that the AUC values computed by the EMDmethod were
significantly larger than by the non-EMDmethod (p = 0.0318). The classifiers have no signifi-
cant effect for these comparisons (p = 0.1033). In addition, if we compare the AUC values
derived from our method and the AUC values given by the previous study [32], the same result
was found (the AUC values derived from our methods are significantly larger (p = 0.027)).
Finally, Fig 7 shows the AUC values for channels 1, 2 and 3 from the TPEHG dataset for pre-
term delivery prediction, based on the EMDmethod and using the same six different classifiers
(SVM, RF, MLP, AB, BN and SLR).It can be seen that AUC values for channel 3 are the highest
across all the different classifiers.

When we employed principal component analysis (PCA) to reduce the dimensionality of
our extracted features (EMD based approach), then 32 new features were obtained (the sum of
their percentages of the total variance is above 85%), with an average AUC value of 0.862. If we
only select the first four new features after PCA, an average AUC value of 0.781 is obtained. In
contrast, the four extracted features based on non-EMDmethod only achieve an average AUC
value of 0.723. In addition, when we used all the features extracted from three uterine EMG sig-
nal channels (180 features per channel, 540 features in total) to classify the preterm and term
delivery recordings, this still only achieved an average AUC value of 0.778. However, if we only
use the features extracted from channel 3 (180 features) alone, the average AUC value can
reach up to 0.89. Thus there appears to be no discrimination advantage in combining features
from all 3 channels compared to using recordings from channel 3 alone.

Table 1. Auc of emd and non-emd based features for preterm delivery prediction with 10-fold cross
validation.

EMD Non-EMD

Support Vector Machine (SVM) 0.847 0.540

Random Forests (RF) 0.957 0.914

Multilayer Perception (MLP) 0.764 0.627

AdaBoost (AB) 0.986 0.913

Bayesian Network (BN) 0.912 0.842

Simple Logistic Regression (SLR) 0.874 0.503

doi:10.1371/journal.pone.0132116.t001

Table 2. ANOVA of the AUC Values for Factor Analysis.

Source SS df MS F p value

EMD/Non-EMD 0.0835 1 0.0835 8.72 0.0318

Classifiers 0.16215 5 0.03245 3.39 0.1033

Error 0.04787 5 0.00957

Total 0.2937 11

doi:10.1371/journal.pone.0132116.t002
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Discussion
In this paper we proposed a new EMD-based approach to predict the preterm delivery of preg-
nant women based on the analysis of uterine EMG recordings. Our results have produced the
highest discrimination accuracy and AUC values (up to 0.986) so far reported and which may
be sufficient for clinical purposes. Previous studies have indicated that uterine EMG signal
channel data may be useful in discriminating women at risk of preterm delivery. However,
their results showed that the classification performance varied from one channel to another,
implying that electrode placement is important. Indeed, studies have indicated that the elec-
trodes below the navel seem to have the largest potential to differentiate the preterm and term
delivery groups [15], [30]. In our current study we therefore initially chose recordings from
channel 3 (the difference between the two electrodes below the navel) for analysis, although
recordings from channels 1 and 2 were also calculated subsequently for comparison. It is
apparent from our overall classification performance analysis that channel 3 is indeed much
better than channels 1 and 2, as illustrated in Fig 7 and that there is no discrimination advan-
tage in combining features from all three channels. Hence, in future studies uterine EMG
recordings from electrodes below the navel are likely to provide the greatest prediction for risk
of preterm delivery. Indeed, two other recent studies have also both used electrodes underneath
the navel for uterine EMG signal recording, which further supports our suggestion [13, 14].

For processing the signals from uterine EMG recordings EMD was employed. The main
conceptual innovations here were the introduction of IMFs based on the local properties of
two different components, the instantaneous amplitude and the instantaneous frequency. Uter-
ine EMG recordings essentially comprise non-stationary and non-linear signals, so it is very
appropriate to use EMD to analyze them. In our study nearly all the uterine EMG signals are
decomposed into 11 or 12 IMFs in total. Because the last IMF may represent the overall signal
trend rather than a true IMF only the first 10 IMFs were implemented. The EMDmethod is
similar in some ways to band-pass filtering, although the sub-bands are not predetermined.
Thus, many researchers have investigated the properties of these decomposed components
(IMFs) separately and found relationships between them. Furthermore, compared with either

Fig 7. AUC values of the EMD based features derived from channel 1, 2 and 3 of TPEHG dataset for the six classifiers. The blue bar denotes the
features extracted from channel 1. The green bar denotes the features extracted from channel 2. The red bar denotes the features extracted from channel 3.
(SVM: Support Vector Machine. RF: Random Forests. MLP: Multilayer Perception. AB: AdaBoost. BN: Bayesian Network. SLR: Simple Logistic Regression).

doi:10.1371/journal.pone.0132116.g007
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Fourier or wavelet transforms the EMD is an adaptive process and not limited by the uncer-
tainty principle [56, 57]. In addition, uterine EMG signals from preterm delivery records
exhibit higher predictability than those of term delivery records [13]. Hence, in the current
study the entropy ratios of the instantaneous amplitude and the instantaneous frequency of
each two IMFs of the uterine EMG signals were calculated, respectively. This approach not
only includes the average amount of information contained in the signal amplitude and fre-
quency but also reveals the hidden relationship between the two IMFs. Thus, in a previous
study by Fele-Zorz et al., [15] a minimum p value of 0.011 was found for comparisons between
all term and all preterm delivery subjects based on the extracted feature of sample entropy.
However, in our more detailed method there are 11 features or entropy ratios for instantaneous
amplitude, whose p values are less than 0.011, with a minimum of p = 0.00004681 (see Fig 5).
Furthermore, there are 13 features or entropy ratios for instantaneous frequency, whose p val-
ues are less than 0.011, with the minimum of p = 0.000048627 (see Fig 6). We infer from this
finding that using EMD based entropy ratios as features may be very effective in differentiating
between preterm and term delivery uterine EMG recordings. In the classification section we
fed our extracted features (entropy ratios), and four extracted features from previous research
(root mean square, median frequency, peak frequency, and sample entropy), separately to the
same classifiers in order to compare their discrimination accuracy. Because different classifica-
tion algorithms utilize different techniques to find the relationship between the values of the
predictors and those of the target in the model building process, six different types of classifiers
were implemented. These classifiers are constructed based on various disciplines including lin-
earity, nonlinearity, probability and graph theory etc. In Table 1 it is obvious that all the classi-
fiers show much better performance over EMD-based features than non-EMD-based ones. In
particular, the extracted features based on EMD help increase the AUC values to a mean of
0.89 and a maximum of 0.986. However, the selected features (non-EMD based features) from
previous studies can only achieve AUC values with a mean of 0.723 and a maximum of 0.914.
Furthermore Table 1 shows that the AUC values derived by EMDmethod are significantly
greater than those derived by non-EMD ones (p = 0.0318).

It should be noted that our findings revealed, the AdaBoost classifier as achieving the high-
est AUC value of 0.986. AdaBoost is an ensemble learning classifier which has been used, for
example, to help business executives seeking advisors whose skills and experience complement
rather than duplicate one another[49]. In addition, the AdaBoost classifier can handle weights
of instances. The presence of instance weight changes after a classifier’s error calculated by
each iteration can force it to concentrate on a particular set of instances, namely those with
high weights. Finally, the running time taken to build a model of AdaBoost in Weka for 262
preterm and 262 term subjects is just 4.13s (Intel Core i5-2520M, 2.5GHz). Hence, considering
the high AUC value and relatively short running time, AdaBoost may be a promising classifier
for preterm delivery prediction for our extracted features.

In comparison with other previous studies using uterine EMG signals to make preterm
delivery predictions, some researchers have focused on the classifications of preterm labor and
non-labor groups[18]. In this case, preterm delivery refers to women delivering 7 days from
the uterine EMGmeasurement compared to those delivering outside of 7 days (preterm non-
labor). Since in our study, the EMDmethod achieves quite encouraging AUC values for the
classification of preterm and term delivery (preterm delivery women: pregnancy duration<37
weeks; term delivery women: pregnancy duration> = 37 weeks), it might also be useful in dif-
ferentiating between pregnant women with preterm labor and non-labor as well. While M.
Lucovnik et al[18] implemented power spectrum (PS) and propagation velocity (PV) of uterine
EMG to identify true labor and achieved an impressive AUC value of 0.96. They did not con-
trol for unbalanced datasets (preterm labor group: n = 20; preterm nonlabor group: n = 68),
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which might have made this AUC value unreliable. Nevertheless, in view of the significance of
the p values they obtained for PS (p = 0.002) and PV (p<0.001), we could in future attempt to
combine these two features (PS and PV) together with EMD based ones to try to further
enhance preterm delivery prediction.

Some limitations should be acknowledged in our current study. We only employed features
based on the EMDmethod which might not reflect other biomedical characteristics of preg-
nant women with preterm delivery. In fact, using multiple strategies may further increase the
average classification performance of preterm and term delivery, such as combining extracted
features derived from different methods [58–62]. In addition, compared with other methods
for extracting features for preterm delivery in the literature, the EMD based feature extraction
method requires more calculations to be made, although it is still relatively quick and not par-
ticularly demanding in terms of computational power.

Overall, our EMD approach has proved to have a significant advantage in identifying
women at risk of preterm delivery and has shown that uterine EMG data derived only from
two recording electrodes placed below the navel provides the most reliable information. This
may already be sufficient for routine clinical purposes, although it is possible that the average
classification performance of preterm and term delivery can be increased still further by com-
bining some other kinds of features derived from uterine EMG signals from multiple recorded
channels.

Conclusion
In this paper, we have demonstrated that it is possible to improve analysis of uterine EMG rec-
ords to discriminate pregnant women at risk of preterm delivery with sufficient accuracy for
potential clinical purposes. We have classified preterm and term delivery records based on the
entropy ratios of the instantaneous amplitude and the instantaneous frequency of each two
IMFs of uterine EMG signals using an EMD approach. Six different classifiers were imple-
mented which revealed a mean AUC value of 0.89 and a maximum value of 0.986. A more
detailed analysis of EMG recordings from specific abdominal locations revealed that the posi-
tion with the strongest discrimination accuracy was the one below the navel. Overall, our study
suggests that analysis of uterine EMG signals using the above approach is a very accurate
method for discriminating women at risk of preterm delivery and may be important in clinical
use.
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