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Abstract
Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been

associated with sudden and extensive attacks on a diverse range of living trees, but factors

driving their shift from dying/dead hosts to living and healthy ones are not well understood.

We sought to characterize the role of host physiological condition on preference and coloni-

zation by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given

free-choice under field conditions among flooded and non-flooded deciduous tree species

of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more

tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flower-

ing dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including

silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key

host-derived attractant, was detected at higher concentrations 3 days after initiating flooding

within stems of flood intolerant species compared to tolerant and non-flooded species. A

positive correlation was also detected between ethanol concentrations in stem tissue and

cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were
confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected

sawdust resulting from tunneling activity was associated with the flood-stressed trees. Fur-

thermore, living foundresses, eggs, larvae, and pupae were only detected within galleries

created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera,

X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and

preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees

were not preferred or successfully colonized. This study demonstrates the host-selection

strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

detection of stress-induced ethanol emission and early colonization of living but weakened

trees.
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Introduction
Non-native ambrosia beetles (Coleoptera: Curculionidae) in the tribe Xyleborini have been reg-
ularly intercepted at ports of entry and several species are now established and abundant in
North America [1–9]. A cryptic nature, diet of symbiotic fungi, sib-mating, haplodiploidy,
broad host range, and interactions with naïve hosts likely aid in their introduction and estab-
lishment in non-native habitats [1–9]. In particular, two species native to Southeast Asia, Xylo-
sandrus germanus (Blandford) and Xylosandrus crassiusculus (Motschulsky), have become
widely established across regions of North America [2,10]. As of 2010, X. germanus and X. cras-
siusculus were found in 32 and 29 of 50 states, respectively [10]. Xylosandrus germanus has also
become established throughout much of Europe [11–16]. Xylosandrus crassiusculus currently
has a narrower distribution in Europe, but is established in Central America and the Caribbean,
East and West Africa, and Oceania [17,18].

Xylosandrus germanus and X. crassiusculus exhibit a capability to attack a diverse range of
>200 and>120 species, respectively [19,20], and have extensively attacked living and appar-
ently-healthy trees growing within non-native ornamental, horticultural, and forested settings
[9,11,12,21–26]. However, the basis for these attacks is not well understood, particularly since
both species colonize dying and dead trees in their native habitats [4]. Over a dozen additional
species of ambrosia beetles that normally attack dying or dead trees have also shifted to attack-
ing living trees in non-native habitats; thereby leading to speculation about the mechanisms
underlying their selection of living trees as hosts [4,9,27].

As with other Scolytinae, host-derived olfactory cues, particularly ethanol, play an impor-
tant role during host selection by X. germanus and X. crassiusculus [9,28–30]. Ethanol is a key
host-derived attractant and baiting, irrigating, or injecting trees with ethanol induced attacks
on specific trees [9,28,31–33]. Xylosandrus germanus also efficiently located and attacked etha-
nol-injected trees, but rarely landed on and did not attack adjacent trees not emitting ethanol
[9]. A positive correlation was also demonstrated between concentration of ethanol injected
into a tree and cumulative ambrosia beetle attacks [31], along with a positive correlation
between emission rates from lures and corresponding trap captures [29]. In addition to using
host-derived volatiles, some Scolytinae and Platypodinae ambrosia beetles produce aggregation
pheromones to attract conspecifics and overwhelm tree defenses [34,35]. However, this strat-
egy is uncommon among the Xyleborini ambrosia beetles and X. germanus and X. crassiusculus
are not anticipated to produce aggregation pheromones [9].

Ethanol is rapidly induced by trees in response to a variety of abiotic and biotic stressors,
including flood and drought stress, girdling, freezing, pathogens, root and crown disturbance,
and pollutants [36–43]. In the case of flooding, roots subjected to little or no oxygen will switch
from aerobic to anaerobic cellular respiration [41,42]. Pyruvate formed during glycolysis is
then converted into ethanol and either metabolized by alcohol dehydrogenase or emitted from
the epidermis. Field and experimental observations have documented the potential for flood
stress to predispose trees to attack by non-native ambrosia beetles. For instance, extensive
ambrosia beetle attacks were detected in May 2011 on field grown dogwood (Cornus florida ×
Cornus kousa) trees that were subjected to water logging and poor soil drainage at two orna-
mental nurseries following record setting precipitation [43]. Subsequent experiments demon-
strated flood-stressed C. florida, which is considered intolerant of flooding, were more
attractive and preferentially attacked by X. germanus and X. crassiusculus [43]. Ethanol was
also detected within the vascular tissue and emitted from the epidermis of C. florida, but not
from non-flooded trees.

Comparatively high concentrations of ethanol can be associated with flood intolerant trees,
but some tolerant species delay or avoid accumulating ethanol [44,45]. Thus, allowing X.
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germanus and X. crassiusculus to choose among tree species varying in their tolerance of flood
stress could provide insight into their preference for trees in a specific physiological condition.
Previous studies indirectly suggested X. germanus could distinguish among even slight differ-
ences in tree quality [9,21,22]. Furthermore, the extent to which X. germanus and X. crassiuscu-
lus utilize healthy naïve trees in non-native habitats, especially in the absence of weakened
ones, is also poorly understood and unsubstantiated. Attacks have been suspected to occur on
apparently-healthy trees [10,21,46–48], but such trees may actually have been inapparently-
stressed at the time of attack [9]. Comparing colonization success on flood-stressed and non-
flooded trees could thereby provide crucial insight into host utilization within non-native habi-
tats and aid in characterizing factors contributing to the invasiveness of X. germanus and X.
crassiusculus.

The overall goal of this study was to assess factors involved with X. germanus and X. cras-
siusculus targeting living trees in non-native habitats, particularly the role of host physiological
condition on preference behavior and colonization success. To characterize host preference
specificity, we tested if tree species intolerant of flooding would be preferentially attacked
under free choice conditions over species more tolerant of flooding. Ethanol in stem tissues of
non-flooded and flood-stressed trees was also analyzed to determine if elevated concentrations
were associated with the more intolerant species. To elucidate limitations imposed by tree con-
dition on colonization success, we also compared the capability of X. germanus and X. crassius-
culus to colonize flood-stressed and non-flooded trees. We hypothesized that X. germanus and
X. crassiusculus can distinguish among trees of varying physiological conditions and preferen-
tially attack species intolerant of flood stress, but exhibit non-preference and poor colonization
of non-flooded trees. We also hypothesized interspecific variability in ethanol stem concentra-
tions would be related to intolerance of flood stress.

Materials and Methods

Preference among Trees Varying in their Tolerance of Flood Stress
Free-choice experiments were conducted in Ohio and Virginia to characterize the role of host
physiological condition on preference of X. germanus and X. crassiusculus and to determine if
tree species intolerant of flooding would be preferentially attacked over moderately tolerant or
tolerant species. Flowering dogwood C. florida (�20 mm stem diam. at 15.24 cm above soil),
Japanese snowbell Styrax japonicus S. et Z. (�23 mm), and eastern redbud Cercis canadensis L.
(�25 mm) were selected as representatives of flood-stress intolerant species [49–51]; flowering
cherry Prunus serrulata Lindl. (�28 mm), American elm Ulmus americana L. (�19 mm), and
river birch Betula nigra L. (�21 mm), were selected as moderately tolerant species [49,52,53];
and swamp white oak Quercus bicolorWilld. (�19 mm) and silver maple Acer saccharinum L.
(�19 mm) were selected as tolerant species for deployment in Ohio [49,51]. Cornus florida and
C. canadensis were selected as intolerant species; P. serrulata andM. virginiana represented
moderately tolerant species; and Q. bicolor and A. saccharinum represented tolerant species for
deployment in Virginia. Trees were 2−3 years old and maintained in 19-L pots.

Flooding conditions were imposed using a pot-in-pot system according to Ranger et al.
[43], whereby a 26-L pot was first lined with a plastic waste bag of 3 mil (0.076 mm) thickness.
A 19-L pot containing a single tree was then placed within the plastic lined pot. Flood stress
was initiated by irrigating the media within the internal pot until standing water pooled around
the base of the trees. Trees were checked daily to ensure standing water was maintained in the
selected pots throughout the duration of experiments. Excess plastic liner surrounding the edge
of the flooded pot was draped around the internal circumference of the pot and wrapped
around the base of the stem to prevent beetles from landing in the standing water.
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Non-flooded and flooded specimens of A. saccharinum, B. nigra, C. canadensis, C. florida, P.
serrulata, Q. bicolor, S. japonicus, andU. americana were deployed in eight randomized com-
plete blocks within a woodlot in Ohio (40°45’41.97”N 81°51’20.89”W). Permission was provided
by The Ohio State University to use the described field sites. There was approximately 3 m
between trees within each block and 10 m between adjacent blocks. Flood stress was initiated on
29 April 2013 and maintained until 14 May 2013. Similarly, non-flooded and flooded specimens
of A. saccharinum, C. canadensis, C. florida,M. virginiana, P. serrulata, and Q. bicolor and were
deployed in six randomized complete blocks along the edge of a woodlot in Virginia (37°
17’17.64”N 76°39’0.07”W). Permission was provided by the Department of Parks and Recrea-
tion, York County, Virginia. Flood stress was initiated on 8 April 2013 and maintained until 23
April 2013 in Virginia. Trees were inspected for ambrosia beetle attacks one day after initiating
flood stress and then every two to three days until the experiment was terminated.

Trees deployed in Ohio that sustained at least one ambrosia beetle attack were cut at the
roots under field conditions on the last day of the experiment and subsequently transferred to a
walk-in refrigerator held at 5°C. Trees were then dissected to recover foundress ambrosia bee-
tles from the tunnels and galleries, and specimens were preserved in 95% ethanol for identifica-
tion. Attacked trees deployed in Virginia were also cut at the base on the last day of the
experiment and stem sections were held in plastic containers at room temperature until beetles
were excavated for identification. No protected species were sampled during the course of this
study.

Association of Ethanol with Trees Varying in their Tolerance of Flood
Stress
Ethanol was quantified within the vascular tissue of the flood-stressed and non-flooded trees
deployed in Ohio and Virginia as part of the experiment evaluating ambrosia beetle preference
for trees varying in their tolerance of flooding. Based on Ranger et al. [43], three days after initi-
ating flooding an Osborne arch punch (C.S. Osborne & Co., Harrison, New Jersey) was used to
take four tissue core samples (1 mm depth, 5 mm diam.) at 10 cm above the base from flooded
and non-flooded specimens of A. saccharinum, B. nigra, C. canadensis, C. florida, P. serrulata,
Q. bicolor, S. japonicus, and U. americana deployed in Ohio. Similarly, tissue samples were also
taken three days after initiating flooding from flood-stressed and non-flooded specimens of A.
saccharinum, C. canadensis, C. florida, P. serrulata, Q. bicolor, andM. virginiana deployed in
Virginia. The superficial tissue core samples included the outer bark, phloem, and vascular
cambium, but not the sapwood and heartwood. Tissue core samples were placed in 2 mL
Eppendorf tubes immediately after sampling, which were then covered among dry ice until
transported back to the laboratory. Tissue samples were stored at -80°C until analysis. Tissues
samples taken in Virginia were packed with dry ice and shipped overnight to the USDA-AR-
S-HIRL for analysis.

Solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was
used to analyze ethanol content [9,43]. In short, phloem and vascular cambium tissues from
the four core samples were placed in 2 mL glass vials and suspended in a water bath at 100°C
for 30 min. Vials were removed from the water bath and a SPME fiber was exposed to the head-
space within the vial for 5 min. The fiber was retracted after sampling and the syringe was
immediately capped with a sealed section of PTFE microbore tubing (0.568 mm inner diam. ×
1.07 mm outer diam., Cole-Parmer, Vernon Hills, Illinois) to prevent contamination of the
fiber. A coating of carboxen-polydimethylsiloxane (CAR/PDMS; 75 μm coating; Sigma-
Aldrich, St. Louis, Missouri) was used, which is ideal for gases and low molecular weight com-
pounds (MW 30−225) [54].
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Immediately after sampling, syringes were inserted into the injection port of a GC (Varian
CP-3800; Varian Inc., Palo Alto, California) equipped with a Merlin Microseal septum system
(Sigma-Aldrich) and thermally desorbed for 2 min at 250°C. The injection port was operated
in splitless mode from 0–2 min and then split at a ratio of 1:20 for the remainder of the run. A
capillary nonpolar DB-5 column (0.25 μm × 30 m × 0.25 μm; cross-linked/surface bonded 5%
phenyl, 95% methylpolysiloxane; Agilent J&W, Santa Clara, California) was used for analysis
according to the following program: 40–60°C at 3°C/min and 60–230°C at 20°C/min. A Varian
2200 MS detector was operated in electron impact mode with a scan range of 14−415m/z. Sys-
tem control was accomplished with Star Chromatography Workstation software (Varian Star
Toolbar, version 6.8). Fibers were conditioned before each analysis by exposure within the
injection port for 20 min at 250 oC.

The external standard method [9,43] was used for determining concentrations of ethanol
associated with the tissue core samples. Serial dilutions of ethanol ranging from 100 g/L to
0.0001 g/L were made in water and aliquots containing known amounts of ethanol were
applied to filter paper discs (5 mm diam.) sealed in glass 2 mL autosampler vials for sampling
purposes. Peak areas associated with the ethanol standards were measured using the Star Chro-
matography Workstation software. A standard concentration curve was then developed and
used to determine concentrations of ethanol associated with the tissue samples.

Preference for Attacking Tree Parts
To document species preferences for attacking certain tree parts, we compared the propensity
of ambrosia beetles to attack above-ground aerial parts of flood-stressed and non-flooded C.
florida. Trees were flood-stressed as previously described and permission was provided by
OSU to deploy trees in a woodlot in Ohio (40°45’41.97”N 81°51’20.89”W). Flooded and non-
flooded trees were arranged 1 m apart in pairs with 5 m between adjacent pairs. Six pairs of
replicated trees were deployed and trees were held under field conditions for 15 days from 7
July 2014 to 22 July 2014. Attacked trees were then excised at the base and transferred to a
walk-in refrigerator held at 5°C. Tunnels and galleries within trees were then dissected to
recover foundress ambrosia beetles, which were quantified and identified to species. Presence
of the white ambrosial form (i.e. conidia and sprout cells) of the symbiotic fungus [55] and
ambrosia beetle eggs within the galleries were also recorded.

Colonization Success on Flood-Stressed and Non-Flooded Trees
No-choice experiments were conducted in Ohio using X. germanus and in Virginia using X.
crassiusculus to compare colonization success on flood-stressed and non-flooded C. florida.
Bottle traps described by Ranger et al. [28] were used for obtaining field-collected adults, but
instead of propylene glycol, a moistened paper towel rolled into a tube was placed in the bot-
tom collection vessel of the trap to maintain ambrosia beetle specimens during 24 hrs under
field conditions. Ambrosia beetles were then returned to the laboratory and transferred to par-
afilm-sealed petri dishes containing moistened filter paper and stored for 24 to 48 hrs at 3.3°C.

Flooding of container grown trees was established using the previously described pot-in-pot
system on 19 May 2014 in a greenhouse on the campus of the OARDC and on 12 May 2014 on
the campus of the HRAREC. Three days after initiating flooding, an individual adult female X.
germanus field-collected in Ohio or X. crassiusculus field-collected in Virginia were placed
inside of a chamber made of polytetrafluoroethylene (PTFE) tubing that was cut longitudinally
(2.5 cm × 1 cm × 0.9 cm; l × w × h) and sealed at both ends with Molded Thermogreen LB-2
Septa (Supelco, Bellefonte, PA) cut into a semi-circle (Fig 1). Cables ties were used to snugly
secure the chambers against the stem in parallel, thereby confining an individual beetle to
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2.5 cm2 of bark tissue. Smooth bark of the C. florida trees allowed for close contact between the
tissue and chambers, thereby effectively confining the beetle specimens. Ten chambers per tree
were placed on six flood-stressed and six non-flooded C. florida trees starting from the base
and extending linearly about 60 cm up the main stem with about 1.5−2 cm between cages. Gen-
erally, one to two unresponsive or injured beetles per tree were removed and replaced during
the first day. Chambers confining foundress ambrosia beetles were held in place for 25 days,
after which the stems were cut at the base and temporarily stored at 5°C until further analysis.
As an indication of tunneling activity, chambers were carefully removed from the stems 1‒2 d
later and ejected sawdust within each cage was weighed. Stem sections associated with each
chamber as part of the experiment conducted in Ohio were also dissected to determine if the
foundress was still alive and assess the presence/absence of eggs, larvae, pupae, and fungal
growth within each tunnel/gallery. Flooded trees were drained 15 days into the experiment to
avoid tree death and then watered accordingly for the remaining 10 days.

Statistical Analyses
Cumulative ambrosia beetle attacks on trees varying in their tolerance of flooding were first
examined using a repeated measures ANOVA to test for between-subject effects [56]. When a

Fig 1. Chamber designed for confining adult female X. germanus and X. crassiusculus to stems of
flood-stressed and non-floodedCornus florida.

doi:10.1371/journal.pone.0131496.g001
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significant between-subject treatment × time effect was detected (P<0.05), the number of
attacks per treatment at a given time point were analyzed by two-way ANOVA using tree spe-
cies and flood level as main effects and tree species × flood level as an interaction [56]. Differ-
ences among treatments were determined using least-squares means (α = 0.05). Two-way
ANOVA and least-squares means were also used to compare ethanol concentrations associated
with the flood-stressed and non-flooded tree species (main effects = tree species and flood
level; interaction = tree species × flood level). Regression analysis was used to test for a correla-
tion between day 3 ethanol concentrations and cumulative attacks per tree associated with
flood-stressed and non-flooded trees. Two-way ANOVA and least-squares means were used to
compare cumulative attacks and ambrosia beetle specimens excavated per tree from stems and
branches of flood-stressed and non-flooded trees (main effects = tree part and flood level;
interaction = tree part × flood level). An unpaired t-test (α = 0.05) was used to compare ejected
sawdust, and the percentage of galleries per tree with living foundresses, eggs, larvae, pupae,
and fungal growth between flood-stressed and non-flooded trees. All data were square root
transformed prior to analysis, but untransformed data are presented.

Results

Preference among Trees Varying in their Tolerance of Flood Stress
Within 3 days of imposing flood stress, ambrosia beetles began rapidly attacking tree species
intolerant of flooding, C. florida and S. japonicus, when given free choice among flooded
and non-flooded trees of varying tolerance (Fig 2A). A significant between-subject
treatment × time effect was detected in cumulative ambrosia beetle attacks for trees deployed
in Ohio (F = 22.23; df = 15,112; P<0.0001) (Fig 2A). By 5 days, a significant interaction effect
was detected between tree species × flooding level (F = 12.27; df = 7; P<0.0001), along with sig-
nificant main effects associated with tree species (F = 11.54; df = 7; P<0.0001) and flooding
level (F = 42.18; df = 1; P<0.0001). Specifically, S. japonicus and C. florida sustained signifi-
cantly more attacks 5 days after initiating flooding than all other flooded and non-flooded spe-
cies, while C. canadensis received more attacks than all the remaining treatments. By 15 days,
C. florida and S. japonicus sustained the highest number of cumulative attacks followed by C.
canadensis (species × flooding interaction: F = 15.07; df = 7; P<0.0001; tree species effect:
F = 14.59; df = 7; P<0.0001; flooding effect: F = 71.12; df = 1; P<0.0001). No attacks occurred
on flood-stressed B. nigra and Q. bicolor or any of the non-flooded tree species throughout the
duration of the experiment.

Non-native X. germanus was the predominant species excavated from galleries created in C.
florida and S. japonicus deployed in Ohio, but specimens of the non-native species Ambrosiod-
mus rubricollis (Eichhoff) and nativeMonarthrum mali (Fitch) were also recovered (Table 1).
Xylosandrus germanus (n = 102 specimens) represented 98.0% of the total ambrosia beetles
recovered from C. florida, followed by 1.0% for A. rubricollis (n = 1) and 1.0% forM.mali
(n = 1). Only X. germanus was recovered from flood-stressed S. japonicus (n = 112), C. cana-
densis (n = 35), P. serrulata (n = 8), A. saccharinum (n = 2), and U. americana (n = 1)
(Table 1).

A significant between-subject treatment × time effect was also detected for flood-stressed
and non-flooded trees deployed in Virginia (F = 158.34; df = 11, 60; P<0.0001) (Fig 2B).
Attacks began to occur on flood-stressed C. florida three days after initiating flooding. By 7
days, a significant interaction effect was detected between tree species × flooding level
(F = 43.8; df = 5; P<0.0001), along with significant effects associated with the main factors of
tree species (F = 42.8; df = 5; P<0.0001) and flooding level (F = 48.6; df = 1; P<0.0001).
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Cornus florida sustained more attacks 7 days after initiating flooding than all other flooded and
non-flooded species.

By 15 days after initiating flooding, more cumulative attacks occurred on flood-stressed C.
florida than all other flooded and non-flooded trees (species × flooding: F = 107.1; df = 5;
P<0.0001; tree species effect: F = 106.3; df = 5; P<0.0001; flooding effect: F = 162.2; df = 1;
P<0.0001). Considerably fewer attacks occurred on flood-stressed C. canadensis and P. serru-
lata, which were higher than all the remaining non-flooded and flooded species treatments
except flood-stressedM. virginiana. No difference in attacks were detected among non-flooded
A. saccharinum, C. canadensis, C. florida,M. virginiana, P. serrulata, and Q. bicolor, along with
flood-stressed A. saccharinum,M. virginiana, and Q. bicolor. No attacks occurred on flood-
stressed A. saccharinum and Q. bicolor, or non-flooded C. florida,M. virginiana, and P. serru-
lata. However, one non-flooded C. canadensis sustained one attack.

Only non-native ambrosia beetles attacked experimental trees deployed in Virginia. Xylo-
sandrus germanus was the predominant species excavated from galleries created in C. florida
deployed in Virginia, but specimens of non-native X. crassiusculus and non-native Xylosandrus
compactus (Eichhoff) were also recovered (Table 2). Xylosandrus germanus (n = 241 speci-
mens) represented 70.3% of the total ambrosia beetles recovered from C. florida, followed by
28.6% for X. crassiusculus (n = 98) and 1.2% for X. compactus (n = 4).

Association of Ethanol with Trees Varying in their Tolerance of Flood
Stress
At 3 days after initiating flooding, differences were detected in ethanol concentrations associ-
ated with trees varying in their tolerance of flooding. A significant interaction effect on ethanol
concentrations was detected between tree species and flooding for trees deployed in Ohio
(F = 10.29; df = 7; P<0.0001) (Fig 3A). Significant main effects were also associated with tree
species (F = 9.85; df = 7; P<0.0001) and flood stress (F = 59.41; df = 1; P<0.0001). Higher lev-
els of ethanol were detected in tissues collected from flood-stressed C. florida, S. japonicus, and

Fig 2. Cumulative mean (±SE) attacks by ambrosia beetles on flood-stressed trees with varying intolerance of flooding deployed in (A) Ohio and
(B) Virginia.Data for non-flooded trees are not presented in the figure. Different letters indicate significant differences among treatments at day 15 by two-
way ANOVA and least-squares means (P value provided for tree species × flooding interaction effect; see Results section for remaining output; n = 8 and
n = 6 trees per treatment for Ohio and Virginia, respectively).

doi:10.1371/journal.pone.0131496.g002

Table 1. Mean (±SE) cumulative attacks and ambrosia beetle specimens recovered per flood-stressed tree deployed in Ohio.

Scolytinae recovered per tree

Flood-stressed tree speciesa Cumulative Attacks Xylosandrus germanus Ambrosiodmus rubricollis Monarthrum mali

Styrax japonicus 19.6 ± 5.9 14.0 ± 5.9 0.0 ± 0.0 0.0 ± 0.0

Cornus florida 18.9 ± 6.3 12.8 ± 4.6 0.1 ± 0.1 0.1 ± 0.1

Cercis canadensis 6.6 ± 1.6 4.4 ± 1.5 0.0 ± 0.0 0.0 ± 0.0

Prunus serrulata 1.3 ± 0.7 1.0 ± 0.6 0.0 ± 0.0 0.0 ± 0.0

Acer saccharinum 0.6 ± 0.4 0.3 ± 0.2 0.0 ± 0.0 0.0 ± 0.0

Ulmus americana 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Betula nigra 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Quercus bicolor 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

a No attacks occurred on non-flooded trees (n = 6 trees per treatment).

doi:10.1371/journal.pone.0131496.t001
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C. canadensis compared to all the remaining treatments (Fig 3A). Ethanol levels associated
with A. saccharinum were higher than the remaining treatments, while no differences were
detected among flooded and non-flooded Q. bicolor, B. nigra, U. americana, and P. serrulata,
and non-flooded A. saccharinum, C. canadensis, C. florida, and S. japonicus. A significant posi-
tive correlation (r2 = 0.52) was detected between day 3 ethanol concentrations and cumulative
attacks on the flood-stressed and non-flooded trees (F = 129.03; df = 1, 126; P<0.0001) (Fig
4A).

A significant interaction was also detected between tree species and flooding level on etha-
nol concentrations associated with trees deployed in Virginia (F = 12.30; df = 5; P<0.0001),
along with significant main effects for tree species (F = 9.94; df = 5; P<0.0001) and flooding
level (F = 32.92; df = 1; P<0.0001) (Fig 3B). Higher levels of ethanol were detected in flood-
stressed C. florida tissues compared to all the remaining flooded and non-flooded treatments
(Fig 3B). Ethanol levels associated with flood-stressed P. serrulata were considerably lower
than C. florida, but higher than all the remaining treatments except for C. canadensis. A signifi-
cant positive correlation (r2 = 0.76) was detected between day 3 ethanol concentrations and
cumulative attacks on the flood-stressed and non-flooded trees (F = 222.61; df = 1, 70; P
<0.0001) (Fig 4B).

Preference for Attacking Tree Parts
Stems of flood-stressed C. florida deployed under field conditions in Ohio were preferentially
attacked over branches of flood-stressed trees, and stems and branches of non-flooded trees
(Fig 5A–5D). A mean of 199.8 and 35.7 attacks occurred on stems and branches of flood-
stressed trees, while 1.5 and 0.0 attacks occurred on stems and branches of non-flooded trees,
respectively (Fig 5A). A significant interaction was detected between the influence of tree part
and incidence of flood stress on cumulative attacks (F = 25.18; df = 1; P<0.0001), along with
significant main effects associated with tree part (F = 34.08; df = 1; P<0.0001) and flood stress
(F = 145.70; df = 1; P<0.0001) (Fig 5A). Attacks were not observed to occur on any tree parts
other than stems and branches.

Stems on two of the six non-flooded C. florida trees sustained one and eight cumulative
attacks per tree; no attacks occurred on the remaining non-flooded trees. The two non-flooded
trees attacked by ambrosia beetles were paired with the two most heavily attacked flood-
stressed trees that sustained 338 and 337 attacks per tree, respectively, compared to the remain-
ing flood-stressed trees with 173, 260, 120, and 185 attacks per tree. Only superficial tunneling
occurred on the two non-flooded trees and no ambrosia beetles were excavated from the

Table 2. Mean (±SE) cumulative attacks and ambrosia beetle specimens recovered per flood-stressed tree deployed in Virginia.

Scolytinae recovered per tree

Flood-stressed tree species a Cumulative Attacks Xylosandrus germanus Xylosandrus crassiusculus Xylosandrus compactus

Cornus florida 187.8 ± 23.3 40.2 ± 7.0 16.3 ± 7.3 0.7 ± 0.7

Cercis canadensis 3.7 ± 3.1 1.0 ± 0.8 0.0 ± 0.0 0.0 ± 0.0

Prunus serrulata 2.8 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Magnolia virginiana 0.8 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Acer saccharinum 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Quercus bicolor 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

a No attacks occurred on the non-flooded trees, except for 0.2 ± 0.2 attacks on non-flooded C. canadensis (see Results section; n = 6 trees per treatment).

doi:10.1371/journal.pone.0131496.t002
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tunnels (Fig 5B–5D). In contrast, a mean (±SE) of 23.0 ± 5.2 percent of attacks on the flood-
stressed trees resulted in galleries, 73.3 ± 6.4 percent of which contained the white ambrosial
form (i.e. conidia and sprout cells) of the symbiotic fungus and 14.0 ± 3.9 percent of which
contained symbiotic fungus and ambrosia beetle eggs, respectively.

Only non-native ambrosia beetles were excavated from the flood-stressed trees (Fig 5A–
5D). Xylosandrus germanus (n = 676) represented 85.1% of the total specimens excavated from
the stems, followed by 14.2% for Anisandrus maiche Stark (n = 113) and 0.6% for X. crassiuscu-
lus (n = 5). Xylosandrus germanus (n = 56) was also the dominant species recovered from C.
florida branches and represented 73.7% of the total excavated specimens followed by 26.3% for
A.maiche (n = 20).

Fig 3. Mean (±SE) ethanol concentrations associated with flood-stressed and non-flooded trees of varying intolerance to flooding deployed in (A)
Ohio and (B) Virginia. Ethanol concentrations were analyzed 3 days after initiating flood stress. Different letters indicate significant differences among
treatments by two-way ANOVA and least-squares means (P value provided for tree species × flooding interaction effect; see Results section for remaining
output; n = 8 and n = 6 trees per treatment for Ohio and Virginia, respectively).

doi:10.1371/journal.pone.0131496.g003
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More X. germanus, A.maiche, and X. crassiusculus were excavated from stems of flood-
stressed trees compared to branches on flood-stressed trees and stems and branches on non-
flooded trees (Fig 5B–5D). A significant interaction was detected between the influence of tree
part and flood stress on the number of X. germanus excavated per tree (F = 162.10; df = 1;
P<0.0001), along with significant main effects for tree part (F = 52.72; df = 1; P<0.0001) and
impact of flood stress (F = 54.24; df = 1; P< 0.0001) (Fig 5B). A significant interaction
(F = 9.91; df = 1; P<0.0001), tree part main effect (F = 9.15; df = 1; P = 0.007), and flood stress
main effect (F = 40.66; df = 1; P< 0.0001) were detected for A.maiche (Fig 5C). A significant

Fig 4. Correlation between day 3 ethanol concentrations and cumulative ambrosia beetles attacks per
flood-stressed and non-flooded tree deployed in (A) Ohio and (B) Virginia. See Fig 3A and 3B for tree
species tested and Results section for additional statistical output (n = 128 and n = 72 trees deployed in Ohio
and Virginia, respectively).

doi:10.1371/journal.pone.0131496.g004
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Fig 5. Mean (±SE) cumulative attacks and specimens excavated per tree from stems and branches of
flood-stressed and non-floodedCornus florida. Different letters within a biological parameter indicate
significant differences by two-way ANOVA and least-squares means (P value provided for tree part × flooding
interaction effect; see Results section for remaining output; n = 6 flood-stressed and non-flooded trees).

doi:10.1371/journal.pone.0131496.g005
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interaction (F = 25.01; df = 1; P<0.0001), tree part main effect (F = 25.01; df = 1; P<0.0001),
and flood stress main effect (F = 25.01; df = 1; P<0.0001) were also detected for X. crassiuscu-
lus (Fig 5D).

Colonization Success on Flood-Stressed and Non-Flooded Trees
When confined under no-choice conditions, more sawdust resulting from burrowing/tunnel-
ing activities accumulated in chambers confining adult female X. germanus (t = 4.74; df = 10;
P = 0.0008) and X. crassiusculus (t = 7.91; df = 10; P<0.0001) to flood-stressed C. florida com-
pared to non-flooded trees (Fig 6A and 6B). Living foundress X. germanus were detected within
tunnels/galleries created in flood-stressed C. florida, but no living specimens were associated
with non-flooded trees (t = 11.38; df = 10; P<0.0001) (Fig 6C). Living foundress X. crassiuscu-
lus were also detected within tunnels/galleries created in flood-stressed C. florida, but no living
specimens were associated with non-flooded trees (t = 1.58; df = 10; P = 0.07) (Fig 6D). Eggs of
X. germanus were detected in galleries created in flood-stressed trees, but no eggs were associ-
ated with beetles confined to non-flooded trees (t = 4.65; df = 10; P = 0.001) (Fig 6E). No X.
crassiusculus eggs were associated with flood-stressed or non-flooded trees (Fig 6F). Larvae of
X. germanus (t = 4.17; df = 10; P = 0.002) and X. crassiusculus (t = 4.17; df = 10; P = 0.002) were
recovered from galleries within flood-stressed trees, but no larvae were associated with non-
flooded trees (Fig 6G and 6H). Pupae of X. germanus were recovered from flood-stressed trees,
but not from non-flooded trees (t = 0.11; df = 10; P = 0.11) (Fig 6I). No X. crassiusculus pupae
were associated with flood-stressed or non-flooded trees (Fig 6J).

Discussion
Ambrosia beetles, including X. germanus and X. crassiusculus, have traditionally been viewed
as secondary colonizers of dying or dead trees, or those already under attack by more aggressive
tree killing bark beetles [4,6]. Attacks on living trees, even within non-native habitats, were lim-
ited to injured parts of trees [27]. Yet, a variety of ambrosia beetles established in non-native
habitats have reportedly begun attacking living trees [4,6,27]. Results from our current study
demonstrate that while living trees were indeed attacked by non-native X. germanus and X.
crassiusculus, beetles efficiently distinguished among varying host qualities and rapidly targeted
species intolerant of flood stress. A few attacks occurred on non-flooded trees under free choice
field conditions, but the tunnels were superficial, abandoned, and no galleries were formed.
Subsequent experiments under no-choice conditions demonstrated that both X. germanus and
X. crassiusculus readily colonized flood-stressed trees, as indicated by the production of eggs,
larvae, and pupae, but were unwilling or unable to colonize non-flooded trees. A positive corre-
lation was also demonstrated between ethanol stem concentrations and ambrosia beetle
attacks. We therefore propose the basis for the shift by X. germanus and X. crassiusculus from
attacking dying/dead trees to living ones involves early colonization of living but weakened
trees.

Hulcr and Dunn [4] suggested a component of exotic ambrosia beetles attacking living trees
may involve an ‘olfactory mismatch’ whereby beetles perceive volatiles emitted from live trees
as representative of emissions from dead trees. Our current study indicates the stress-induced
emission of ethanol from living trees plays an important role in the selection of living but weak-
ened trees. An asymptomatic outward appearance of living but weakened trees in the early
onset of physiological stress can be anthropogenically perceived to indicate a living and healthy
tree being targeted for attack [43]. However, physiologically stressed trees can visually appear
healthy, but emit ethanol and other stress-related compounds that function as important host-
location cues for opportunistic ambrosia beetles [9,43]. Ethanol was detected within stem
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tissues of flood-stressed trees by 3 days after initiating flooding as part of our current study.
Beetles also began attacking flood-stressed C. florida and S. japonicus within 3 days of initiating
flooding as part of our current study. Similarly, X. germanus began landing on flood-stressed
C. florida within 1 day of initiating flooding [43]. These results indicate the rapid production
and emission of stress-induced volatiles, particularly ethanol, from otherwise apparently-
healthy trees are advantageously used by X. germanus and X. crassiusculus to locate vulnerable
hosts. Rapidly locating resources in a weakened physiological state that are often spatially and
temporally unpredictable is an important adaptive trait for insects that primarily or exclusively
target stressed hosts [57]. Thus, selection pressures may be favoring individuals that rapidly
locate and successfully colonize living but recently weakened trees.

Semiochemical-mediated attacks by aggressive bark beetles on an individual tree are dem-
onstrated to result in beetles ‘spilling over’ and attacking neighboring healthy trees [58,59].
Such spill-over of X. germanus and X. crassiusculus from heavily infested trees onto neighbor-
ing healthy trees may occur under natural settings, and colonization may then be facilitated by
infecting the hosts with symbiotic and auxiliary fungi. Spill-over could explain the clustering of
attacked trees documented to occur in diverse landscapes [9], but localized site conditions may
have predisposed clusters of trees to attack. However, numerous free-choice experiments have
not detected attacks by X. germanus, X. crassiusculus, and other ambrosia beetles on untreated
trees adjacent to flood-stressed trees or those baited, irrigated, or injected with ethanol
[9,28,29,31–33,60]. A few attacks on neighboring non-flooded (and apparently-healthy) trees
were documented as part of our current study, but the tunnels were superficial and abandoned.
If X. germanus and X. crassiusculus do attempt to colonize healthy trees adjacent to stressed
ones, our current study suggests they are poor colonizers of such trees. Since oviposition by
various Xyleborine species does not occur prior to establishment of the symbiotic fungus [61],
host factors disrupting fungal establishment could have important implications for the role of
host physiological condition on tree utilization by non-native species.

Our current study used flood-stress as a technique for characterizing attacks on living trees
by X. germanus and X. crassiusculus, particularly the role of host physiological condition on
preference behavior and colonization success. Other physiological stressors also likely play a
role in beetles targeting living but weakened trees in natural and managed non-native habitats.
For instance, spring frost events following a record-setting mild winter preceded attacks on
trees intolerant of late frost injury, namely, Acer palmatum Thunb., C. canadensis, Liridoden-
dron tulipifera L., S. japonicus, and Zelkova serrata (Thunb.) [9]. Similarly, forested stands of
beech trees, Fagus sylvatica L., regarded as apparently-healthy at the time of attack by X. germa-
nus and other ambrosia beetles were subjected to extreme frost events in the year prior to initi-
ation of wide spread attacks [11,62]. Subsequent studies [62] demonstrated experimentally
frost injured tissues on F. sylvatica trees were more attractive than non-injured trees to X. ger-
manus and other non-native ambrosia beetles. Ambrosia beetle attacks were also observed on
the frost injured tissues.

Generally, researchers rarely have the opportunity to assess the physiological condition of a
host prior to discovering the initiation of attack by wood-boring insects [63]. As a result, many
species initially considered fully capable of colonizing trees ranging from healthy to decaying
were subsequently found to restrict their attacks to hosts in a specific condition. Ploetz et al. [6]

Fig 6. Tunneling activity and colonization success of Xylosandrus germanus and Xylosandrus crassiusculus under no-choice conditions on flood-
stressed and non-floodedCornus florida.Mean (±SE) ejected sawdust per chamber (A-B) and percentage of galleries per tree with living foundresses
(C-D), eggs (E-F), larvae (G-H), and pupae (I-J). Tunnels/galleries were excavated 25 days after confining individual foundress beetles. Differences within a
species and biological parameter were compared using an unpaired t-test (see Results section for full statistical analysis output; 10 chambers containing 1
adult female were placed on n = 6 flood-stressed and non-flooded trees; NA = no analysis).

doi:10.1371/journal.pone.0131496.g006
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discussed examples of ambrosia beetle attacks and associated diseases in orchards and orna-
mental nurseries, and pointed out that in none of the provided cases was the pre-existing health
of the trees known at the time of attack. However, the pronounced incidences of extensive
attacks and associated diseases within the orchards/nurseries compared to natural settings sug-
gests the affected trees were predisposed to attack [6]. Similarly, field observations involving
orchard-grown black walnut trees, Juglans nigra L., considered apparently-healthy at the time
of attack were serendipitously determined to have exhibited slower growth rates in the year
before attack compared to non-attacked trees [21]. Dieback, basal sprouts, and Fusarium can-
kers were also associated with trees not attacked by X. germanus [22], thereby indicating trees
within the orchard may have been in a weakened state prior to beetles attacking.

Physiological stressors that initially predispose living but weakened trees to attack by
ambrosia beetles could also predispose the trees to infection by the symbiotic and auxiliary
fungi after attacks are initiated [6,64]. Trees could conceivably become even more attractive
due to the emission of ethanol and other key volatiles from cankerous tissue and wilting foliage
following infection. However, the role of symbiotic and auxiliary fungi on host interactions
and colonization success of X. germanus, X. crassiusculus, and numerous other non-native
ambrosia beetles is not well characterized [6]. Ambrosiella hartigii Batra is reportedly the sym-
biotic fungus of X. germanus, but Cerarocystis ulmi (Buisman), Fusarium lateritium Nees,
Fusarium solani, and Fusarium oxysporum Schlechter ex Fries have been isolated from their
galleries and cankers [65–69]. Ambrosiella roeperi sp. nov. has recently been identified as the
mycangial symbiont of X. crassiusculus [70].

In addition to preferentially attacking flood-stressed trees, results from our current study
also documented a preference by X. germanus and X. crassiusculus for attacking stems over
branches on flood-stressed C. florida. Our current study also appears to be the first recovery of
A.maiche from a host tree in North America [71] and demonstrated stems over branches on
living but weakened trees were preferentially attacked. Similarly, more than 90% of ambrosia
beetle attacks occurred on the main stem of C. florida trees growing at an ornamental nursery
[72], and the majority of attacks by X. germanus and X. crassiusculus occurred less than 30 cm
above the ground on stems of chestnut Castanea mollissima Blume [25]. Beetle preferences for
certain tree parts may be due to variations in anatomy and physiology between stems and
branches [73,74] or represent a strategy to minimize interspecific competition among ambrosia
beetles. Attacks on stems could have a more deleterious impact on whole-tree physiology than
attacks on the branches due to disruption of the transpiration stream within xylem vessels by
symbiotic or auxiliary fungal colonization and/or host hypersensitive responses to infection.

Although not always consistent [36], higher amounts of ethanol have been detected from
flood stress intolerant tree species compared to tolerant species [44,45]. Cornus florida is gener-
ally recognized as intolerant of flooding [49,51], and flood-stressed C. florida deployed in Ohio
and Virginia were associated with the highest concentrations of ethanol and cumulative
ambrosia beetles as part of their respective experiments. However, flood-stressed C. canadensis
deployed in Ohio and P. serrulata deployed in Virginia were associated with relatively high eth-
anol concentrations, but few ambrosia beetle attacks. This discrepancy may be attributed to
interspecific variability in metabolic responses [37,75] and suggests vascular tissue concentra-
tions of ethanol may not always reflect emission rates from the epidermis. Monitoring the
emission of ethanol and other stress-induced volatiles from the epidermis using SPME-GC-MS
[43] may be an improved approach for characterizing the role of host-derived volatiles during
host selection by opportunistic ambrosia beetles. Differences in tissue processing/handling and
sampling locations, and personnel may have resulted in intraspecific variability in ethanol con-
centrations, particularly for C. florida, C. canadensis, and P. serrulata. However, we limited our
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comparisons of ethanol concentrations among trees to only those deployed within a specific
location for the purposes of our current study.

Overall, our current study indicates X. germanus and X. crassiusculus established in non-
native habitats are early colonizers of living but weakened trees. This strategy may be contrib-
uting to their invasion success and proliferation. Healthy hosts may be opportunistically
attacked by X. germanus and X. crassiusculus, but with limited success at colonization. Our cur-
rent study also indicates the non-native A.maiche preferentially attacks living but weakened
trees. Thus, other non-native ambrosia beetles that use stress-induced ethanol for locating vul-
nerable trees, and exhibit a capability for attacking a wide range of tree genera, may use a simi-
lar strategy.
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