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Abstract

Background

Although chemotherapy and radiation treatment have contributed to increased survivorship,
treatment-induced brain injury has been a concern when examining long-term intellectual
outcomes of survivors. Specifically, disruption of brain white matter integrity and its relation-
ship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better
understood.

Methods

Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and
an intelligence test (IQ). Voxel-wise group comparisons of fractional anisotropy calculated
from DTI data were performed using Tract Based Spatial Statistics (TBSS) on 27 survivors
(14 treated with radiation with and without chemotherapy and 13 treated without radiation
treatment on average over 13 years since diagnosis) and 27 healthy comparison partici-
pants. Whole brain white matter fractional anisotropy (FA) differences were explored
between each group. The relationships between IQ and FA in the regions where statistically
lower FA values were found in survivors were examined, as well as the role of cumulative
neurological factors.

Results

The group of survivors treated with radiation with and without chemotherapy had lower 1Q
relative to the group of survivors without radiation treatment and the healthy comparison
group. TBSS identified white matter regions with significantly different mean fractional
anisotropy between the three different groups. A lower level of white matter integrity was
found in the radiation with or without chemotherapy treated group compared to the group
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without radiation treatment and also the healthy control group. The group without radiation
treatment had a lower mean FA relative to healthy controls. The white matter disruption of
the radiation with or without chemotherapy treated survivors was positively correlated with
IQ and cumulative neurological factors.

Conclusions

Lower long-term intellectual outcomes of childhood brain tumor survivors are associated
with lower white matter integrity. Radiation and adjunct chemotherapy treatment may play a
role in greater white matter disruption. The relationships between white matter integrity and
1Q, as well as cumulative neurological risk factors exist in young adult survivors of childhood
brain tumors.

Introduction

Advances in diagnosis and treatment have led to improved clinical outcomes and survival of
pediatric brain tumor patients [1, 2]. However, the presence of the tumor and ensuing treat-
ment, such as radiation therapy, are known to induce brain injury that causes a concern regard-
ing long-term intellectual outcomes of survivors. Adverse effects of the tumor and the
treatment may appear chronically over brain structural and functional development or as late-
effects when childhood brain tumor survivors are emerging as adults with increasing functional
and cognitive demands. One longitudinal study of intellectual development among pediatric
medulloblastoma patients treated with radiation with or without chemotherapy found that
these children acquired new information and skills at a lower rate relative to normative data
(49-62%) leading to progressive decline in IQ scores over time [3]. As the number of long-
term survivors of childhood brain tumor continues to grow, it becomes more important to
understand the intellectual abilities of these survivors several years after treatment as well as
the possible neural mechanisms related to their cognitive outcomes. One particular interest is
the effect of treatment on white matter integrity that is important to both structural and func-
tional connectivity of the brain.

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique sensitive
to the directionality and mobility of water diffusion in tissue. It offers great sensitivity and
region specificity to subtle and microscopic change in the white matter tissue; even normal
appearing white matter (NAWM) in routine T; and T, weighted MRI. Thus, DTI provides an
indirect measure of white matter integrity and connectivity [4]. Fractional anisotropy (FA), a
commonly derived index from diffusion tensor data, is a measure of the degree of directional
restricted motion of water molecules in the white matter tracts. A lower FA value is often inter-
preted as disrupted white matter integrity when compared to that of healthy and demographi-
cally matched controls.

Previous DTI studies of pediatric medulloblastoma patients have reported lower FA in
those who received radiation treatment with or without chemotherapy, suggesting that the
lower FA reflects damage to existing white matter tracts and disruption of developing white
matter tracts due to the neurotoxic effects of radiation and potentially other concurrent tumor-
related events (e.g., hydrocephalus, surgery) [5-9]. Multifaceted treatment that includes radia-
tion therapy, chemotherapy, and often endocrine therapy has contributed to increased survival
rates in pediatric brain tumor patients. However, most studies that examine outcomes of survi-
vors following radiation therapy with or without chemotherapy highlight the negative sequelae
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following radiation treatment. In our own research, we have discussed that reporting that the
outcomes are due to the neurotoxic effects of radiation may be oversimplified. Taking into con-
sideration co-occurring treatments and sequelae, and quantifying the cumulative nature of
these treatment differences as Neurological Predictor Scores (NPS, [10]) is necessary to gain
further understanding of this topic particularly when conducting research with complex treat-
ment samples. In the current study we examined a group of survivors who were treated with
radiation therapy with or without chemotherapy and compared them to a group of survivors
who were treated without radiation therapy and primarily surgery with comparison of each
group to a healthy neurotypical demographically-matched control group.

Rarely do studies examine brain tumor survivors treated with radiation versus no radiation
treatment [8] and relative to non-clinic referred healthy controls. The reports on cognitive cor-
relations with FA are also limited [11, 12]. Furthermore, existing studies on the relationship
between FA and intellectual performance (IQ) are inconsistent in pediatric brain tumor
patients [6, 13]. More specifically, it is not clear if intellectual outcomes are related to specific
brain white matter pathways, which may be disrupted by the damage related to the tumor and
treatment received in childhood when the brain is developing and vulnerable to injury. Even
less is known about the white matter integrity of long-term adult survivors of childhood brain
tumors. Moreover, earlier studies [14] also cautioned that selection of region of interest (ROI)
on FA maps can be biased, although recent development of a method of voxel-based tract-
based spatial statistics (TBSS) [15] employed by the current study is able to improve the ROI
selections with a data-driven approach.

Here we report the investigation of white matter integrity differences among long-term sur-
vivors of childhood brain tumors treated with radiation treatment with and without chemo-
therapy (RT), those treated without radiation treatment and primarily neurosurgery (NRT),
and healthy demographically-matched controls (HC). In addition, the possible relationships
between these regions of identified white matter differences and IQ were explored. Childhood
brain tumor survivors often have other neurological factors that can be associated with cogni-
tive outcome. These neurological risk factors include radiation treatment, chemotherapy,
endocrine dysfunction, hydrocephalus, and extent of neurosurgery. The association of white
matter integrity with a cuamulative measure of these factors using the Neurological Predictor
Scale (NPS) [10, 16] was examined to explore a more nuanced understanding of the impact on
white matter integrity. The results from this study provide new evidence of the microstructure
disruption and related intellectual long-term outcomes in adult survivors of childhood brain
tumors.

Methods
Participants

The study was approved by the Georgia State University Institutional Review Board and the
GSU / GA Tech Joint Center for Advanced Brain Imaging Institutional Review Board. Twenty-
seven long-term adult survivors of childhood brain tumors, including a group of 14 survivors
with radiation treatment with and without chemotherapy (RT) and a group of 13 treated with
no radiation treatment (NRT), and twenty-seven demographically matched healthy controls
(HC) were enrolled in the study after providing signed informed consent. Inclusion of all fifty-
four participants was contingent on being a native English speaker, safe for MRI scans, and
adequate hearing and vision screens (one survivor is legally blind and did not complete the two
performance subtest IQ measures that require vision). The neuroimaging data also were
screened to ensure each was free of metal artifact, motion and distortion. Control participants
were excluded if they reported any past or present neurological condition or event (e.g.,
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concussion, seizure, migraines) or if they met diagnostic criteria for current Major Depressive
Episode, substance abuse or dependence, or psychotic disorder based on SCID-II interview.

Twenty-seven adult survivors of pediatric brain tumor who met the inclusion and exclusion
criteria had a mean age of 22.7 years old (SD = 4.5; range = 18-32; 48% female). The average
age of diagnosis was 9 years old (SD = 5.14), and the average time between diagnosis and test-
ing was 13.7 years (SD = 5.37). Tumor pathology, location, type of treatment and treatment
history after the tumor resection or biopsy were obtained from medical records. Survivors in
the NRT group (n = 13) had tumors located in posterior fossa (10), temporal lobe (2), or occip-
ital lobe (1) with tumors diagnosed as astrocytoma (n = 9), oligodendroglial (1), embryonal (1),
choroid plexus papilloma (n = 1), and mixed neuronal-glial (n = 1). Survivors in the RT group
(n = 14) had tumors located in posterior fossa (11), hypothalamus (1), third ventricle (2) with
tumors diagnosed as embryonal (9), astrocytoma (2), craniopharyngioma (2), and pineal (1).
Median radiation dose received was 5400 cGY (range: 5040-5940). The HC group (n = 27)
consisted of age- and gender-matched neurotypical-control participants recruited from friends
of survivors, research participant pools, and community advertisements. Similar demographics
across groups (n = 54) are detailed in Table 1.

Table 1. Demographic, treatment history, and intellectual performance of each group.

RT (n=14) NRT (n=13) Control (n = 27)
Age at testing (years) 22.40+4.36 23.62+4.94 22.86+4.31
Female (%) 50% 46% 48%
Right handed (%) 93% 69% 85%
Education (years) 13.36+2.73 14.08+2.36 14.44+1.69
Age at Diagnosis (years) 9.00+5.2 9.0045.29
Time since diagnosis (years) 12.96+4.53 14.4416.24
No/Subtotal/Gross Total Surgery 1/4/9 0/2/11
Hydrocephalus 11/14 8/13
Shunt 2/7 4/13
Hormone deficiency* 13/142 2/13°
Chemotherapy * 11/142 1/13°
Neurological Predictor Scale* 7.92 +1.38% 4.15 +0.80°
Verbal 1Q* 94+14.542 106.4618.72° 107.678.57°
Performance 1Q* 97.85+12.69° 109.8528.50° 108.81£10.60°
Full Scale IQ* 95.46+14.63° 109.38+7.47° 109.44+7.50°
Vocabulary* 43.79a£11.72° 54.92+6.22° 54.41%5.96°
Similarities 48.07a+9.74° 53.77+6.612 ° 55.48+6.81°
Block Design* 48.62a+8.09% 56.92+5.99° 54.56+8.12°
Matrix Reasoning* 48.54a+11.40° 55.54+6.15° 56.56+6.04°

Note: RT = survivors who received radiation treatment with or without chemotherapy, NRT = survivors who did not receive radiation treatment. Groups
were similar across demographic variables.

*: Variables with significant group difference (p < .05).

ab: Different superscripts (e.g., 2 and ) signify significant mean differences between groups (32, p < .05), whereas matching superscripts illustrate similar
means (e.g., ® and ). RT group had significantly more individuals treated with chemotherapy and individuals identified with hormone deficiency. Across
most cognitive tasks and indices, the RT group was significantly lower relative to both NRT and HC groups; in contrast, the NRT group was similar to
controls. IQ Mean = 100, SD = 15; Subtest T Score Mean = 50, SD = 10.

doi:10.1371/journal.pone.0131744.t1001
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Procedure

Testing took place typically over two visits. At the first visit, trained psychology graduate stu-
dents (under supervision of a licensed clinician; TK) administered a medical and developmen-
tal history interview, a structured clinical interview (SCID-II for DSM-IV TR Axis I [17]), a
vision screen, hearing screen with a standard tone audiometer, and Wechsler Abbreviated
Scale of Intelligence (WASI) [18] among other measures. The second visit was the neuroimag-
ing exam when anatomical MRI and DTI data were collected. Survivors in the study were inter-
viewed to gather information about medical variables, such as age at diagnosis and treatment
history. Medical record review verified these details. NPS [10, 16] was calculated based on
these details to quantify treatment and neurological complexity for each participant. The first
visit lasted approximately 5 hours and the second one lasted approximately 2 hours including 1
hour of the imaging protocol.

Intelligence Quotients. The 4-subtest Wechsler Abbreviated Scale of Intelligence (WASI;
Wechsler, 1999) was administered to obtain estimates of intellectual abilities. WASI has been
employed in many research studies of child and adult neurological populations including
adults survivors of childhood brain tumor [12, 19]. Verbal IQ (VIQ) was based on Vocabulary
and Similarities subtests. Performance IQ (PIQ) was based on Block Design and Matrix Rea-
soning subtests. VIQ and PIQ indices were employed to examine the relationship of verbal and
performance IQ with white matter integrity. WASI standard scores were computed using age-
based normative data (M = 100, SD = 15) presented in Table 1.

MRI Data Acquisition. Anatomical MRI and DTI were performed on all participants
using a 3T MRI scanner (Siemens TrioTim) and a 12-channel head coil. Axial T, weighted
fluid attenuated inversion recovery (FLAIR) imaging was used to evaluate whether white mat-
ter abnormalities, such as lesion, edema and infarcts, in the brain using imaging parameters of:
TR/TE = 6000/93 ms, flip angle = 130°, inversion time = 2030 ms, slice thickness = 3 mm. A
field of view (FOV) of 240 mm and matrix of 512x 512 were used. In addition, three-dimen-
sional high-resolution anatomic sagittal T, weighted magnetization-prepared rapid gradient-
echo (MPRAGE) imaging was performed with TR/TE = 2250/3.98 ms, degree of flip angle = 9,
inversion time = 850 ms, slice thickness = 1 mm, FOV of 256 mm and matrix of 256x 256.
These T weighted images were used not only for evaluation of abnormalities, but they also
provide anatomic information for DTT and data analysis.

For DTI, the same FOV and slice locations used in the T, weighted structural MRI were
applied so that the images could be aligned with structural images. Images were recorded in the
axial direction with 60 slices and 2 mm thickness without gap. Directional sensitized diffusion
weighting single-shot spin echo echo-planar imaging (EPI) sequence with 30 gradient direc-
tions was used with imaging parameters: TR/TE = 7700/90 ms, flip angle = 90°, b-values of 0 or
1,000 s/mm” using the b = 0 image as a reference.

Image Data Processing and Analysis. High resolution anatomic T'; weighted images and
T, weighted FLAIR images from all participants were reviewed by an experienced neuroradiol-
ogist (LW). All controls and adult survivors of childhood brain tumors had NAWM in supra-
tentorial regions with the exception of some minor white matter hyperintensity. Regions with
white matter abnormalities identified on T; weighted and FLAIR images that also were located
in the TBSS identified white matter ROIs were not included in the subsequent analyses, so that
analysis of the correlation of FA measurement with IQ were based only on NAWM. Diffusion
tensor images were processed and analyzed using the FMRIB Software Library version 5.0.1
(FSL, Oxford University, UK www.fmrib.ax.ac.uk/fsl; [20]). For whole brain analysis, TBSS
(V.5.0.1) was used to find differences in FA between different groups throughout the white
matter of the entire brain [15]. We used the randomizing program within FSL to carry out
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permutation-based testing. A statistical threshold-free cluster enhancement (TFCE) analysis
was implemented from randomize [21, 22] with a cluster P < 0.05 (with Family Wise Error
Correction). Voxels in the white matter skeletal mask obtained from TBSS were isolated and
labeled to include the full width of the white matter tract if they were found to be significantly
different between groups. Then, specific ROIs were created using the mask of the clustered vox-
els to perform quantitative analyses of FA values for individual participants. Significant regions
were defined by a cluster of voxels (n > 100) [23]. Measurements of FA were obtained in differ-
ent clusters of each individual using voxel-wise statistical analysis based on the tracts deter-
mined in TBSS, then were used in group comparison analysis. It was predicted that whole
brain TBSS would identify the specific ROIs of difference. The most probable anatomic locali-
zation of each cluster was determined by FSL atlas tool (http://www.fmrib.ox.ac.uk/fsl/data/
atlas-descriptions.html/). The white matter tracts were smoothed with a 3 mm Gaussian kernel,
while maintaining the maximum statistic values and limiting the extent of the spread to voxels
in the white matter (defined as FA > 0.2).

Statistical Analysis. Analyses were conducted with IBM SPSS Statistics version 21.0.0.1
(SPSS, Inc., 2010, Chicago, IL). All values were examined to confirm that they met assumptions
of normality with tests of skewness and kurtosis (<+2). Demographic variables were compared
between groups (Chi-Square or two-tailed independent samples t-test) for descriptive pur-
poses. Treatment variables and intelligence indices (VIQ and PIQ) were compared between
groups with independent t-tests. A p-value of less than .05 was considered a statistically signifi-
cant relationship.

Finally, we used Pearson correlation of FA values from the ROIs empirically-identified
from the TBSS analyses with the standardized Verbal and Performance IQ scores to investi-
gate the effect of lower white matter integrity of the survivors on intellectual abilities. No
adjustment was made for multiple correlation analyses; instead we limited the focus to VIQ
and PIQ indices. Similarly, NPS was correlated with FA values to examine the association of
IQ with cumulative neurological risk factors. A p-value of less than .05 was considered a sta-
tistically significant relationship.

Results
Demographic and Treatment Variables of Participants

Table 1 shows the demographic information of each participant group (RT, NRT and HC
groups). No statically significant difference was observed across demographic characteristics of
age, sex and education. In the RT group, significantly more survivors received chemotherapy
relative to the NRT group (79% vs 8%, respectively; y°(1) = 13.72, p < .001). Similarly, the RT
group had significantly greater proportion of patients who were treated for hormone deficiency
(93% vs 15%, respectively; ¥°(1) = 16.39, p = .000). However, both groups had a non-significant
difference in proportion of patients with hydrocephalus (79% vs. 62%). Using the NPS [10, 16],
we quantified the cumulative neurological complications for each participant. As expected,

we found that the RT group had significantly greater degree of neurological complexity

(t(24) = -8.51, p = .000).

Furthermore, the RT group was significantly different from NRT and HC groups on all indi-
ces of intellectual abilities (p < .05) measured in this study, with the exception of no statistical
significance between RT and NRT groups on the Similarities subtest. NRT survivors and con-
trols performed similarly across all IQ indices and subtests with comparable standard devia-
tions, suggesting that NRT and HC groups have similar cognitive abilities as well as a more
restricted or smaller range relative to the RT group. In contrast, standard deviations are consis-
tently higher in the RT group (e.g. FSIQ: SD = 14.63 in the RT group, compared to SD = 7.47
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in the NRT group, and SD = 7.50 in the HC group), reflecting a greater variability of intellectual
performance in the RT group. Interestingly, on average, all three groups performed in the aver-
age range (90-109) on IQ indices; however, the RT group was on average, in the lower part of
that range.

Differences in White Matter Integrity

Survivors versus Healthy Controls. The white matter integrity of survivors and controls
were compared based on the FA maps of whole brain white matter tract skeletons obtained
from TBSS with TFCE. Lower FA was observed in several brain regions of survivors (Fig 1) rel-
ative to controls. More specifically, the lower mean FA in survivors was found in the corpus
callosum, bilateral frontal medial, frontal pole, and middle temporal regions, also the left supe-
rior frontal, right inferior frontal and right frontal orbital regions as shown in Fig 1A. The
obtained FA values, location and volume of brain structures with lower FA are summarized in

Table 2.

PIQ-CC,r=0.41; VIQ-LFP,r=0.37; VIQ-RFP&RFO, r=0.36

08¢ CCNRT CCRT
¢ LFPNRT LFPRT

- A RFP&RFO NRT RFP&RFO RT
= 07t A& ~®
© o —0'-”!%'
~— > 0% —5%<
O o6} ,
[«}] o
-
© o5l s 0580 o
- ) LR SR e
L o4t __—-——-—dz-;—‘—‘! oy %

0-3 1 L L

60 80 100 120

B IQ Score

Fig 1. White matter differences between survivors and healthy controls. (A) Significant white matter differences between survivors (in both RT and NRT
groups) and healthy controls (HC) were found in the empirically-identified white matter regions from TBSS. White matter skeleton (color coded in green) is
overlaid on a T weighted image. Clusters of significantly lower fractional anisotropy (FA) for survivor group are in orange and red. (B) The plot of statistically
significant correlations between intellectual performance and the white matter FA measured from the areas of left frontal pole (red), right frontal pole (blue)
and corpus callosum (green). The open symbols represent survivors with radiation treatment and solid symbol represent those with no radiation treatment.
LFP = left frontal pole (red), RFP = right frontal pole (blue), CC = corpus callosum (green). VIQ = verbal intelligence quotient, PIQ = performance intelligence
quotient. a.u. = arbitrary units.

doi:10.1371/journal.pone.0131744.g001
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Table 2. Fractional anisotropy (FA) values of white matter regions in all brain tumor survivors were lower compared to those of healthy controls,

and correlated with 1Q.

Structural Atlas Volume (mm?®)
CcC 5763
LSF, LFP 684
LMF 355
LFP 110
RMF, RFP 809
RFP, RFO 213
RIF, RMF 116
RFO 116
LST, LMT, LIT, LPT 3803
RST, RMT, RIT, RPT 3778

COG [X Y Z] (mm) Controls (FA) Survivors (FA) vig? PIQ?
[013 21] 0.70 £ 0.04 0.65 £ 0.03** 0.29* 0.41%*
[-12 23 50] 0.42 + 0.03 0.38 £ 0.02** 0.21 0.28*
[-14 45 -13] 0.42 £ 0.03 0.38 £ 0.02** 0.26 0.21
[-16 53 10] 0.51 £ 0.03 0.47 £ 0.03** 0.37** 0.30*
[16 56 2] 0.53 £ 0.04 0.30 £ 0.02** 0.30* 0.31*
[30 40 -2] 0.45 £ 0.04 0.41 £ 0.03** 0.36** 0.30*
[37 25 18] 0.54 £ 0.03 0.50 £ 0.05** 0.04 0.24
[29 27 —10] 0.38 £ 0.05 0.35 £ 0.04** 0.21 0.24
[-44 17 —13] 0.47 £ 0.04 0.42 £ 0.02** 0.34* 0.36**
[43-19-12] 0.48 £ 0.04 0.44 £ 0.02** 0.33* 0.32*

Note: #: Correlation coefficient; FA = Fractional Anisotropy, VIQ = Verbal Intelligence Quotient; PIQ = Performance Intelligence Quotient.

*:P<0.05

**: P < 0.01.CC: corpus callosum, LSF: left superior frontal; LFP: left frontal pole; LMF: left middle frontal; LFP: left frontal pole; RMF: right middle frontal;
RFP: right frontal pole; RFO: right frontal orbital; RIF: right inferior frontal; LST: left superior; LMT: left middle temporal; LIT: left inferior temporal; LPT: left
planum temporale; RST: right superior temporal; RMT: right middle temporal; RIT: right inferior temporal; RPT: right planum temporale.

doi:10.1371/journal.pone.0131744.t002

To investigate the effect of lower white matter integrity on intellectual abilities, we corre-
lated FA values from the empirically identified ROIs with the standardized Verbal and Perfor-
mance IQ scores. The majority of FA values obtained from the white matter in both frontal
and corpus callosum regions correlated positively with cognitive performance, such that a
lower score was associated with the lower white matter integrity (Table 2). Fig 1B demon-
strates the relationship of FA values with VIQ and PIQ in a couple of selected ROIs. For exam-
ple, VIQ is correlated with the FA values of the white matter in left frontal pole and PIQ is
positively correlated with the FA values of corpus callosum from all survivors with and without
radiation treatment.

Survivors with Radiation Treatment with and without Chemotherapy versus Healthy
Controls. Most previous studies have examined the difference of white matter between pedi-
atric tumor patients treated with radiation with or without chemotherapy versus clinic-referred
controls (e.g., evaluated for headache without identified MRI abnormality)[5, 8, 14, 24]. We
extended these earlier findings from childhood brain tumor survivors in their early years to
survivors with a mean survival time of 13 years, thus focusing on long term outcomes of young
adults. Table 3summarizes the white matter regions that showed lower FA values in survivors
with the RT group in comparison to FA values of the HC group. The regions found to have
lower FAs in the RT group are shown in Fig 2A. In addition, robust correlations were identified
between FA values and VIQ or PIQ in those TBSS empirically-identified regions. The examples
of correlations between IQ performance and white matter FA regions are shown in two selected
regions (Fig 2B), where positive correlations between FA values of the left middle frontal white
matter and VIQ, and FA values of left middle temporal white matter and PIQ in survivors in
the RT group are presented.

Survivors without Radiation Treatment versus Healthy Controls. Distinct from prior
studies, we compared survivors without radiation treatment to healthy controls to investigate
whether the neurological complications which are common among most brain tumor survivors
(e.g., brain tumor itself and hydrocephalus) may disrupt white matter development without
the factor of radiation treatment. In this case, lower FA was observed in the corpus callosum
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Table 3. Fractional anisotropy (FA) values were lower in specific white matter regions in survivors compared to healthy controls, and correlated

with 1Q.

Groups

RT
Vs
HC

NRT
Vs
HC

Structural Atlas

cc

LSF

LMF
LMF, LFP
RSF

RMF

RIF

LMT, LST
RMT, RST
cc

LFO, LFP
LIF

Volume (mm?3) COG [XYZ] (mm) Control (FA) Survivor (FA) vig? PIQ?
6671 [013 21] 0.71 + 0.04 0.66 + 0.03** 0.40%* 0.47**
685 [-11 30 46] 0.42 + 0.03 0.38 + 0.03** 0.29 0.39*
282 [-13 52 -8] 0.46 + 0.03 0.42. + 0.03** 0.27 0.36*
105 [-16 53 10] 0.50 £ 0.03 0.47 £ 0.03** 0.49%* 0.44%*
513 [13 45 29] 0.46 + 0.03 0.42 £ 0.02** 0.31% 0.33*
601 [1552 3] 0.44 + 0.03 0.39 £ 0.03** 0.37* 0.42*
164 [36 26 18] 0.52 + 0.03 0.48 £ 0.05* 0.18 0.36*
4638 [-44 -18 —12] 0.47 £ 0.04 0.41 £ 0.02** 0.41** 0.47**
3443 [45 —24 -7] 0.48 £ 0.04 0.42 £ 0.02** 0.43** 0.40*
4558 [0 4 20] 0.75 £ 0.03 0.71 £ 0.03** -0.005 0.226
128 [-27 31 -7] 0.50 + 0.04 0.44 £ 0.03** 0.052 0.032
92 [-35 37 4] 0.48 £ 0.03 0.44 £ 0.04** 0.009 -0.064

Note: a: Correlation coefficient; VIQ = Verbal Intelligence Quotient; PIQ = Performance 1Q; FA = fractional anisotropy; RT = survivors treated with radiation
treatment with or without chemotherapy; NRT = survivors who did not receive radiation treatment; HC = Healthy Controls.

*:P<0.05

**: P < 0.01. CC: corpus callosum, LSF: left superior frontal; LMF: left middle frontal; LFP: left frontal pole; RSF: right superior frontal; RMF: right middle
frontal; RIF: right inferior frontal; LFO: left frontal orbital; LFP: left frontal pole; LIF: left inferior frontal; LST: left superior temporal; LMT: left middle
temporal; LIT: left inferior temporal; LPT: left planum temporale; RST: right superior temporal; RMT: right middle temporal; RIT: right inferior temporal;
RPT: right planum temporale.

doi:10.1371/journal.pone.0131744.t003

and the left frontal regions (Fig 3) in the NRT group. Although lower FA in these two regions
also was observed in the RT groups, more brain regions appear to be affected in the RT group.
Taking together, these observations suggest that the white matter in corpus callosum and the
left frontal area may be particularly vulnerable to damage from common neurological factors
(e.g. brain tumor itself, hydrocephalus). However, no statistically significant correlations with
IQ were found between these empirically identified regions (Table 3) in NRT and HC groups.
This lack of correlation is likely due to the similar and restricted range of intellectual perfor-
mance within the high average range in both NRT and HC groups (and notably smaller stan-
dard deviations compared to the RT group). Yet, it appears that FA is sensitive to white matter
differences in NRT versus HC groups.

Survivors with Radiation Treatment with or without chemotherapy versus Survivors
without Radiation Treatment. In the cohort of the current study, the RT group presented
with greater cumulative neurological complexity relative to the NRT group. This difference in
cumulative neurological complexity is likely resulted from the combination of radiation treat-
ment and chemotherapy as well as possible neuroendocrine dysfunction in addition to the
common conditions shared with those without radiation treatment (e.g., surgery and hydro-
cephalus). To examine the effect of more complex neurological factors that coexist with radia-
tion treatment on the quality of white matter integrity development, we analyzed FA of
survivors treated with radiation and compared to survivors without radiation treatment. We
found that the survivors in the RT group exhibited lower FA in the white matter of the anterior
portion of corpus callosum, right middle temporal and frontal regions (Fig 4A) compared to
the NRT group. The results of FA values are summarized in Table 4. In addition, very robust
positive correlations were identified between IQ and FA (Fig 4B). Furthermore, FA values of
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Fig 2. White matter differences between survivors treated with radiation therapy with or without chemotherapy and healthy controls. (A) Significant
white matter differences between survivors with radiation treatment with or without chemotherapy (RT) and healthy controls (HC) were found in the
empirically-identified white matter regions from TBSS. White matter skeleton (color coded in green) is overlaid on a T weighted image. Clusters of
significantly lower fractional anisotropy (FA) for survivor group are in orange and red. (B) The plot of statistically significant correlations between intellectual
performance and the white matter FA measured from the areas of left middle frontal (red) and left middle temporal (blue). LMF = left middle frontal (red),

LMT = left middle temporal (blue). VIQ = verbal intelligence quotient, PIQ = performance intelligence quotient. a.u. = arbitrary units.

doi:10.1371/journal.pone.0131744.9002

Fig 3. White matter differences between survivors with no radiation treatment and healthy controls. Significant white matter differences between
survivors with no radiation treatment (NRT) and healthy controls (HC) were found in the empirically-identified white matter regions from TBSS. White matter
skeleton (color coded in green) is overlaid on a T weighted image. Clusters of significantly lower fractional anisotropy (FA) for survivor group are in orange
and red. No statistically significant correlation between intellectual performance and the white matter FA was found in these areas.

doi:10.1371/journal.pone.0131744.9003
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Fig 4. White matter differences between survivors with radiation treatment with or without chemotherapy (RT) and survivors without radiation
treatment (NRT). (A) Significant white matter differences were identified between the RT group and the NRT group in the empirically-identified white matter
regions from TBSS. White matter skeleton (color coded in green) is overlaid on a T weighted image. Clusters of significantly lower fractional anisotropy (FA)
for the RT survivor group are in orange and red. (B) The plot of statistically significant correlations between intellectual performance and the white matter FA
measured from the areas of anterior portion of corpus callosum (green), right middle temporal (red) and right middle frontal (blue) regions. CC = corpus
callosum (green), RMF = right middle frontal (blue), RMT = right middle temporal (red). VIQ = verbal intelligence quotient, PIQ = performance intelligence
quotient, a.u = arbitrary units.

doi:10.1371/journal.pone.0131744.9004

these identified regions are positively associated with the NPS, a measure of cumulative neuro-
logical risk factors (p < .01).

Secondary posterior fossa analyses. The majority of previous studies have focused exclu-
sively on posterior fossa tumors. Therefore, we repeated the analyses of IQ and FA group dif-
ferences, and FA and IQ correlational analyses with survivors of posterior fossa tumors only [5,
6, 8]. FA differences between the RT and NRT groups, RT and HC groups, and NRT and HC
groups remained significantly different. Similarly, when comparing IQ between the three
groups the same pattern of results remained. The IQ of the RT group is significantly lower than
those of NRT and HC groups (VIQ:#(19) = 2.84, p = .01; t(36) = 3.71, p = .001; PIQ:#(19) =
2.10, p = .05; t(36) = 2.67, p = .01). Finally, there is no appreciable change in correlations
between FA and VIQ and PIQ. The similar pattern of results remained when examining the
current findings in the subset of posterior fossa patients.
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Table 4. The correlations of IQ and cumulative neurological risk with fractional anisotropy values of specific white matter regions in survivors
with radiation treatment with and without chemotherapy (RT) compared to the survivors who did not receive radiation treatment (NRT).

Structural Atlas Volume (mm?)
CcC 1969

RMF, RFP 821

RMF 127

LIF 247

LMF 318

RMT 1798

RTP 133

COG [X Y Z] (mm) NRT (FA) NRT (FA) vig?® PIQ® NPS?

1122 16] 0.67 +0.02 0.63** +0.03 0.43* 0.60** -.B57**
[20 38 26] 0.44 +0.02 0.39%* + 0.03 0.45* 0.54%* -.641%*
[30 20 29] 0.46 + 0.04 0.39%* + 0.04 0.50%* 0.45* -.443%

[-38 16 16] 0.50 + 0.02 0.46%* +0.02 0.32 0.42% - 767%*
[-25 8 32] 0.47 +0.03 0.43%* +0.03 0.32 0.35 -616%*
[44 —21 —11] 0.52 +0.02 0.47** +0.02 0.57%* 0.45* - 742%*
[42 7 —24] 0.38 + 0.04 0.33** +0.03 0.25 0.29 - 561%*

Note: #: Correlation coefficient; VIQ = Verbal Intelligence Quotient; PIQ = Performance 1Q; NPS = Neurological Predictor Scale; FA = fractional anisotropy;
RT = survivors treated with radiation treatment with or without chemotherapy; NRT = survivors who did not receive radiation treatment.

*:P<0.05

**: P <0.01. CC: corpus callosum; RMF: right middle frontal; RFP: right frontal pole; LIF: left inferior frontal; LMF: left middle frontal; RMT: right middle

temporal; RTP: right temporal pole.

doi:10.1371/journal.pone.0131744.t004

Discussion

The current study provides imaging-derived evidence of white matter disruption in adult survi-
vors of childhood brain tumors relative to demographically-matched healthy controls, which
allows for determining if the disruptions of white matter integrity in these brain regions relate
to intellectual performance. Our findings are generally consistent with previous DTI and volu-
metric studies that reported disrupted white matter and related cognitive correlates [5-9, 25,
26]. Furthermore, significant correlations of verbal and performance IQ with these TBSS-
derived white matter regions (Table 4) illustrated the robust nature of these findings. The
results from this unique cohort of long-term adult survivors of childhood brain tumors expand
the findings from previous studies with short-term childhood survivors. In particular, the
results from the current study revealed that the RT group presented with multiple regions with
white matter disruption and that these regions were correlated with intellectual performance
(Fig 2). The process of myelination within the white matter continues until approximately 20
years of age [27], and the presence of a neurological condition such as brain tumor during
childhood appears to disrupt or possibly delay the white matter maturation. Earlier studies
have suggested that possible mechanisms of radiation-induced white matter damage are grad-
ual loss of oligodendrocytes or their precursors as well as blood-brain barrier disruption and
damage to the cerebral vasculature [28, 29].

The other new findings of the current study were microstructural white matter differences
between the survivor groups of RT and NRT, and NRT and HC groups. The NRT group is a
critical comparison group when there is a need to differentiate the influences of the tumor,
treatment and other neurological sequelae such as tumor compression of white matter when
experiencing intracranial pressure or possibly disrupted white matter following removal of
tumor with neurosurgery. The survivors in the NRT group included in the current study dem-
onstrated significantly higher white matter integrity than the survivors in the RT group. The
current findings are consistent with the previously reported observations that radiation treat-
ment with or without chemotherapy is especially neurotoxic to white matter integrity.

Nonetheless, most of regions of white matter integrity difference were positively and highly-
related to intellectual performance in this sample. Comparing RT and NRT groups is critical to
identifying the role of more complex diagnosis and subsequent brain tumor treatment relative
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to more limited and circumscribed interventions that have been less associated with cognitive
decline. The NRT group demonstrated significantly lower white matter integrity relative to
controls in the corpus callosum and three regions in the left frontal lobe. Only two previous
studies have included the NRT group in comparison [8, 11]. Our findings support the report of
the significant frontal white matter differences by Rueckriegel et al. [8]; although Law and col-
leagues (2011) did not detect differences between NRT and controls which may be possibly
due to small sample size of the NRT group. The only other known study of long-term survivors
of childhood brain tumors did not have a comparison group (neither the NRT group nor con-
trols) and also found only one correlation between FA and cognition, among 6 ROIs and multi-
ple cognitive and self-report measures [19]. Future studies should continue to utilize a
carefully-matched NRT group as well as neurologically-healthy controls.

In addition, our findings highlight that the RT group has inherently more cumulative neu-
rological risk factors because this group also had been more frequently treated with chemother-
apy and neuroendocrine interventions relative to the NRT group. These cumulative factors are
not surprising as they commonly co-occur in patients with medulloblastoma and the combina-
tion of treatments may likely contribute to the improved survival. However, rarely are these
other neurological factors evaluated and reported when examining the effects of radiation on
white matter integrity or cognitive outcomes. Therefore, it is critical to consider these addi-
tional treatments as contributing and possibly interacting with the radiation treatment the RT
group receives. In contrast, hydrocephalus, extent of surgery, and seizure medication were not
differently represented between groups in the current study. It should be noted that the current
study, like previous studies, is unable to claim the findings are solely due to radiation. It is pos-
sible that the pre and post-treatment disease complexity also played a role in these outcomes. It
was for this reason that the cumulative nature of the neurological sequelae was examined. The
cumulative NPS scores were significantly associated with less white matter integrity in the
TBSS-identified regions of lower FA in survivors. The robust correlations of white matter FA
with NPS further documented the cumulative effects of neurological factors that are associated
with white matter disruption. Interestingly, our previous research has found that the NPS was
correlated with hippocampal and putamen volumes but not whole brain volume [30] suggest-
ing the cumulative neurological risk factors have a unique effect on subcortical volumes in
adult survivors of childhood brain tumors. It is possible that brains experiencing cumulative
neurological complications relative to the healthy brain contribute to a multifactorial disrup-
tion of white matter and cognition. Future prospective longitudinal studies with larger samples
need to consider exploring the cumulative and possibly interactive impact of the neurological
factors on white matter and cognitive development. Larger multi-site studies will be better
equipped to examine the interaction between these treatments, and ideally with sophisticated
measures such as dosimetry or integral biologically effective dose [31] and specific chemother-
apy protocols. Likewise, it is these future and larger more sophisticated studies that will be able
to tease apart the influence of different treatment factors that contribute to outcome.

The current findings must be viewed in the context of the possible limitations. Previous
studies have examined white matter integrity almost exclusively in childhood medulloblas-
toma. However, our survivors represent a heterogeneous brain tumor group. This potential
confound was addressed with secondary analyses on the FA and IQ of only those survivors
with posterior fossa tumors and the results did not appreciably change. It is also possible that
our current survivor groups (RT and NRT) are higher functioning individuals among long-
term survivors because the current sample needed to be able to be in compliance with MRI
(MRI safe and artifact free). Individuals with more complex neurological and impaired intellec-
tual outcomes may not be able to meet the inclusion criteria for MRI. Therefore, it is important
to consider this limitation across all DTT studies of brain tumor survivors, as it suggests that
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studies using MRI may represent the group with better outcomes with regard to white matter
and/or cognitive disruptions.

In summary, this study provides quantitative imaging measurement of white matter disrup-
tion and correlation with intellectual performance in adult survivors of childhood brain tumor
with radiation treatment with or without chemotherapy and those without radiation treatment.
Although white matter damage in survivors without radiation treatment was less widespread
relative to that measured in survivors with radiation treatment with or without chemotherapy,
significant regions of white matter differences were detected in survivors without radiation
treatment relative to controls. However, the cause of this disruption as to whether the lower FA
is due to loss of white matter, disruption or delay of maturing white matter, or individual vul-
nerability to neurotoxicity associated with treatments or tumor complications needs to be fur-
ther investigated in future longitudinal studies. Furthermore, the findings of this work add to
our understanding of the mechanisms underlying cognitive outcomes reported in the increas-
ing number of adult survivors of childhood brain tumor. In addition, non-invasive diffusion
tensor imaging and quantitative measurement of white matter integrity could be employed as a
biomarker to monitor treatment and to guide the design of novel neuroprotective agents for
pediatric brain tumor patients.

Supporting Information

S1 Table. Demographic, treatment history, and intellectual performance of each group.
RT = survivors who received radiation treatment with or without chemotherapy,

NRT = survivors who did not receive radiation treatment. Groups were similar across demo-
graphic variables. *: Variables with significant group difference (p < .05). *": Different super-
scripts (e.g., > and ) signify significant mean differences between groups (x2, p < .05), whereas
matching superscripts illustrate similar means (e.g., ® and ). RT group had significantly more
individuals treated with chemotherapy and individuals identified with hormone deficiency.
Across most cognitive tasks and indices, the RT group was significantly lower relative to both
NRT and HC groups; in contrast, the NRT group was similar to controls. IQ Mean = 100,

SD = 15; Subtest T Score Mean = 50, SD = 10.

(XLSX)

S2 Table. Fractional anisotropy (FA) values of white matter regions in all brain tumor sur-
vivors were lower compared to those of healthy controls, and correlated with IQ. Correla-
tion coefficient; FA = Fractional Anisotropy, VIQ = Verbal Intelligence Quotient;

PIQ = Performance Intelligence Quotient. *: P < 0.05, **: P < 0.01. CC: corpus callosum, LSF:
left superior frontal; LFP: left frontal pole; LMF: left middle frontal; LFP: left frontal pole; RMF:
right middle frontal; RFP: right frontal pole; RFO: right frontal orbital; RIF: right inferior fron-
tal; LST: left superior; LMT: left middle temporal; LIT: left inferior temporal; LPT: left planum
temporale; RST: right superior temporal; RMT: right middle temporal; RIT: right inferior tem-
poral; RPT: right planum temporale.

(XLS)

§3 Table. Fractional anisotropy (FA) values were lower in specific white matter regions in
survivors compared to healthy controls, and correlated with IQ. Correlation coefficient;
VIQ = Verbal Intelligence Quotient; PIQ = Performance IQ; FA = fractional anisotropy;

RT = survivors treated with radiation treatment with or without chemotherapy;

NRT = survivors who did not receive radiation treatment; HC = Healthy Controls. *: P < 0.05,
**: P < 0.01. CC: corpus callosum, LSF: left superior frontal; LMF: left middle frontal; LFP: left
frontal pole; RSF: right superior frontal; RMF: right middle frontal; RIF: right inferior frontal;
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LFO: left frontal orbital; LEP: left frontal pole; LIF: left inferior frontal; LST: left superior tem-
poral; LMT: left middle temporal; LIT: left inferior temporal; LPT: left planum temporale; RST:
right superior temporal; RMT: right middle temporal; RIT: right inferior temporal; RPT: right
planum temporale.

(XLSX)

$4 Table. The correlations of IQ and cumulative neurological risk with fractional anisot-
ropy values of specific white matter regions in survivors with radiation treatment with and
without chemotherapy (RT) compared to the survivors who did not receive radiation treat-
ment (NRT). Correlation coefficient; VIQ = Verbal Intelligence Quotient; PIQ = Performance
IQ; NPS = Neurological Predictor Scale; FA = fractional anisotropy; RT = survivors treated
with radiation treatment with or without chemotherapy; NRT = survivors who did not receive
radiation treatment. *: P < 0.05, **: P < 0.01. CC: corpus callosum; RMF: right middle frontal;
REFP: right frontal pole; LIF: left inferior frontal; LMF: left middle frontal; RMT: right middle
temporal; RTP: right temporal pole.

(XLSX)
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