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Abstract

Genome-scale metabolic models have proven highly valuable in investigating cell physiol-
ogy. Recent advances include the development of methods to extract context-specific mod-
els capable of describing metabolism under more specific scenarios (e.g., cell types). Yet,
none of the existing computational approaches allows for a fully automated model extrac-
tion and determination of a flux distribution independent of user-defined parameters. Here
we present RegrEx, a fully automated approach that relies solely on context-specific data
and £;-norm regularization to extract a context-specific model and to provide a flux distribu-
tion that maximizes its correlation to data. Moreover, the publically available implementation
of RegrEx was used to extract 11 context-specific human models using publicly available
RNAseq expression profiles, Recon1 and also Recon2, the most recent human metabolic
model. The comparison of the performance of RegrEx and its contending alternatives dem-
onstrates that the proposed method extracts models for which both the structure, i.e., reac-
tions included, and the flux distributions are in concordance with the employed data. These
findings are supported by validation and comparison of method performance on additional
data not used in context-specific model extraction. Therefore, our study sets the ground for
applications of other regularization techniques in large-scale metabolic modeling.

Introduction

The investigation and understanding of cell metabolism has experienced a paradigm shift
largely propelled by the development of high-throughput methods in the last two decades. As a
result, the classical pathway-centered view have given way for a network-driven perspective,
which considers the entire set of known interconnected biochemical reactions. This had led to
the creation of genome-scale metabolic models (GEMs) for organisms from each of the three
domains of life: archaea, bacteria and eukarya [1]. While a GEM constitutes an organized and
comprehensive system of knowledge about an organism, it also allows i silico analyses based
on constraint-based methods, relying on the corresponding stoichiometric matrix representa-
tion and assumptions about cellular metabolism. The findings from these analyses provide
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useful insights in metabolism, and may circumvent the drawbacks of estimating fluxes from
labeling studies—still a computationally demanding undertaking [2-4]. Furthermore, several
methods facilitate the integration of high-throughput data in GEMs. The benefits of these
methods are twofold: improving the accuracy of flux prediction and providing a scaffold net-
work for analysis of additional experimental data [5,6].

However, a metabolic network that includes all known biochemical reactions of an organ-
ism may not be realistic in a particular cellular scenario, since there is mounting evidence that
cells adapt their metabolism to arising conditions, such as: external environment, developmen-
tal stage, cell type in multicellular organisms, or even during a pathological condition (e.g., can-
cer), to name only a few. In these different contexts, only a subset of reactions is typically active.
Therefore, the shift towards reconstructing context-specific models of cell metabolism has
become necessary to provide more accurate and biologically meaningful insights. This is of par-
ticular importance when tackling the physiology of multicellular organisms, not only to better
understand tissue- or cell-specific metabolism, but as a first step to reconstruct metabolic net-
works of an entire organism/body, where multiple specialized models are mutually intercon-
nected [7,8].

Several methods have been proposed to determine context-specific networks, already com-
prehensively reviewed in [9]. In general, the methods for extracting a context-specific model
from a given GEM integrate high-throughput data from a particular context to select the set of
respective active reactions. While these methods differ with respect to their underlying
assumptions and mathematical formulation, they can be classified into three main groups [10],
briefly discussed in the following.

GIMME [11] and GIM’E [12] form the first group, whereby first a metabolic functionality
(e.g., biomass production) is optimized through Flux Balance Analysis [13] (a linear mathemat-
ical program), and then the obtained optimal value is employed to constrain a second linear
program which aims at minimizing the discrepancies between fluxes and data. The latter is
based on selecting a user-defined data-dependent threshold value and then penalizing reactions
whose associated data is under the threshold.

The second group comprises iMAT [14] and INIT [15] which use a mixed integer linear
program. The binary variables in this formulation select the reaction states (i.e., active or inac-
tive) which are most concordant with the associate data state. While iMAT uses data to pre-
classify reactions of the GEM into active or inactive groups, INIT integrates data as a weighting
factor for the binary variable. Moreover, INIT includes a set of key metabolites which must
exhibit a small positive deviation from the steady state condition. In an extended version,
tINIT [16], a set of metabolic tasks (i.e., biochemical pathways) that must carry non-zero flux
can be added as further constraints.

The third group, composed of MBA [17], mCADRE [18] and FastCORE [19], first defines a
core set of reactions, classified as active in a given context according to experimental data, and
then finds the minimum set of reactions outside the core required to satisfy the model consis-
tency condition (i.e., all reactions in the model must be able to carry a non-zero flux in at least
one of the allowed steady-state distributions). Unlike the methods in the previous two groups,
these only extract a context-specific model and do not provide a respective flux distribution.

With respect to another classification criterion, the first group belongs to the so-called
biased methods (within the constraint-based analysis) since the achieved solution depends on
the definition of a metabolic function to be optimized. In contrast, the second and third group
consist of unbiased methods since they are independent of a metabolic function [20]. However,
in the case of iIMAT, MBA and FastCORE, a group of preferential reactions (to the context of
choice) must still be predefined. The choice of unbiased methods is of particular importance
when the metabolic functions to be optimized under a given context may be difficult to obtain
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and justify; for instance, this is the case when dealing with multicellular organisms, where mul-
tiple cell types coexist (cooperate and/or compete) while performing a variety of specialized
metabolic functions instead of optimizing a single general function.

However, none of these methods allow fully automated model extraction and flux predic-
tion, without using a priori knowledge of a context-specific function and without any binariza-
tion or pre-classification of reactions in the process of data integration. This is of particular
importance when a large number of context-specific models are to be extracted or, more rele-
vant for not well-characterized organisms, for which no information regarding the context-
specificity of reactions or metabolic function may be available in the existing databases or from
detailed physiological studies. Here we present RegrEx, an approach based on regularized least
squares optimization that fulfills these tasks of extracting context-specific models and provid-
ing a flux distribution in an automated and unbiased way.

Methods
Background

Regularization is commonly applied when modeling (i.e., learning) high-dimensional functions
from observations, as a means to reduce model complexity (i.e., the number of variables
included in the model) and prevent overfitting to background noise. The latter has been shown
to considerably improve prediction performance and model robustness. Several regularization
methods have already been proposed, including: the Dantzig [21], the Ridge [22] and the Elas-
tic Net [23] selectors. However, a particular one, the Least Absolute Shrinkage and Selection
Operator, abbreviated as LASSO [24], has become very popular in high-dimensional regression
problems with n explanatory variables and m observations, where #>>m. This has been largely
due to a better performance of the LASSO selector in feature selection (typically obtaining
sparse models with a minimum number of explanatory variables) along with the simplicity of
the operator, which facilitates its computation [25,26].

The LASSO optimization problem is given in Eq 1, below, whereby a weighted £;-norm on
the coefficients, B, as regularization to an ordinary least squares regression with response vec-
tor, y", and variables, X", is minimized:

.1 2
min, {1y — XBI[; + 218l
peR"

(1)

The weighting parameter, A, is usually determined by cross-validation, which offers an unbi-
ased way (i.e., not user-defined and purely based on the data) to find a best suited value with
respect to a measure of performance (e.g., mean squared error or coefficient of determination).
Regularization by means of the £,-norm, as generalizations of LASSO, has been already applied
in metabolic modeling; for instance, it has been used to reconstruct biochemical networks from
time series data [27], as an alternative to more computationally expensive methods, to study
network adaptation to mutations [28] and, more recently, in FastCORE, one of the existing
algorithms to reconstruct context-specific models [19].

The RegrEx method

The Regularized Context-specific model Extraction method (RegrEx) aims at finding a feasible
flux distribution, v (i.e., satisfying the mass-balance, thermodynamic and capacity constraints),
which is as close as possible to the experimental data, d (e.g., gene expression or protein level
profiles). At the same time, it excludes the reactions irrelevant for the given context by
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shrinking their fluxes to zero. This is obtained by minimizing the squared Euclidean distance
(second norm) between v and d, and exploiting the ability of the €;-norm regularization to per-
form feature selection. This leads to the optimization problem, Eq 2, which is analogous to the
formulation of LASSO in Eq 1 augmented by the cellular constraints, and is given by:

1 ;
min_{|d — vl[; + 2[}v]l,

, i € IrvRxn

To implement RegrEx (Eq 2) in existing mathematical programming solvers, we cast it as a
quadratic program, Eq 3, which minimizes the second norm of the error vector, € = d—v, con-
sidering only the subset of reactions to which data can be associated (via the GPR associations
[29]). We also need to introduce special constraints to deal with reversible reactions, which can
take negative values (while the data vector is always non-negative). To this end, reversible reac-
tions are split into forward and reverse; the net flux is then given by the difference of the
respective fluxes. In addition, we included a binary variable, x, to select either the forward or
the reverse sense for a particular reaction to avoid the drawback of bounding the two irrevers-
ible reactions to the same data value, which would cause the net flux to be zero.

L
min|lelf; + Z|[v]],

s.t.

v.+e =d, i € Data (3)
i € IrvRxn.

Altogether, this resulted in a mixed integer quadratic program (MIQP) capturing the
RegrEx method, Eq 4, in which the sign of the net flux for the reversible reactions (i.e., predom-
inant direction of the two irreversible reactions) is part of the optimization problem and relies
ultimately on maximizing similarity to data.

As pointed out above, cross-validation is the canonical method to determine an optimal A-
value for a regression problem. However, this is not an appropriate method for RegrEx due to its
particular characteristics, since consecutive sampling of the observations, in this case, would
imply using only a subset of reactions of the original metabolic model to be in a steady-state. For
this reason, we optimized A selection by running the algorithm for a sequence of A-values and
taking the one that renders the highest Pearson product-moment correlation between fluxes and
data. RegrEx was applied first over a coarse sequence of A-values (A step size of 0.1) until all reac-
tions shrunk to zero. Then a second optimization was performed over a finer A-sequence (A step
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size of 0.01) centered on the region of maximum correlation found in the first optimization.

I
min [le]l, + A||vI],
£v.x

s.t.
Sv=20
v+ U, =d, i € IrvRxn N Data

Vfori + Uor,v - xidi = di
. , i € RevRxn N Data
Ve + U, —xd,=0

rev; rev;

Vfor,- + xivmaxi S Vmax,v . (4)
, i € RevRxn

Vrevt- - xivmax,- S 0

Vfori + xivmini 2 Vmiu, .
, 1 € RevRxn.

‘Vrev,v - xivmiui Z 0

vinSVSVrnax

g,veR"
x €{0,1}"

RegrEx implementation

We solved the MIQP of RegrEx using the Gurobi solver [30]. To speed up the optimization, we
restricted the computation time to 60 seconds per MIQP. Additional robustness analyses indi-
cated that higher computation times implied a low increase in performance (tripling the time
limit, i.e., 180 seconds, only caused a mean correlation increment between models of 0.0004,
see Table 1).

RegrEx was implemented in MATLAB, and the code is provided in S1 File. The implemen-
tation provides the final context-specific models in a COBRA toolbox compatible format [31],
thus allowing facile subsequent analysis.

Context-specific model extraction

To test RegrEx performance we selected, as a case study, the existent human metabolic network
reconstructions, Recon 1 [32]which has been previously used with other algorithms [15,19,33]

Table 1. Results comparison for different time limits applied to the Gurobi solver. Four different time
limits were evaluated to test the sensitivity of optimal solutions to the early termination criterion (60 s)
imposed. In all cases, the A-value was fixed to a reference optimum, the one obtained when the time limit was
60 s. Mean values for the 11 contexts (with the standard deviation within round brackets) are shown for the
correlation between flux values and data, p (v p), the mean residual, R (v p), and the cardinality, i.e., number of
reactions of the extracted models, Card..

30s 60s 90s 180s
P(v.D) 0.4493(.068) 0.4493(.068) 0.4493(.068) 0.4497(.068)
ﬁ(V’D) 0.2845(.081) 0.2845(.081) 0.2845(.081) 0.2844(.081)
Card. 856.55(92.124) 856.27(91.153) 855.45(91.35) 856.55(93.17)

doi:10.1371/journal.pone.0131875.1001
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and Recon 2 [34] as a further test on a larger network,. This case study allows a direct compari-
son between the models extracted by different methods. As input data, we used available RNA-
seq human expression profiles for 11 different contexts (i.e., organs or tissues) published online
in the RNAseq Atlas [35]. To avoid blocked reactions, we first extracted the consistent part of
Recon 1 (cRecon 1) through a standard flux variability analysis, using the reduceModel func-
tion of the COBRA toolbox [31]. The expression profiles are provided as RPKM (reads per
kilobase per million mapped reads) normalization in the RNAseq Atlas.

The range of expression values typically varies between genes, especially in RN Aseq-derived
expression data, where differences in mean values (e.g., across tissues) between genes can be of
several orders of magnitude. This may likely cause RegrEx to favor reactions whose associated
genes have higher mean values across contexts, thus, reconstructing context-specific models in
a biased manner. To correct for this bias, we normalized the expression value, t, of each gene, 4,
in context, j, to its maximum value across all considered contexts:

d,=—7"T-=, i € genes,j € contexts

Performance analysis with competing methods

The existing iMAT implementation of the reduceModel function of the COBRA toolbox [31]
was used to perform the iMAT model extraction. The 75™ percentile of the cumulative distri-
bution was used as a threshold to binarize the gene expression data, i.e., to create the high- and
low-expressed (reaction associated gene/s) groups. The implementation provided in [36] was
used to analyze the model extraction approach, denoted as Lee2012. Since the RN Aseq Atlas
does not provide any variance measurement, the weighting factor to correct for experimental
error was not used. In addition, the upper bound on flux values was set to 1, as in RegrEx, for
fair comparison. Reactions with an absolute value above 10~° were considered active for a
given context. In the case of FastCORE, we used the implementation provided in [37] and
obtained the core set of reaction by taking the reactions with an expression value for the associ-
ated gene(s) above the 75™ percentile; therefore, it uses the same set as the high-expressed
group employed in iMAT.

The Jaccard index was used to generate the similarity matrices comparing models extracted
for different contexts, as well as models of the same context extracted by different methods. In
this last case, the clustering dendrogram in Fig 1 was generated with the hclust function of the
package stats in the R environment, and by using the average linkage criterion

We z-normalized the sum of Jaccard similarities of each context to the remaining (i.e., the
sum of each column of the distance matrix). Therefore, the respective z-score quantifies the
extent to which a given context differs from the remaining.

Model agreement with human protein expression data

The protein expression profiles were taken from the Human Protein Atlas [38] where 10 out of
the 11 contexts are represented (note that the hypothalamus is missing, so we did not include it
in the evaluation; moreover, for the adipose tissue, we took the data from the cell type adipo-
cyte). In the Human Protein atlas, protein expression levels are classified into high, medium or
low and are derived by inmunohystochemical staining. Recon 1 uses Entrez gene identifiers,
while the protein coding genes in the Human Protein Atlas are identified following the
Ensembl convention. Hence, we mapped the Ensembl identifiers onto Recon 1 using the Bio-
Mart data mining tool from Ensembl [39].
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Fig 1. Dendrogram clustering the evaluated methods and comparison of data- and model-derived z-scores quantifying the differences between
contexts. (A) The dendrogram is obtained from the the Jaccard similarity that models have across the different methods. Two main clusters are formed,
iMAT and FastCORE on one side, and Lee2012, RegrEx-Ao and RegrEx on the other. In the second cluster, RegrEx and RegrEx-A form a subcluster. (B-F)
data- and model-derived z-scores are compared for RegrEx, RegrEx-Aq, Lee2012, iIMAT and FastCORE, respectively. Correlation values between the two
series (data and model) are shown in the right upper corner in each case. Adi.:Adipose, Col.:Colon, Hea.:Heart, Kid.:Kidney, Liv.:Liver, Lun.:Lung, Ova.:
Ovary, S.Mus.:Skeletal Muscle, Spl.:Spleen, Tes.:Testes.

doi:10.1371/journal.pone.0131875.g001
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Results and Discussion
Evaluation of RegrEx performance

As a case study, we applied RegrEx to extract 11 context-specific human models, namely, adi-
pose tissue, colon, heart, hypothalamus, kidney, liver, lung, ovary, skeletal muscle, spleen and
testes, and to obtain the corresponding flux distributions. The starting GEM was the Recon 1
reconstruction [32], which was reduced to its consistent part (i.e., blocked reactions, incapable
of carrying flux in any feasible steady-state distributions, were removed). This pre-processing
improves RegrEx performance since the existence of blocked reactions in the GEM would lead
to stoichiometric inconsistencies. We used RN Aseq expression profiles for 11 human tissues as
context-specific data [35]. Although it has been shown that gene expression does not always
represent a good proxy of the metabolic flux state [40,41], it still constitutes the best data source
regarding coverage and quality (typically providing quantitative data for the great majority of
genes in the GEM).

We compared RegrEx performance with other existing methods for context-specific model
extraction and flux prediction. Namely, iMAT [14], the method proposed in Lee et al., 2012
(here called Lee2012) as well as a non-regularized version of RegrEx (RegrEx-1,), as a special
case of the RegrEx method with A = 0. We also included FastCORE in our comparison; how-
ever, since FastCORE only provides a context-specific model (i.e. set of active reactions), we
only included it in comparisons at the structural level of the extracted models. In each case, we
used the consistent part of Recon 1 and the same gene expression data from the RNAseq Atlas
to provide unbiased and fair comparison.

We would like to point out that Lee2012 was not originally developed to extract context-
specific models. However, RegrEx has a form similar to that of Lee2012, which aims at improv-
ing flux prediction through minimizing the absolute distance between data (e.g., RNAseq
expression profiles) and flux values. For this reason, we also included Lee2012 in the compara-
tive analysis. Nevertheless, RegrEx differs from Lee2012 in the inclusion of regularization and
also in the treatment of reversible reactions: Lee2012 applies an iterative approach, where the
optimization problem starts first with the subset of irreversible reactions, and reversible reac-
tions are then added sequentially by solving additional optimization problems. This last step is
time consuming because it involves two optimization problems per reversible reaction. In con-
trast, RegrEx selects direction of reversible reactions at once through the use of a binary vari-
able, as explained in the Methods section, thus reducing the computational time. Moreover,
RegrEx is unbiased with respect to the order in which the reversible reactions are added, which
is a shortcoming not resolved in Lee2012.

The performance analysis was divided into two parts: First, the similarity with the expres-
sion data used to extract the models was evaluated. This evaluation included two measures—
the correlation between predicted fluxes and data values (except for FastCORE) and the level
of agreement between the correlation matrix of the expression data for each context and the
Jaccard distance matrix of the extracted models (to quantify the distance between two models
in terms of the set of active reactions). Second, we performed an independent validation of the
extracted models by measuring their level of agreement with protein expression data taken
from the Human Protein Atlas [38].

Main characteristics of extracted models by the evaluated methods

The general characteristics of the extracted models by each method are summarized in Table 2,
and fully detailed in S1 Table. In terms of cardinality (i.e., the number of reactions included in
an extracted model), Lee2012 generates models with the lowest mean cardinality (on average

PLOS ONE | DOI:10.1371/journal.pone.0131875 July 9, 2015 8/21



@’PLOS ‘ ONE

Context-Specific Model Extraction Based on L1-Regularization

Table 2. Comparison of models extracted by the four evaluated contending methods: Mean values across contexts. Global characteristics of the
models are derived by applying RegrEx (with automated determination of A), RegrEx-A (i.e., RegrEx without regularization), Lee2012, iMAT and FastCORE.
The abbreviations stand for the following: Card. denotes mean cardinality, O5, mean data-orphan ratio, P v, mean correlation between data and predicted
flux values, ﬁ(\/,D), mean residual value between fluxes and data , I, mean Jaccard index to any other context, Shared, number of shared reactions across all
contexts, and Total Exclusive represents total number of exclusively context-specific reactions across all contexts. Values in round brackets correspond to

the standard deviation.

Card.
RegrEx 842,91(55.14)
RegrExAo 1030,30(76.32)
Lee2012 784,6 (26.53)
FastCORE 1357,9(39.03)
iMAT 1411(41.62)

doi:10.1371/journal.pone.0131875.1002

0,34(0.05
0,47(0.04

0,50(0.04
0,42(0.04

P(v,D) ﬁ(V,D) Iy Shared Total Exclusive Total Card
) 0,42(0.07) 0,29(0.08) 0,56(0.04) 299 332 1618
) 0,38(0.08) 0,28(0.08) 0,65(0.03) 490 239 1711
0.03) 0,13 (0.05) - 0,77 (0.01) 509 140 1092
) = - 0,61(0.05) 503 230 2232
) -0.17(0.03) - 0,65(0.04) 611 210 2205

approximately 785 reactions per model) followed by RegrEx and RegrEx-A, (with, on average,
approximately 843 and 1030 reactions per model, respectively). In contrast, FastCORE and
iMAT result in markedly bigger models for the corresponding contexts (with, on average,
approximately 1358 and 1411 reactions per model, respectively). Each set of context-specific
models extracted by a particular method has a core set of reactions shared by all contexts. In
addition, each context has an exclusive set of reactions (i.e., reactions that are only present in
the examined context). In this sense, RegrEx extracted models have the smallest set of shared
reactions, with 299 reactions, and the biggest set of total exclusive reactions (i.e., exclusive reac-
tions over all context), with 332 reactions. These two properties demonstrate that the models
extracted by RegrEx are in fact more context-specific than the ones extracted by the other
methods, which is confirmed by the mean Jaccard similarity between models. The Jaccard simi-
larity is lowest in the case of RegrEx (T]RegrEx = 0.56, with a standard deviation, oyjregrex = 0.04)
in support of the previous claim. On the contrary, Lee2012 generates the greatest core set
among the methods evaluated, with 509 shared reactions, and the smallest set of total exclusive
reactions, amounting to 140 reactions, This, in turn, makes the Lee2012 models to be the least
context-specific (Ijee2012 = 0.77, with a standard deviation, oypee012 = 0.01).

When extracting a context-specific model, there exists, in general, a subset of reactions of
the original (unspecific) GEM whose fluxes are unbounded by data. This can be due to the
absence of GPR rules (either because the reaction is not enzyme catalyzed or because the gene-
protein association has not been annotated), or simply because experimental data is missing
for that reaction. In any case, it is of interest to minimize the number of included reactions
without associated data, here called data-orphan reactions, since their inclusion results in
uncertainty (given the available data). On this line, we evaluated the aforementioned property
by computing the data-orphan ratio (i.e., the ratio between the number of incorporated reac-
tions with non-associated and that with associated experimental data) of each of the extracted
models. RegrEx extracted models show the second lowest mean data-orphan ratio across all
methods (Orgegrex = 0.34, with a standard deviation, Ogegx = 0.05), only surpassed by
Lee2012 (Ogpee2012 = 0.28, with a standard deviation, 01e2012 = 0.03), Notably, this is only
valid when a regularized extraction is used, since in the case of RegrEx-A,, the data-orphan
ratio ranks to the second worst position, only surpassed by FastCORE, with mean orphan
ratios of 0.47 and 0.50, respectively. The reduced data-orphan ratio indicates that RegrEx,
although surpassed by Lee2012, is still capable of extracting compact models in which the num-
ber of data-orphan (uncertain) reactions is minimized.

Regarding the set of represented reactions of Recon 1 across all contexts, here called total
cardinality, RegrEx models collect 1618 unique reactions out of the total of 2469 reactions in
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Recon 1. Therefore, RegrEx models rank in an intermediate position between Lee2012 models
(with 1092 total unique reactions) and iMAT and FastCORE (with 2205 and 2232 total reac-
tions, respectively). The differences in total cardinality as well as mean cardinality per model
can be explained by the two main objectives that the evaluated methods take; namely, minimiz-
ing the distance between data and flux values, like in the case of Lee2012 and RegrEx(-1,), or
including the entirety or a majority of a predefined core set for a particular context, like in Fas-
tCORE and iMAT, respectively, which here was the same for both methods (see the Methods
section).

Indeed, this last grouping was reflected when we compared the similarity between models of
the same context extracted by the different methods. Results were similar across all contexts,
iMAT and FastCORE-derived models share many reactions, as indicated by the high Jaccard
similarity index (mean value across contexts,] jinaT/Fastccore = 0.81, With OrivaT/FastcORE =
0.02) and are thus grouped together in the corresponding dendrogram of Fig 1. On the other
hand, RegrEx, RegrEx-A, and Lee2012 form another cluster, where models extracted by RegrEx
and RegrEx-\, are grouped together, and the ones extracted by Lee2012 are closer to RegrEx-A,.

Similarity to data evaluation

When inspecting the correlation between data values and predicted fluxes, RegrEx obtained
the first position in the ranking (mean correlation, pregrex = 0.42, Opregrex = 0.07), followed by
RegrEx-Aq and Lee2012 (with a mean correlation of 0.38 and 0.13, respectively). Moreover,
iMAT results in the worst mean correlation value of -0.17 (FastCORE does not provide flux
values, as commented before, so it is not evaluated with respect to this criterion). However, this
difference in correlation can be explained by the different approach followed by iMAT, since in
this case the method does not aim at minimizing the distance between data and flux values.

To include FastCORE in the comparative analysis, we next inspected the similarity to data
in a different manner: instead of considering the flux values, we now compare the set of active
reactions per context. This criterion captures an aspect of the structure of the extracted meta-
bolic networks. We used the sets of active reactions across different contexts and per method to
compute the similarity matrix, using the Jaccard index. We then compared this similarity
matrix with the corresponding correlation matrix of the gene expression values for all contexts
by using the Rv coefficient. The level of agreement between these two matrices was indeed high
for RegrEx, iMAT and FastCORE, as supported by Rv coefficient values of 0.9, 0.92 and 0.93,
respectively; the level of agreement was markedly lower for RegrEx-A (Rv = 0.76) and Lee2012
(Rv = 0.69). This result support two claims: Firstly, although FastCORE does not provide fluxes
and iMAT results in very poor correlation between flux and data values, they are still capable
of capturing the general differences between contexts collected in the expression data. Sec-
ondly, RegrEx is also capable of capturing this differences but with a lower mean cardinality
per extracted model. In other words, even with fewer reactions on average, the models
extracted by RegrEx are still able to capture the main differences in active reactions contained
in the gene expression data. This fact summarizes very well the purpose of regularization when
learning models from experimental observations: remove variables (i.e. reactions) that are not
important to explain the observations.

The previously reported values of the Rv coefficient quantify the overall agreement between
both the similarity and correlation matrices. We next decomposed this result for each different
context. To this end, we computed the z-scores (as detailed in Methods) for both matrices. In
this sense, RegrEx performed better than iMAT and FastCORE in capturing the pattern
showed by gene expression, as quantified by a correlation value of 0.92, between the z-score
values of the extracted models and the ones of data, against a value of 0.88 and 0.89 for iMAT
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and FastCORE, respectively, see Fig 1. The better agreement in the case of RegrEx can be
observed in the number of mismatches between the sign of the data z-score value and the one
of the extracted model. More specifically, RegrEx only fails in the case of the ovary model,
which lies under the mean similarity between any two of the extracted models, thus having a
negative z-score, while the corresponding expression data lies over the mean. However, iIMAT
and FastCORE commit three mismatches (skeletal muscle, kidney and colon in FastCORE and
skeletal muscle, adipose tissue and hypothalamus in FastCORE). As expected, the performance
of RegrEx-A, and Lee2012 is again worse than the other methods, with a correlation value of
0.66 and 0.57, respectively. Interestingly, liver appears to be the most different context in terms
of active reactions, and this is captured by all methods except for RegrEx-\o. This is not surpris-
ing, since liver is well known to be the organ with greater metabolic capabilities.

To conclude this section, it is noteworthy to highlight the comparison of RegrEx perfor-
mance with the one of its non-regularized version, RegrEx-1,, since the only difference
between the two approaches is the application of regularization and the inclusion of an optimi-
zation step to determine the optimal A-value. Precisely the consideration of regularization
allows RegrEx not only to extract more compact models, as commented before, but also to
increase the correlation between data and flux values, reduce the data-orphan ratio, and greatly
improve the general similarities and differences in the metabolic state of the different contexts,
as showed by the RV coefficient and z-score values.

Models evaluation by human protein profiles

We performed and independent test on the biological reliability of the extracted models by all
evaluated methods. To this end, we compared the level of agreement of each model with pro-
tein expression profiles taken from the Human Protein Atlas [38] (we had to exclude hypothal-
amus from the comparison since it is missing in this database, see Methods). The protein
expression data is semi-quantitative, namely, it only provides the categorical levels high,
medium and low. To account for this, we evaluated whether models contained an enriched
group of genes coding for proteins within the category of high expressed for the corresponding
organ/tissue in comparison with the other two categories, as well as and an enrichment in
genes from the medium expression value group in comparison to those from the low
expression.

To tests these hypotheses, we determined the number of genes of each group in each con-
text, i.e., the number of genes in high, medium and low across all organs/tissues, and applied
the Mann-Whitmann-Wilconxon test on the obtained distributions to determine the statistical
significance of their difference. This test was applied for each evaluated method. As observed in
Table 3, RegrEx extracted models are indeed significantly enriched in high and medium
expressed genes since the p-values for all three comparisons, number of genes in the high
group greater than in the medium, H>M, medium greater than low, M>L, and high greater

Table 3. Comparison on the level of agreement of each extracted model with the Human Protein Data-
base. P-values for each Mann-Whitman-Wilconxon test (with alternative hypothesis H>M, M>L and H>L) are
collected here. A significance threshold of 0.05 was used to reject the null hypothesis (p-values<0.05 in bold).

Method H>M M>L H>L

RegrEx 0.0445 0.0262 0.0034
RegrExLO 0.0045 0.1763 0.0006
iIMAT 0.1399 0.0444 0.0319
Lee2012 0.3421 0.4559 0.2179
FastCORE 0.0525 0.1575 0.0216

doi:10.1371/journal.pone.0131875.t003
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than low, H>L, are below the significance threshold of 0.05. In the case of RegrEx-A, and
iMAT, only two of the comparisons are significant, H>M and H>L, and M>L and H>L,
respectively. Models in FastCORE are only enriched in high expressed genes in comparison to
low expressed and none of the comparisons are significant in the case of Lee2012. These results
add and additional experimental support to the extracted models by RegrEx and in a lesser
extend the ones by RegrEx-Ao, iMAT and FastCORE, for two main reasons: the additional
experimental data comes from a different (independent) database than the one used during the
extraction, and relies on a lower hierarchical level in the causal chain controlling metabolic
fluxes, namely, is based on protein expression rather than gene expression.

Functional analysis of RegrEx extracted models

The next step in evaluating RegrEx extracted models was to perform a functional analysis by
determining which metabolic functions were important in each context. To this end, we calcu-
lated the flux capacity of every reaction in the models, given by the difference between the max-
imum and minimum corresponding flux value obtained per Flux Variability Analysis [42] (in
this case the only constraints where arbitrary upper and lower bounds for flux values to prevent
optimizing on an unbounded flux cone and respect the thermodynamic constraints). We stress
that the flux capacity value herein defined only quantifies the theoretical range of flux values
that a reaction can take in a given network; hence the actual flux range of a reaction in a partic-
ular metabolic scenario does not have to coincide with the theoretical. However, the flux capac-
ity of a reaction does depend on the topology of an extracted metabolic network, thus it is a
reliable proxy to evaluate which reactions are favored in a certain context. In an alternative
way, it also allows evaluating which reactions are not influenced by the differences in network
topology across contexts, i.e., which are robust in flux capacity irrespective of the different con-
texts (note that this set of robust reactions must belong to the core set of shared reactions
across contexts).

To facilitate the analysis, we grouped the subsystems into 8 broader metabolic categories:
Central metabolism, Amino-acid metabolism, Carbohydrate metabolism, Cofactor and vita-
min metabolism, Lipid metabolism, Nucleotide metabolism, Transport and Others, see 52
Table. In addition, we averaged flux capacity values of the reactions in each metabolic subsys-
tem of Recon 1 and in each previously defined metabolic category, to obtain the mean flux
capacity (MFC) per subsystem or category. We also counted the total number of reactions
(TNR) in each category as an alternative way of quantifying their metabolic importance in the
extracted networks.

Marked differences arose when we compared the results obtained by counting the number
of reactions per metabolic category with the ones obtained by averaging the flux capacity. For
instance, the biggest one in terms of the number of reactions in all extracted models (using any
of the methods) is Transport, similar to the findings in [34]. However, if we look at the MFC,
Transport, in general, takes a modest position, often surpassed by Central and Carbohydrate
metabolism (the miscellaneous group “Others” get the highest MFC in all extracted models).
More specifically, approximately 43% of the reactions in Liver are assigned to Transport,
whereas Transport only contributes with 6.2% to the total MFC of the extracted model. Simi-
larly, Nucleotide metabolism is associated 14% of the total number of reactions while only con-
tributes with 6.5% to the total MFC of Liver. On the contrary, systems with a smaller number
of reactions, such as Amino acid and Carbohydrate metabolism (11% and 3.5%, respectively),
get a higher contribution to the total MFC (20% and 14%, respectively), see Fig 2 and S1 Fig for
a complete comparison for each context.
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Fig 2. Pie charts displaying the core set of shared reactions for the 11 models extracted by RegrEx
and a selected comparison of the metabolic categories presented in the liver model. (A) Distribution of
the total number of reactions (TNR) per metabolic category for the liver model (containing a total of 821
reactions across all categories). (B) Distribution of the mean flux capacity (MFC) values of each metabolic
category in the liver model, as explained in the main text, noticeable differences arise with respect to the
distribution depict in A. (C) Reaction content (TNR) for the core set of shared reactions divided per metabolic
category, as explained in the main text, the three dominant categories are Transport, Central and Nucleotide
metabolism. Metabolic category names are displayed in the color bar legend.

doi:10.1371/journal.pone.0131875.g002

As commented before, all context-specific models share a core set of 299 reactions in the
case of RegrEx extracted models. If we consider the TNR in each metabolic category we obtain
a distribution like the one displayed in Fig 2. The core is dominated by Transport reactions
(46%), followed by Nucleotide metabolism (21%) and Central metabolism (17%), being the
rest of the categories represented to a smaller extent. Moreover, when computing the MFC for
each individual reaction in the core, we see that the majority of them (80%) are, in fact, robust
reactions, which means that the flux capacity is maintained across contexts. However, a non-
negligible part of the core (the remaining 20%) is constituted by non-robust reactions, those
that, although being shared by all contexts, present a variable flux capacity. In this group we
encounter reactions like the superoxide dismutase (ROS detoxification), with a coefficient of
variation (CV) value of 0.49, one of the highest in the core. Interestingly, we also find all the
reactions belonging to the pentose phosphate pathway that are present in the core, see S3
Table. These observations show that not all reactions in the core behave in a similar way. On
the contrary, we can partition it into a subset of reactions that are independent of (context-spe-
cific) modifications of the network topology, and a subset that depends on the context and
therefore can be more or less prominent in certain tissues or organs.

Alternatively, to further evaluate the functional validity of the RegrEx extracted models, we
used the previously calculated MFC to investigate the importance that a given subsystem had
in each context. Furthermore, we ranked the subsystems according to the CV of the MFC value
distribution of each subsystem across contexts. This implies that subsystems with a low CV are
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evenly represented among the different contexts, while with increasing CV, these subsystems
tend to be more specific for certain contexts. For instance, all subsystems belonging to Central
metabolism occupy top positions in the ranking, which is expected due to the fundamental role
that these subsystems play in all cell types. The citric acid cycle is the first subsystem in the
ranking with a CV value of 0.078. On the contrary, the pentose phosphate pathway is the sub-
system in Central metabolism with a highest CV value of 0.21. However it can be considered
low in the context of the entire ranking, and may be explained by the fact that, unlike the rest
of subsystems in Central metabolism, the totality of its reactions in the core are non-robust, as
mentioned before, see Fig 3 and S4 Table. In addition to these subsystems, we also find in top
positions others equally fundamental pathways, including: NAD, folate and vitamin A metabo-
lism (all in the category of Cofactor and Vitamin metabolism), extracellular and mitochondrial
transport or nucleotides metabolism. Interestingly, the last three subsystems are also the ones
containing the greatest number of the previously defined robust reactions (54 Table).

Lipid metabolism presents a middle level of specialization across the different contexts
occupying middle positions in the ranking. Therefore, this finding implies that there are some
tissues in which lipid metabolism is predominant. For instance, fatty acid metabolism is pre-
dominant in adipose tissue, liver and skeletal muscle. In addition, fatty acid oxidation and fatty
acid activation are predominant in adipose tissue and skeletal muscle. This is consistent with
known functions of these contexts, since the adipose tissue and liver are primary locations for
fatty acid metabolism and the fatty acid oxidation provides the required energy supply for oxi-
dative muscle contraction [43]. We also find gluthatione metabolism (assigned to the category
“Others”) in a middle position, with a CV of 0.6, and it is highlighted in kidney. This last fea-
ture also serves as validation of the extracted model since it is well known that glutathione
metabolism is essential in the kidney for an adequate functioning [44]. Finally, the lasts posi-
tions are mainly populated by subsystems in Cofactor and Vitamin metabolism and the miscel-
laneous category “Others”, such as keratin sulfate degradation, heme biosynthesis and
degradation or bile acid biosynthesis, see S4 Table and Fig 3

The subsystems with largest CV value include those with extreme behavior, i.e., these sub-
systems are only predicted to be active in a single context. This category consists of bile acid
biosynthesis, biotin, riboflavin, vitamin B6, vitamin D, CYP, methionine and D-alanine metab-
olism (S4 Table). We can explain this behavior as a reflection of the original gene expression
values associated to the reactions in each of these subsystems. For instance, in the case of bile
acid biosynthesis, if we look at the distribution of the total expression values in the subsystem
across contexts, the liver presents an extreme value (z-score = 2.9, S5 Table). We wanted to
know if this characteristic of the data used was sufficient to explain the artifact or if the network
topology of Recon 1 was also contributing to this observation. The latter may happen if Recon
1 lacks some reactions that are crucial to satisfying the steady-state conditions while including
reactions of the bile acid biosynthesis in other contexts. To test this hypothesis, we applied
RegrEx on Recon 2, a recent extended version of the Recon 1 model of increased size (i.e., 5317
in Recon 2 versus 2469 reactions in Recon 1, both after eliminating the blocked reactions) [34].
After extracting the context-specific models, and ranking the subsystems by the CV value of
the MFC, we found that the majority of these subsystems were now represented in more than
one context. For instance, bile acid biosynthesis (named bile acid synthesis in Recon 2) is pres-
ent in all contexts, but has a greatest MFC value in Liver, see Fig 4 and S6 Table.

Computation time comparison

RegrEx computational performance was also evaluated, and compared to the other methods.
In all cases, with the exception of FastCORE, the Gurobi [30] solver was used. CPLEX [45] was
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Fig 3. lllustration of selected Recon 1 subsystems displayed in a Pie chart form, depicting the distribution of mean flux capacity (MFC) values
across contexts. Panels A-B correspond to the two extreme metabolic subsystems, in terms of CV, in Central metabolism. The citric acid cycle (A) shows
the lowest CV value (both in Central metabolism and within the entirety of Recon 1 subsystems). The pentose phosphate pathway (B) shows the greatest CV
value in Central metabolism. (C-E) the distribution of MFC values is shown for fatty acid metabolism (C) which is predominantly represented in liver, adipose
tissue and skeletal muscle, fatty acid oxidation (D) and fatty acid activation (E) both subsystems predominant in adipose tissue and skeletal muscle. (F) The
MFC distribution across contexts is depicted for gluthatione metabolism. Kidney is the context where this subsystem gets a highest MFC value, constituting a
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23% of the total MFC value across contexts. See main text for details. In all cases, the first number preceding the name of the subsystem corresponds to its
position in the ranking generated by the CV values, which are shown in round brackets here. Context names are displayed in the color bar legend.

doi:10.1371/journal.pone.0131875.g004

used in FastCORE instead of Gurobi for two reasons: CPLEX is the default solver in the code
provided in [37], and we believe that the differences in computation time between Gurobi and
CPLEX are negligible when solving LP problems, as is the case in FastCORE.

Table 4 summarizes the differences in computational time and problem formulation for the
evaluated methods. Markedly, IMAT shows a very good computation time, with a mean of 0.16
seconds per model extracted (this result changes dramatically when using GLPK as solver [46],
where mean network extraction time is typically above one minute). This computation time is
comparable to the one obtained by FastCORE. Lee2012 presents a computation time of around
10 minutes per extraction (this result again changes dramatically when using GLPK as solver,
with computation times of several hours per context extracted). When RegrEx is evaluated for
a fixed A-value (that is, RegrEx-1), the computation is fixed to around 60 seconds per model
extracted, this is due to the time limitation constraint imposed to the Gurobi solver, as dis-
cussed in Methods. When no time limit is imposed RegrEx gets the worst position among the
evaluated methods, this may be due to the complexity inherent of solving an MIQP for a big
network like the one of Recon 1. However, the sensitivity to time limit analysis suggests that

A 21: Bile acid synthesis (0.2) B 25: Vitamin B2 metabolism (0.21)
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Fig 4. MFC value distribution across contexts for selected subsystems in Recon 2. Bile acid (bio)
synthesis (A), vitamin B2 metabolism (B, equivalent to riboflavin metabolism in Recon 1) and D-alanine
metabolism (C) are represented in all contexts in Recon 2. Cytochrome metabolism (D, equivalentto CYP in
Recon 1) is represented only in two contexts, Lung and Colon, in Recon 2. In all cases, the first number
preceding the name of the subsystem corresponds to its position in the ranking generated by the CV values,
which are shown in round brackets here. Context names are displayed in the color bar aside. See main text
for details.

doi:10.1371/journal.pone.0131875.9g004
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Table 4. Computation time of the evaluated methods. Mean computation times per model extraction, type of mathematical program solved and the used
commercial solver are displayed for each evaluated method.

Method
iMAT
FastCORE
RegrEx-A0
Lee2012
RegrEx

SEM stands for Standard Error of the Mean.
C stands for iteratively repeated.
*Time is shown in seconds.

doi:10.1371/journal.pone.0131875.1004

Formulation Solver Mean Time * SEM *
MILP Gurobi 0.1652 + 0.0038

LP C CPLEX 0.2976 + 0.0101
MIQP Gurobi 60.0785 + 0.0025

LP C Gurobi 571.2108 + 24.8921
MIQP C Gurobi 928.5313 + 2.3079

the improvement obtained by increasing the time limit does not worth the extra time
expended, even could be reduced to 30 seconds with a similar outcome (see Table 1 in
Methods).

Finally, in the case of RegrEx, the total computation time depends on the number of A-val-
ues evaluated during the optimization step. For instance, in this case the mean computation
time per model extraction stays around 15 minutes, since a sequence of 15 A-values is used in
the optimization. This greater computational time required by RegrEx is explained by the
necessity of finding an optimal A-value to control the regularization during the extraction,
which is specific to any particular data set and GEM. However, the total computational time
spent by RegrEx still remains within a reasonable range, and, as seen in Results, including regu-
larization is fundamental to increase the overall performance.

Conclusion

We have presented RegrEx, a method to extract context-specific metabolic models and provide
a flux distribution most in accordance with experimental data. RegrEx have generated context-
specific flux distributions with the highest correlation values among the competing methods
evaluated, as well as extracted compact models, enriched in reactions with high associated data
values. Importantly, RegrEx performance is severely impaired when performing a non-regular-
ized extraction (i.e., when A = 0, here called RegrEx-\,). More specifically, the models obtained
without employing regularization are less specific to each particular context, share a greater
amount of reactions and contain less exclusive reactions in comparison to models for other
contexts. This is supported by the higher mean Jaccard index over all pairs of compared con-
text-specific models. In addition, the mean orphan ratio is higher if regularization is not used,
implying that a greater number of reactions with non-associated experimental data is included
and causing these models to be less compact. Finally the mean correlation values between pre-
dicted fluxes and data are also smaller in the non-regularized extraction. Altogether, these
observations support the importance of including regularization to obtain a better performance
in context-specific model extraction.

RegrEx have also proven to be a suitable method among the alternatives evaluated here, to
provide a larger correlation between predicted fluxes and experimental data, as well as models
that capture the general pattern of differences and similarities in reaction activity across con-
texts expressed by data. The models extracted by RegrEx are also in agreement with an inde-
pendent data source, based on protein expression, and include preferentially genes that are
associated to highly expressed proteins, outperforming the competing methods with respect to
this criterion.
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In the case study presented here, we have used gene expression profiles as experimental
data. However, RegrEx can support other data sources; protein profiles can be easily integrated,
(e.g. generated through mass-spectrometry based approaches), and the problem of lower cover-
age typically presented by protein profiles can be alleviated by jointly integrating gene expres-
sion data to fill the gaps with respect to data support. In addition, when there exist strong
experimental evidence supporting the presence of a certain reaction in a given context, its
lower bound can be set to an arbitrary positive value (i.e., Vi >€, when splitting reversible
reactions) thus forcing it to be included in the context-specific model. In a similar manner,
when the evidence is for the presence of a metabolite, the sum of the reactions producing such
metabolite could be constrained to ensure its inclusion, thus allowing integrating metabolomics
data in a qualitative way.

RegrEx can be easily used in MATLAB through the provided files. Moreover, no parameters
need to be chosen by the user, since the only parameter, A, is determined by RegrEx in an auto-
mated fashion. In this manner, the user only needs to provide a relevant (context-specific) data
source(s) and the GEM from where the context-specific model is to be extracted, and the rest of
the operating process is fully automated. Finally, RegrEx does not require any a priori knowl-
edge on metabolic functionality in a given context. The property of being an unbiased method
along with the fully automation of the process may be a prominent quality when dealing with
complex, multicellular organisms, where multiple cell types or tissues coexist and specialized in
certain functions that are not yet very well understood and in the case where similarity to data
(e.g., in the sense of correlations) are deemed appropriate by the experimentalists.

Supporting Information

S1 Fig. Comparison of metabolic category distributions across contexts. The importance of
each metabolic category in each contexts is quantified using the total number of reactions
(TNR) belonging to it and their mean flux capacity (MFC).

(PDF)

S1 File. RegrEx source code, context-specific models and Data. The RegrEx code is provided
for MATLAB. The 11 context-specific models are provided in the COBRA format (MATLAB
structure), both for Recon 1 and Recon 2. The data set used in both cases is also provided.
(ZIP)

S2 File. Pie charts displaying the MFC distribution for each metabolic category in Recon 1
and Recon 2 for the 11 context-specific models extracted by RegrEx.
(Z1P)

S1 Table. Comparison of models extracted by the four evaluated contending methods:
Detailed values for each context. Global characteristics of the models derived by RegrEx (with
automated determination of 1), RegrEx-A0 (i.e., RegrEx without regularization), Lee2012, Fas-
tCORE and iMAT are collected in tables A, B, C, D and E, respectively. The abbreviations
stand for the following: Card, denotes cardinality, #ExRxns., number of exclusive reactions,
#Genes, number of genes, OrphRatio, data-orphan ratio, Cor(V,D), correlation between data
and flux values, Res, mean residual value between fluxes and data, IJaccard, mean Jaccard
index to any other context (values in brackets correspond to the standard deviation), and
Lambda, represents the obtained optimum A-value.

(XLSX)

S2 Table. Metabolic categories of Recon 1. All metabolic subsystems from Reconl present in
the 11 RegrEx models were grouped in 8 broader categories, which are depicted in this table.
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This classification is based on the KEGG orthology for Homo sapiens. The miscellaneous group
“Others” contains subsystems of several different categories in the original KEGG classifica-
tion. Metabolic categories are highlighted in bold.

(XLSX)

S3 Table. Core set of share reactions across contexts. The 299 reactions of the shared core set
are displayed along with the subsystem and metabolic category to which they belong, the mean
flux capacity (MFC) of each reaction across contexts and the CV value of the previous MFC.
The core set is partitioned into the robust subset, composed of reactions with the same flux
capacity in all contexts, i.e., with CV = 0, and the non-robust subset, which is composed by
reactions with CV0. In this latter case, the reactions are ranked in descending CV value.
Reactions highlighted in red in the non-robust subset belong to the pentose phosphate path-
way.

(XLSX)

$4 Table. Ranked list of Recon 1 metabolic subsystems represented in the 11 RegrEx
derived models. In this table, the subsystems are ranked in ascending order in terms of their
CV value. The Recon 1 subsystem name is displayed along with the metabolic category to
which each subsystem belongs, the mean flux capacity (MFC), the number of robust reactions
(#RobustRxns), i.e., reactions whose MFC value does not change across contexts, and the total
number of reactions (#Rxns) are displayed for each subsystem. Subsystems presented in Fig 3
are highlighted in purple (A-B), orange (C-E) and green (F); subsytems that are represented in
a single context are highlighted in red; subsystems with the highest number of robust reactions
are highlighted in brown.

(XLSX)

S5 Table. Associated gene expression data for subsystems present only in one context. Z-
score values of the associated expression data are displayed for the 8 subsystems with unique
representation across contexts. The z-scores represent the deviations from the mean of the
total sum of data values in each subsystem across contexts. The values highlighted in red corre-
spond to the contexts where RegrEx uniquely assigns each subsystem. In all cases, these con-
texts present an extreme total sum of data values, as reflected in the highest z-score value as

compared with the rest of the contexts.
(XLSX)

$6 Table. Ranked subsystems of Recon 2. All metabolic subsystems of Recon 2 represented in
the 11 contexts are ranked according to their (increasing) CV value of the MFC across contexts.
Subsystems highlighted in red correspond to subsystems of Recon 1 that were assigned by
RegrEx to a single context.

(XLSX)
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