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Abstract
Olfaction is primarily mediated by highly specific olfactory receptors (ORs), a subfamily of

which are the pheromone receptors that play a key role in sexual communication and can

contribute to reproductive isolation. Here we cloned and identified an olfactory receptor, Sli-
tuOR3 (Genbank NO. JN835270), from Spodoptera litura, to be the candidate pheromone

receptor. It exhibited male-biased expression in the antennae, where they were localized at

the base of sensilla trichoidea. Conserved orthologues of these receptors were found

amongst known pheromone receptors within the Lepidoptera, and SlituOR3 were placed

amongst a clade of candidate pheromone receptors in a phylogeny tree of insect ORs. Sli-
tuOR3 is required for the EAG responses to both Z9E11-14:OAc and Z9E12-14:OAc Sli-
tuOR3 showed differential expression in S. litura populations attracted to traps baited with a

series of sex pheromone blends composed of different ratios of (9Z,11E)-tetradecadienyl

acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). The

changes in the expression level of SlitOR3 and antennal responses after SlitOR3 silencing

suggested that SlitOR3 is required for the sex pheromone signaling. We infer that variation

in transcription levels of olfactory receptors may modulate sex pheromone perception in

male moths and could affect both of pest control and monitoring efficiency by pheromone

application after long time mass trapping with one particular ratio of blend in the field.

Introduction
The olfactory system of insects to sex pheromone is remarkably sensitive and species-specific
and, most notably of moths, has been an invaluable model system for studying fundamental
aspects of olfaction[1]. Membrane-bound olfactory receptor proteins (ORs) are the key to
olfaction. Two types of ORs, one is the very conserved olfactory co-receptors (ORcos) [2], the
other is the conventional odor-specific ORs that have lower sequence homology within and
between species[3,4]. Identification of candidate OR genes has most commonly been from
genome sequence[5,6], sequence information of cDNA library[7–9], or transcriptome
sequence[10,11]. The sex pheromone receptors are crucial for both the survival and adaption
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[12]. A number of insect sex pheromone receptors have been identified from moths. This type
of receptors attracted considerable research interest mainly because they play crucial roles in
both reproduction and adaptation. Candidate ORs have been identified in economically impor-
tant insects, such as Agrotis ipsilon[13],Manduca sexta[14],Helicoverpa armigera[5,15,16] and
Spodoptera littoralis [17–19]. The function of several ORs has been confirmed using the Xeno-
pus oocytes to express the receptors and whole-cell voltage clamping to record the neural activ-
ity[20,21]. For example, in the silk moth, Bombyx mori, two male-specific ORs responds to
bombykol and bombykal [20] were identified, and a S. littoralis sex pheromone receptor was
functionally identified using the heterologous expression in D.melanogaster[18]. HvOR6 was
found to be highly tuned to Z9-14:Ald, while HvOR13, HvOR14 and HvOR16 showed specific-
ity for Z11-16:Ald, Z11-16:OAc and Z11-16:OH, respectively in Heliothis virescens [21].

Upon recognition of chemical ordours by ORs, then followed by signaling cascade, a neural
perception of the odour in the brain was initiated and may provoke a behavioural response.
Therefore the extremely variation of OR genes among individuals[22] can alter odour percep-
tion[23,24]. In D.melanogaster, the nucleotide polymorphism of OR [25] may contribute to
individual variation in olfactory behavior[26]. The genetic variation of these receptors also
allows the adaption of the population to the changing environments and thus important for
the maintenance and evolution of species. To reduce the residue of chemical pesticides, mass
trapping or mating disruption by synthetic sex pheromone has been widely used to accurately
monitor the pest population [27–31]. The olfactory variation would be critical to the efficacy of
the application of insect pheromone in the field. Therefore, the study of sex pheromone recep-
tors in moths is not only of great interest for understanding the olfactory system, but also have
important implications for the development of new strategies to manage pest species[32].

S. litura (Lepidoptera, Noctuidae), also known as tobacco cutworm moth, is one of the most
serious agricultural pests feeding on a wide range of economically important crops including
cotton, lettuce, corn, tobacco papaya and many others[33]. In the past, the highly conserved S.
litura Orco orthologue has been cloned and was shown to be expressed in both sex and local-
ized at the bases of all categories of olfactory sensilla [34]. Also, some work on the olfactory
receptor of S. litura have been studied [35]. In vivo analyses of the genes involved in sex phero-
mone detection using knockout or transgenic techniques[18] are crucial to unequivocally
determine whether receptor specificity alone is sufficient to explain ORN specificity, or
whether additional components are also required[36]. RNA interference has been used in the
functional study of olfactory receptor genes [14,37–39]. However, the in vivo functional studies
on S. litura ORs are still lacking. We are interested in understanding the molecular mechanism
of pheromone signaling and functional characterization of the sex pheromone receptors in S.
litura, by taking advantage of the transcriptome data of S. litura(Feng et al., BMC genomics,
2015, in press), we cloned and characterized SlituOR3, using bioinformatics and molecular
approaches, and examine their expression in each sex. We investigated relationships between
sex pheromone responses and the expression of receptor at the transcriptional level in moths
attracted to traps with different ratios of sex pheromone components by quantitative real-time
PCR(qRT-PCR), as well as the molecular function of SlituOR3 by combination of RNA inter-
ference(RNAi) and electroantennogram(EAG).

Materials and Methods

Insects and tissue preparation
Spodoptera litura were reared in artificial diet at 25±1°C and with humidity 75±5%, L:D 14:10h
[40]. Male and female adult moths were collected daily after emergence and then separated.
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For qRT-PCR, antennae, heads, legs, thoraces, abdomens, wings and proboscis were dissected,
eggs, larvae, pupae, and adults were collected, all samples were stored in liquid Nitrogen.

Total RNA preparation and cDNA synthesis
TRIzol Reagent (Invitrogen, USA) were used to extract total RNAs from tissues listed above
and DNase I (Invitrogen, USA) was used to remove DNA. A UV spectrophotometer (HITA-
CHI) was used to check the quality of total RNA, One microgram of total RNA for each
reverse-transcription reaction, oligo(dT)18 primer and M-MLV reverse transcriptase were used
according to the First-Strand cDNA Synthesis Kit protocol (Fermentas, USA).

Cloning of SlituOR3
To clone the full-length SlituOR3, 3’ RACE were performed using the GeneRacer Kit (Invitro-
gen, USA) according to the manufacturer’s manual. PCR was carried out using PlatinumTaq
DNA Polymerase, GeneRacer 5’ Primer or 3’ Primer, and SlituOR3 gene specific-primers
(Table 1). The program used for PCR: 94°C for 2 min; 5 cycles of 94°C for 15 s, 72°C for 2 min;
25 cycles of 94°C for 15 s, 60°C for 30 s, 72°C for 2 min; and one final cycle at 72°C for 5 min.
The fragments were then subcloned and sequenced. Base on the sequence result, SlituOR3 was
amplified in a Mastercycler EP Gradient PCRMachine (Eppendorf, Hamburg, Germany),
using the following program: 94°C for 2 min; followed by 33 cycles of 94°C for 30 s, 55°C for
35 s, 72°C for 65 s; followed by one cycle at 72°C for 10 min. The PCR reaction consisted of 1μl
cDNA, 1 μl each of forward and reverse primers, 12.5 μl, DreamTaq PCR Master Mix (2X),
and double-distilled water to a total volume of 25 μl. cDNA fragments were subcloned into the
pGEM-T Easy Vector System (Promega, USA) and sequenced by Life technologies Co. (Shang-
hai, China).

Sequence analysis
Sequence analyses and homologues searching comparisons were performed using the BLAST
(www.ncbi.nlm.nih.gov) program from nucleotide collection (nr/nt)(except Human and
Mouse) in GenBank. Sequence alignment was done using CLUSTALW [41]. Phobius (http://
www.ebi.ac.uk/Tools/pfa/phobius/) and MEMSAT3 (http://bioinf.cs.ucl.ac.uk/psipred/) were
used to predict the trans-membrane domain. A phylogenetic tree was constructed using the
Neighbor-Joining method of MEGA5 [42] with a bootstrap of 1,000 replications, totally 56
ORs were used and SlituOR18 was used as an outgroup

Gene expression analysis by quantitative real-time PCR (qRT-PCR)
The recipe of the qRT-PCR reaction: 10 μl Ssofast Evagreen (Bio-Rad), 0.75 μl 10μM forward
and reverse primers, 1 μl cDNA and 7.5 μl nuclease free water, total volume = 20μl. qRT-PCR
was carried out as the following program: an initial cycle at 95°C for 30s, then followed by
39 cycles of 95°C for 5 s, 60°C for 25 s, 72°C for 30 s. Dissociation curves were used to check for
the presence of non-specific dsDNA SYBR Green hybrids. The data was analyzed using ABI
StepOne Software v2.1 (Applied Biosystems). The expression level of SlituOR3 was normalized
against that of SlituRPL8. 2−ΔΔCT method was used where ΔΔCT = (CT, SlituOR gene − CT, Sli-
tuRPL8 gene) different tissues or stages−(CT, SlituOR gene − CT, SlituRPL8 gene) maximum.
The experiment was repeated for three times.
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In situ hybridization
The fluorescence-labeled RNA hybridization probes used for in situ hybridization were synthe-
sized from Life technologies Co. (Shanghai, China): SlituOR3 (5’-CGCTTGGTAACTTTTCGC
TCTCAG-3’) with 5’ Cy3 fluorescence-labeled. Antennae(1- to 2-day-old adult) were embed-
ded in Tissue-Tek OCT Compound (Sakura, Japan) and frozen at -20°C. Cryosections (7μm)
of antennae were thaw-mounted on Superfrost Plus slides (Fisherbrand, USA) and air-dried at
room temperature for 30 min. Slides were then treated at 4°C with 4% paraformaldehyde in
PBS (phosphate-buffered saline: 0.85% NaCl, 1.4 mM KH2PO4, 8 mMNa2HPO4, pH 7.1) for
30 min, 1×PBS for 2×5 min, 0.2 M HCl for 8 min, 1×PBS for 2×5 min, 1×PBS with 1%Triton
X-100 (Amresco, USA) for 10 min followed by a 5 min washes in 1× PBS. Finally, slides were
rinsed(10 min) in 50% formamide, 5 × concentrated SSC (1× SSC = 0.15 M NaCl, 0.015 M Na-
citrate, pH 7.0) and drained. Then sections were covered with 100 μl hybridization solution
(50% formamide, 2× SSC, 10% dextran sulphate, 20 μg/ml yeast t-RNA, 0.2 mg/ml herring
sperm DNA) containing a fluorescence-labeled antisense RNA (levels:0.5–1μg/ml). The sam-
ples were then covered with a coverslip and slides were incubated in hybridization instrument
(StatSpin TermoBrite, USA) at 55°C overnight. Post-hybridization were washed 3 times for
5 min in 2 × SSC at 37°C, then washed three times for 5 min in 0.2 × SSC at 37°C, then three
times for 5 min in 1 × TBS (Tris-buffered saline; 100 mM Tris, pH 7.5, 150 mMNaCl). Time
of washing was determined by observing under the fluorescence microscope. Samples were
mounted using the DAPI/Antifade Solution (Chemicon, USA). Images were acquired on a
Nikon SiA1 laser confocal fluorescence microscopy (Japan).

Variation of receptor expression and responses to sex pheromone in
field-trapped populations
To test whether the transcriptional level of OR expression is related to differential behavioral
responses to pheromone mixtures, we baited moth traps with different ratios of two S. litura
sex pheromone components. S. lituraMales attracted were collected and the expression of Sli-
tuOR3 was measured using qRT-PCR.

Pheromone lures
The two S. litura sex pheromone components (9Z,11E)-tetradecadienyl acetate (Z9E11-14:
OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc) (Bedoukian Research, Inc., Dan-
bury, USA) were purified by flash column chromatography (silica gel impregnated with 15%
silver nitrate) and the purity of each was shown by gas chromatography to be>95%. Moth
pheromone traps were baited with lures containing Z9E11-14:OAc and Z9E12-14:OAc were
presented in specific blends. Eight mixtures of the two pheromone components were prepared
in ratios of Z9E11-14:OAc: Z9E12-14:OAc ranging from 1:2 to 12:1. To maintain the release
rate, the mixtures were diluted to the desired concentration in corn oil and injected into PVC
capillary tubing (ca. 80 mm length, id 0.6 mm and od 1.1 mm) (NewCon Inc., Ningbo, China),
the ends of which were then heat sealed to form the pheromone lure. Lures were sealed in alu-
minum foil bags, stored in -20ଌ refrigerator and shipped by courier to test locations when
needed.

Trapping of moths
Plastic noctuid moth traps (NewCon Inc., Ningbo, China) were deployed and set up at a height
of about 1 m in the Longwan vegetable field in Wenzhou, Zhejiang (120°82'E, 27°93'N). No
special permits were required for field collection and sample processing. Collection permission
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was obtained from the land owners. The field studies did not involve endangered or protected
species. They were distributed equidistant from each other at a density of 15 traps per ha. Each
trap was baited with a pheromone lure or was un-baited as a control trap (CK), treatments
being allocated at randomly. The experiment had 6 replicates for each treatment. Trapped
moths were collected and counted daily. Moth antennae were dissected and immediately
placed into liquid nitrogen. S. lituramales were attracted by pheromone mixtures and antennae
of twenty males were collected for each mixture. Total RNAs were then prepared, and tran-
scribed into cDNA. qRT-PCR measurement of the expression of SlituOR3 was done as
described above and the expression levels were compared among different Z9E11-14:OAc and
Z9E12-14:OAc ratios of pheromone lure. For comparison, the expression of SlituORco, was
also tested. At least 3 replicates were made for each treatment.

RNA interference
The fragment of SlituOR3 were amplified by PCR and used for dsRNA synthesis. For GFP
(Green Fluorescent Protein) dsRNA synthesis, a fragment was amplified by PCR using
pMD18T-GFP as a template kept in the lab. All the primers used were listed in Table 1. dsRNA
was synthesized using an Ambion MEGAscript RNAi Kit and transcription performed follow-
ing the manufacturer’s protocol (www.ambion.com). For the injection, dsRNA was diluted in
injection buffer (0.1 mM sodium phosphate, pH 6.8; 5 mM KCl) in concentrations of 1.0 μg/μl.

The pupa was positioned with fingertips so that the abdomen can be approached with the
injecting bevel-tip micro-syringe (Agilent, USA). A volume of 0.2 l pupa-1 was injected into
the abdomen. Typically, the injection site was in the ventral mid-lateral part of the abdomen at
the level between the 3rd and the 4th sternite.

Recording of EAG responses
Two S. litura sex pheromone components Z9E11-14:OAc, Z9E12-14:OAc and one plant vola-
tile component (3Z)-hexenyl acetate (Z3-6:OAc) (Aladdin reagent Inc., Beijing, China), were
diluted in liquid paraffin to give 100μg/μl solution(10−2). A piece of filter paper (8x30 mm)
impregnated with 20μl of test solution was inserted into a glass Pasteur pipette after the solvent
evaporated and used as a stimulus cartridge. The cartridge was freshly made each time and the
end was sealed with Parafilm until use. The EAG signals were recorded and analyzed by Syn-
tech system (Syntech, The Netherlands)[43]. The antenna was cut from male moth post eclo-
sion, and an electroconductive gel (World Precision Instruments Inc., USA) was used for the
maintenance of electrical contact between the antenna and the electrodes. The stimulus param-
eters are: 50 ml/min the clean airflow, 0.1s the stimulus time, and 60 s the interval time. The
recording data was analyzed from the antennae of three male moths.

Statistical analysis
Statistical analysis was conducted using SAS 9.2. One-way ANOVA and by two-way ANOVA
were used to analyze the differences between pheromone component ratios, the numbers of
moths caught and the expression of SlituOR3. Student’s t test were used for comparison of Sli-
tuOR3 expression levels and EAG responses between SlituOR3 dsRNA silencing and control
(dsGFP). Duncan’s multiple range tests were used for multiple comparisons of the expression
levels of SlituOR3 in different tissues and antennae of both sexes of S. litura, expression levels
during the development of S. litura, the expression in antennae of moths trapped by different
ratios of Z9E11-14:OAc and Z9E12-14:OAc, and the expression in the antennae of male S.
litura post eclosion after dsRNA injection.
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Results

Cloning of SlituOR3
Distinct and separate bands were obtained for SlituOR3 by RT-PCR of antennal cDNA and it
was of the expected sizes given the primer design. The SlituOR3 full-length cDNA sequence
was 1574 bp, encoding 432 amino acids (Fig 1). Predicted by the Phobius and MANSAT3, the
SlituOR3 has seven transmembrane domains (Fig 2). Aligning the SlituOR3 with verified moth
pheromone receptors indicated a high degree of conservation across species (Fig 3). SlituOR3
annotations have been submitted to GenBank and accession numbers is JN835270.

Phylogenetic analysis showed that SlituOR3 clustered with the ORs containing most closely
sex pheromone receptor S. littoralisOR6 [44] and is related closely to male-specific receptorH.
virescens OR16[45]. And there were so many other male-specific receptors or sex pheromone
receptors closely in the cluster: for example, H. virescens OR14 [45],H. virescensOR15 [45],M.
separate OR1[46],M.sexta OR1[47],H. virescens OR11 [45] and so on. We named this cluster
the ‘candidate sex pheromone receptor subfamily (Fig 4).

Fig 1. Nucleotide sequence encoding the SlituOR3 gene of S. litura. The nucleotides are numbered on
the right. The start (ATG) and stop (TGA) codons are boxed. Amino acid sequence below the nucleotide
sequence are shown also.

doi:10.1371/journal.pone.0131407.g001
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Spatial and temporal expression of SlituOR3
The SlituOR3 showed sexually dimorphic expression. SlituOR3 was almost exclusively
expressed in male antennae (Fig 5A). SlituOR3 was slightly expressed in tissues including
female antennae, proboscis, abdomen and negligible in the head, leg, thorax and wings (Fig
5A). SlituOR3 expressed mainly in the adult (Fig 5B). Expression of SlituOR3 was undetectable
during larval and early to mid-pupal stages.

Location of SlituOR3 in olfactory sensillum
The fluorescence-labeled in situ hybridization (FISH) result showed that SlituOR3-positive RNA
was clearly observed in the cryosection and mainly localized at the base of sensilla trichoidea (Fig
6D–6F). The negative control(sense probe) only showed background(Fig 6A–6C). Fig 6E and 6F
shows the SlituOR3-expressing positive in red fluorescence near the cell nucleus(Blue) but these
two signals are not overlapping, indicating that SlituOR3 is not expressed inside the nucleus.

Differential SlituOR3 expression and sex pheromone responses in a
field population
Wemeasured the SlituOR3 expression in moths collected from the field population to phero-
mone-baited traps using qRT-PCR. Expression analysis in male moths attracted revealed that

Fig 2. The transmembrane protein topology prediction for SlituOR3. A: Prediction using Phobius. The
bar beneath the red line shows the predicted results and the plot above provides complimentary information
in the form of probabilities. Gray = transmembrane domain, green = cytoplasmic region and
blue = extracellular region. The x axis represents the site of the amino acids and the y axis the probability that
the amino acids at that site occupy each region or domain. For further information see http://phobius.sbc.su.
se/instructions.html. B: Prediction using MEMSAT3. The brown bar = cellular membrane, regions above and
beneath the brown bar are the extracellular and cytoplasmic regions respectively; yellow blocks represent
transmembrane domains numbered S1-S7 and the numbers at the top and bottom of each yellow block
indicate the positions of amino acid residues at each end of the domain. MEMSAT3 predicts the N-termini of
SlituOR3 are cytoplasmic and the C-termini of SlituOR3 are extracellular. For further information see http://
bioinf.cs.ucl.ac.uk/psipred/.

doi:10.1371/journal.pone.0131407.g002
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SlituOR3 was differentially expressed in moths attracted by different ratios of the pheromone
component (Fig 7). Indeed we also observed some differences in expression of the conserved
ORco but its expression levels were more consistent than that of SlituOR3. For SlituOR3 the
highest transcription level was in moths trapped by the 4:1 ratio blends of Z9E11-14:OAc and
Z9E12-14:OAc, while there was least expression in those caught in traps with a 10:1 blend (Fig
7).

Silencing of SlituOR3 reduced the EAG response of male moth
We then ask whether SlituOR3mediated the response of S. litura to sex pheromone[37,48]. We
silenced the SlituOR3 by dsRNA in the stage of pupae. Quantitative real-time PCR (QRT-PCR)
showed that the expression of SlituOR3 are significantly reduced in the antennae of male S. litura
post eclosion compared to the control (dsGFP) in the 1, 2, 3 days(Fig 8, P<0.01, P<0.01, P<0.01).
This difference disappeared in the fourth day (Fig 8). Then we used Electroantennogram (EAG)

Fig 3. Alignment of amino acid sequences of SlituOR3with six verified moth sex pheromone
receptors.Gaps are indicated with slash (-). Identical amino acids are marked in the bottom with *.
Transmembrane domains identified with MEMSAT3 & MEMSAT-SVM are underlined and numbered I to VII.
GI numbers of each OR are: BmorOR1(GI:112983558); BmorOR3 (GI:112982950); HvirOR13(GI:51127338);
MsepOR(GI:226001155),OzeaOR(GI:284010026); PxylOR1(GI:205361602); SlituOR3(GI: 381211953).

doi:10.1371/journal.pone.0131407.g003
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to test whether their olfactory responses to pheromones or related molecules were changed. The
EAG responses of SlituOR3 and GFP(control) dsRNA injected males to Z3-6:OAc, Z9E11-14:
OAc and Z9E12-14:OAc separately were recorded. The result showed that the EAG responses of
the male moths with SlituOR3 silenced to either Z9E11-14:OAc or Z9E12-14:OAc were signifi-
cantly low compared to the dsGFP control 2 days after eclosion(P<0.05), while which have not
changed significantly to green leaf volatile Z3-6:OAc (Fig 9).

Discussion
We have cloned and characterized an olfactory receptor from S. litura, SlituOR3. SlituOR3 was
clustered with those functionally-identified sex pheromone receptors of Bombyx,Heliothis,

Fig 4. Phylogenic analysis of SlituOR3 and homologues. Neighbor-Joining method was used. Shown
here is the optimal tree with the sum of branch length = 6.00509761. The percentage of replicate trees in
which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown also. Poisson
correction method was used to calculate the evolutionary distances. CSPR stands for the candidate sex
pheromone receptor. SlituOR18 was used as outgroup. Slitu: Spodoptera litura (OR3:AEY84943.2; OR6:
AGI96748.1;OR16:AGI96751.1;OR11: AGI96749.1;OR13:ACL81181.1;OR18:AGA16498.1); Slitt:
Spodoptera littoralis (OR6: ACL81183.1;OR16: ACL81182.1;OR11:ACL81180.1;OR13: AGI96750.1) Se:
Spodoptera exigua (OR6:AGH58119.1;OR16:AGH58122.1;OR11:AGH58120.1;OR13:AGH58121.1); Si:
Sesamia inferens (OR: AGY14579.2); Har:Helicoverpa armigera (OR6: AGK90000.1;OR3:ACS45306.1;OR:
AIG51863.1;OR2: ACS45305.1;OR11:ACF32965.1;OR13:ACJ12370.1);Has: Helicoverpa assulta (OR6:
AGK90014.1;OR3:ACS45309.1;OR14:AHI44516.1;OR11:AJD81549.1;OR2:ACS45308.1;OR13:
AJD81551.1); As: Agrotis segetum (OR10:AGS41449.1;OR7:AGS41446.1;OR1:AGS41441.1;OR6:
AGS41445.1;OR8:AGS41447.1;OR9:AGS41448.1;OR5:AGS41444.1;OR3:AGS41442.1;OR4:
AGS41443.1);Ms:Mythimna separate(OR1: BAG71414.1);Bmo:Bombyx mori (OR3:NP_001036925.1;OR4:
BAH57981.1;OR1:NP_001036875.1);Bma: Bombyx mandarina(OR3:ACT34882.1); Px:Plutella xylostella
(OR1:AGK43824.1); Ape: Antheraea pernyi(OR1: CBH19583.1); Opa:Ostrinia palustralis(OR: BAH57978.1);
On:Ostrinia nubilalis(OR: BAJ61929.1;OR5:ADB89182.1;OR4:ADB89181.1); Oza:Ostrinia zaguliaevi(OR:
BAH57976.1); Ol:Ostrinia latipennis(OR:BAH57981.1); Oo:Ostrinia ovalipennis(OR:BAH57979.1);Di:
Diaphania indica(OR1: BAG71417.1); Of:Ostrinia furnacalis(OR:AGG91642.1;OR4:AFK30397.1;OR3:
BAR43446.1;OR7:BAR43449.1);Cpo:Cydia pomonella(OR3: AFC91713.2);Apo: Antheraea polyphemus
(OR1: CBH19582.1).

doi:10.1371/journal.pone.0131407.g004
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Plutella,Mythimna,Manduca and Diaphania (Fig 3)[8,20,21,49–53]. The high expression in
male antennae and our further RNA silencing result suggested that SlitOR3 is related to the sex
pheromone signaling of S. lituramale olfactory system. This result was also confirmed by het-
erologous expression result in Xenopus oocytes, which revealed that SlituOR6 (equal to our Sli-
tuOR3) in S. litura was equally tuned to Z9,E12-14:OAc and Z9-14:OAc, with a small response
to the major pheromone component Z9,E11-14:OAc [54].

Natural olfactory stimuli are often complex and highly variable[55]. The quantity and qual-
ity of pheromone released from female moths can be affected by host plants [56], diurnal or
circadian rhythms[57–59], age[60] and season [61]. Intraspecific divergence in pheromone
chemistry has been reported in Ostrinia nubilalis [62], O. furnacalis [63], Dioryctria abietivor-
ella [64],Hemileuca electra,H. eglanterina [65,66],Helicoverpa armigera [67], and Agrotis sege-
tum [68]. The optimal ratio of insect sex pheromone components can be varied by the
geographic locations and also by their host plants[69]. Insects perceive and discriminate
among such a vast array of sensory cues in their environment. The tobacco cutworm larva is
polyphagous[70] and their adult moths are migratory[71]. In the long time of co-evolution,
insects adapted to the variation of chemical information from the environment. S. lituramale
moths differentially showed attractive to highly variable ratios of Z9E11-14:Ac/Z9E12-14:Ac in
field trapping, which has similarly been reported in many other insects, such as Phyllonorycter
ringoniella[72] and O. furnacalismales [73], and even in wind-tunnel experiments[74]. In the
pheromone mediated mating behavior, the information of sex pheromones was delivered to
the opposite sex by the sex pheromone receptors, and these receptors play a crucial role in the
chemically mediated mating behavior. Accordingly, the male moths have adapted to the varia-
tion of pheromone composition by the variation of their olfactory receptors. Both genetic and
environmental factors contribute to individual variation in behavioral responses to these cues
[25]. OR genes are extremely variable between individuals[22]. For example, the corn- and the

Fig 5. Spatial and temporal expression of SlituOR3. A: Expression levels in different tissues and antennae
of both sexes of S. litura. B: Expression levels during the development of S. litura. Total RNA extracted from
all tissues tested were mixed-sex unless otherwise stated. Expression levels were calculated by 2-ΔΔCt

method using SlituRPL8 as the reference gene. Error bars represent standard error. Duncan’s multiple-range
test was used, P<0.05. M. ant = antennae of adult male; F. ant = antennae of adult female; E = eggs;
L3 = third instar larvae; L6 = sixth instar larvae; P1 = early pupae (1st -3rd day); P2 = mid-stage pupae(4th -5th

day); P3 = late pupae(6th -7th day).

doi:10.1371/journal.pone.0131407.g005
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rice-strain of S. frugiperda are genetically and behaviorally different, which seem to be in the
process of sympatric speciation [75]. The polymorphisms in olfactory receptors in D.

Fig 6. Expression of SlituOR3 in adult male antennae as visualized using fluorescence-labeled in situ hybridization(FISH). Anti-sense(E,F) and
sense(B,C) probe were used.(A-F) Longitudinal sections of hybridized adult male antennae:(A-F)hybridization solution containing fluorescence-labeled
probes. A, D: Positive nucleus labeled by DAPI; B, Negative control using a sense probe; E: Positive(anti-sense) SlituOR3RNA dyed by Cy3; C: Merge of
figuration B and C; F: Merging of figuration D and E. Hybridization signals are indicated with arrows.

doi:10.1371/journal.pone.0131407.g006

Fig 7. Relative expression of SlituOR3 and the conserved ORco gene in antennae of male S. litura
caught in traps baited with different ratios of the conspecific sex pheromone components Z9E11-14:
OAc and Z9E12-14:OAc in a tobacco field in Wenzhou, Zhejiang. Expression levels are given relative to
the expression of the reference gene SlituRPL8. Duncan’s multiple-range test was used, P<0.05.

doi:10.1371/journal.pone.0131407.g007
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melanogaster were identified to be significantly associated with variation in their responses to
fruit odorants[25]. The sex pheromone of S. litura consists of Z9E11-14:OAc and Z9E12-14:
OAc[76,77] with the ratio of Z9E11-14:OAc: Z9E12-14:OAc = 100:27 in the pheromone gland
[77]. Field-trapping experiments showed that individual variation in behavioral responses of
male S. litura to different ratio of pheromone blends. We speculate that SlituOR3 is a sex pher-
omone receptor and mediate these differences in male behavior. SlituOR3 expressed differen-
tially in the moths attracted by the mixtures constructed from different ratios of Z9E11-14:
OAc and Z9E12-14:OAc. Moreover, SlituOR3 was most abundantly expressed in moths
attracted with a 160 μg:40 μg of Z9E11-14:OAc and Z9E12-14:OAc blend (ratio of 4:1), which
attracted the largest number of moths at the dose of 200 μg. The minor component Z9E12-14:
OAc, which SlituOR3 responds, plays a key role in the olfactory variation of S. litura sex phero-
mone. This variable expression level of SlitOR3might be a result of complex transcriptional
regulation cascade in response to environmental changes, or other factors mentioned above.
Therefore the gene expression difference by the innate transcriptional regulation cascade
might be an indicator of genetic variation.

Variability within sex pheromone signaling systems is generally believed to be low because
their role in reproductive isolation maintains niche adaptation and leads to strong stabilizing
selection. ORs are less conserved and usually specific to odorants than olfactory co-receptors
(ORcos) of the OR83b family of proteins [21,37,78,79]. It is likely to be an adaptive advantage
that an insect’s system of sex pheromone communication should have some inherent flexibil-
ity. There is now evidence that this variability may extend to the intraspecific level. It has been
shown that responses to sex pheromones in insects can be modulated by odor experience [80]
and that environmental factors may contribute to variation in the pheromone sensitivity of

Fig 8. Relative expression of SlituOR3 in the antennae of male S. litura post eclosion after dsRNA
injection. SlituRPL8was used as a reference gene and all expression levels are given relative to the
reference gene. t-test and Duncan’s multiple-range test were used(P<0,05, P<0.05).

doi:10.1371/journal.pone.0131407.g008

Fig 9. The EAG response recording of male moth antennae with the sex pheromone components Z3-
6:OAc(A), Z9E11-14:OAc(B) and Z9E12-14:OAc(C) after injection of SlituOR3 dsRNA.

doi:10.1371/journal.pone.0131407.g009
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male moth populations [81]. A diurnal rhythm has been observed in the pheromone mediated
behavioral activity of field populations of male S. litura [82]. The reproductive isolation and
formation of the new species might be partly contributed by the interaction of sex pheromones
and their receptors.

Changes in the pheromone components by the female, lead to reduction of the communica-
tion efficiency and cause fitness loss. Therefore broader pheromone components responsive
may provide a mechanism for variation in the male moth response that enables population
level shifts in pheromone blend use. However, such variation is critical to our application of
mass trapping. Only one optimal ratio of pheromone components was formulated as a com-
mercial lure for mass trapping in the pheromone application. Long-term trapping the popula-
tion with the mixture of such a particular ratio of sex pheromone blend leads to a decline in the
proportion of population that responds to such ratio in the field. Eventually, it would cause the
shift of optimal pheromone blends of this species and significantly affect the control efficiency
and monitoring accuracy when continuously using the commercial pheromone lures in the
field. Using voltage clamp electrophysiology, candidate sex pheromone receptors are expressed
in Xenopus oocytes and receptors highly selective for sex pheromone component or with more
broad responses were identified [54,83,84]. However, to answer the question how sex phero-
mone receptors adapted to different pheromone components, such methods have obvious
shortages, ie, the information of the interaction or the feedback role of different ORs in mediat-
ing the sex pheromone signaling are usually missing. Moreover, whether the change of male
responses was caused by the adaption or by genetic change could not be discriminated.
Through RNAi, based on its EAG responses to Z9E11-14:OAc and Z9E12-14:OAc, we surmise
that the differential expression of sex pheromone OR that we have shown in S. lituramales
attracted to different pheromone blends supports previous studies[54,83,85]. However, the
study using heterologous expression in Xenopus oocytes showed that SlituOR3 is tuned to
Z9E12-14:OAc but not to Z9E11-14:OAc[54], which might be due to the difference of the het-
erologous expression and in vivo gene silencing by dsRNA. Furthermore, the process of neural
signaling by pheromone is much more complicated in measuring the EAG response in the
whole antenna than recording of the responses of Xenopus oocytes. The functions of ORs in
mammalian olfactory system have reported to be modulated by M3 Muscarinic Acetylcholine
Receptor[86], thus, the recognition of Z9E11-14:OAc by SlituOR3 could be dependent on the
activity of other receptors, which were not expressed in the heterologous Xenopus oocytes. On
the other hand, the dosage of sex pheromone stimulants could be another factor affecting the
olfactory response of the moth antenna, i.e., in vivo system it is more accessible for the rela-
tively higher dose of pheromone compounds and more sensitive. qRT-PCR results showed that
the expression of slituOR3 significantly decreased in the first three days, while the EAG
responses to Z9E11-14:OAc and Z9E12-14:OAc only decreased at the second day. This is pos-
sibly due to the complexity of EAG response, and the change of EAG response through gene
silencing was related to complicated processes, which delayed the antennal responses to
Z9E11-14:OAc and Z9E12-14:OAc. Also, a feedback control after silencing of slituOR3 termi-
nated the neural responses to Z9E11-14:OAc and Z9E12-14:OAc earlier, while the transcrip-
tional level of SlituOR3 remains significantly low.

If the significance of sex pheromone communication to adaptation in moths is to be fully
understood, there is a need for further studies on the population genetics of both pheromone
production and reception and on the regulation and expression of genes critical to sex phero-
mone communication in both males and females. It is possible that multiple pheromone recep-
tors may be involved in identifying each component. In summary, SlituOR3 is contributed to
mediate the olfactory responses to Z9E11-14:OAc and Z9E12-14:OAc, and is related to the
individual variation of S. litura olfactory system.
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