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Abstract
Secretory immunoglobulin A (sIgA), a dimeric antibody found in high quantities in the gastroin-

testinal mucosa, is broadly associated with mucosal immune protection. A distinguishing fea-

ture of sIgA is its ability to crosslink pathogens, thereby creating pathogen/sIgA aggregates

that are too large to traverse the dense matrix of mucin fibers in mucus layers overlying epi-

thelial cells and consequently reducing infectivity. Here, we use modeling to investigate this

mechanism of “immune exclusion” based on sIgA-mediated agglutination, in particular the

potential use of sIgA to agglutinate HIV in cervicovaginal mucus (CVM) and prevent HIV

transmission. Utilizing reported data on HIV diffusion in CVM and semen, we simulate HIV

collision kinetics in physiologically-thick mucus layers–a necessary first step for sIgA-induced

aggregation. We find that even at the median HIV load in semen of acutely infected individu-

als possessing high viral titers, over 99% of HIV virions will penetrate CVM and reach the vag-

inal epithelium without colliding with another virion. These findings imply that agglutination is

unlikely to be the dominant mechanism of sIgA-mediated protection against HIV or other sex-

ually transmitted pathogens. Rather, we surmise that agglutination is most effective against

pathogens either present at exceedingly high concentrations or that possess motility mecha-

nisms other than Brownian diffusion that significantly enhance encounter rates.

Introduction
Plasma cells secrete polymeric IgA (pIgA), predominantly as dimers in which two IgA mono-
mers are covalently linked by the joining (J) chain [1]. The polymeric immunoglobulin
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receptors on epithelial cells subsequently bind pIgA present in the basolateral membrane,
undergo transcytosis, and release secretory IgA (sIgA, comprising pIgA and the secretory com-
ponent) into mucus overlaying the apical membrane. Since sIgA is predominantly found in
mucus secretions while almost non-existent in serum [2], sIgA is generally considered to be the
major antibody class associated with mucosal protection. Indeed, many studies have correlated
increases in viral-specific sIgA levels at the mucosal surface with either reduced virus shedding,
or protection against infection and disease [3]. sIgA is thought to be well suited for mucosal
protection in part because the secretory component can help reduce degradation by proteases
in mucus. sIgA also possesses little to no complement activating or phagocytic uptake simulat-
ing ability [4, 5], which limits inflammation-induced damage to the epithelium. Last but not
least, in addition to protection by binding to neutralizing epitopes, the polymeric nature of
sIgA also facilitates protection by “immune exclusion”–the agglutination of microorganisms by
polymeric immunoglobulins (antibodies) into clusters too large to diffuse through mucus [6].
The relevance of sIgA-mediated immune exclusion in the female reproductive tract is vividly
illustrated by agglutination of otherwise vigorously motile sperm, which make little to no for-
ward progress after agglutination and cannot ‘swim’ across mucus [7].

Given the association between IgA and mucosal protection, recent efforts to develop effec-
tive strategies to block vaginal HIV transmission have included vaccines aimed to induce sIgA
response in the female reproductive tract [8, 9], IgA immunoprophylaxis using adeno-associ-
ated viral vectors [10], and hematopoietic stem/progenitor cells pre-transduced with an appro-
priate IgA gene [11]. Since CVM secretions contain far more IgG than sIgA [12], a major
premise in these ongoing efforts is that sIgA may provide improved protection and better rein-
force the first line of defense (i.e., mucus) against HIV infections than IgG. In theory, Fab
domains on IgG and sIgA with similar affinity to HIV-Env should bind and neutralize HIV
virions with comparable potencies. We therefore are led to question whether sIgA-induced
agglutination of pathogens may contribute additional protection against HIV and other sexu-
ally transmitted viral infections in the female reproductive tract. Due to the technical chal-
lenges associated with visualizing the agglutination of a homogeneous population of gp120
+ fluorescently tagged HIV virions in mucus secretions in real-time, we employ rigorous
modeling and simulations over the physiologically relevant parameter space to address this
question. This approach provides quantitative insights into this dynamic process, and enables
us to explore the precise conditions (virion and antibody concentration, diffusive properties,
mucus layer thickness and drainage times, etc.) where agglutination may afford significant
protection.

Materials and Methods

Wemodel a virus population by a vector ~V ðz; tÞ, where the component Vn(z, t) represents the
concentration of agglutinated complexes of n virions at a spatial location z and time t.
HIV virions in semen can be broadly categorized as cell-free (individual viruses) and cell-
associated (e.g. associated with leukocytes); to establish an upper limit on agglutination of
individual virions, we undertook the extreme assumption that all HIV viruses in semen exist
as individual virions. By assuming that HIV do not associate with cells, and based on prior
evidence that shows HIV is readily mobile in semen (implying no association to mucins or
other matrix components) [13], we also assume that individual HIV virions are uniformly dis-

tributed within the semen layer d< z< L initially. We track the population the ~V ðz; tÞ ¼
ðV1ðz; tÞ;V2ðz; tÞ; . . . ;VM ðz; tÞÞ in the semen-CVM system 0< z< L over time. For computa-
tional purposes, the maximum number of virions in a complex is limited to a valueM, which
may be considered as tracking the concentration of agglutinatedM-complexes or larger. For
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most of the simulation results, the concentration of agglutinated virus for complexes larger
thanM is negligible, making this approximation accurate. We incorporate two effects for the
interaction of virus in the system. First, the virus population diffuses within the system, with a
reflecting boundary condition at the semen-air interface (z = L) and an absorbing condition at
the epithelial layer (z = 0) in order to account for the fact that HIV virions that can infect the
host must bind to exposed target cells or penetrate into the sub-epithelium. Simultaneously,
the complexes of the virus population react with each other, agglutinating by sIgA crosslinking
(Fig 1). We ignore effects such as gp120 shedding (T1/2, 30 hrs) and thermal degradation from
RNA polymerase decay (T1/2, 40 hrs) because of the substantial difference in the rate of these
processes from the time scale of interest [14], and would only decrease the viral load or aggluti-
nation rate. Substitution of the absorbing condition with a reflecting condition at the epithelial
cell layer does not markedly increase agglutination rates (data not shown).

By assuming that every encounter results in a successful agglutination, we can utilize the
number of encounters to establish an upper bound on the highest possible agglutination rate of
virus. The Smoluchowski encounter rate [15] is a formula describing the collision rate of two
concentrations of spherical particles diffusing freely in three dimensions. For concentrations
C1, C2 of particles of hydrodynamic radii r1, r2 and diffusion coefficients d1, d2, the encounter
rate is k = 4π(d1 + d2)(r1 + r2)C1C2. These effects can be represented by the Smoluchowski
coagulation equation, a reaction-diffusion system:

@~V
@t

¼ D
@2~V
@z2

� ~f ð~V ðz; tÞÞ þ~gð~V ðz; tÞÞ;

Fig 1. Schematic of our model. The schematic depicts diffusion of HIV from seminal secretions across the
cervicovaginal mucus (CVM) layer containing HIV-binding sIgA en route to the underlying vaginal epithelium.
For sIgA-induced agglutination to occur, virions must collide with each other. Virions and antibodies are not
drawn to scale.

doi:10.1371/journal.pone.0131351.g001
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where fnð~V ðz; tÞÞ ¼
XM�n

j¼1

4pðDj þ DnÞðrj þ rnÞVjVn þ 1fn�M=2g16pDnrnV
2
n and

gnð~V ðz; tÞÞ ¼
Xn�1

j¼1

4pðDj þ Dn�jÞðrj þ rn�jÞVjVn�j; ð1Þ

where the diffusion tensor D, is a diagonal tensor with entries D1,D2,. . .,DM along the diagonal.
These entries are calculated depending on the hydrodynamic radius of each complex, described
in the following section. An absorbing condition is used at the CVM-epithelial interface

ð~V ð0; tÞ ¼~0Þ and a reflecting condition is used at the semen-air interface @~V
@t
ðL; tÞ ¼~0

� �
:

The reaction terms fn and gn represent the collision of virions resulting in agglutination. The
first term in fn subtracts the Smoluchowski encounter rate for j-complexes and n-complexes.
Since the largest complex size isM,M − n is the maximum possible value for j. The second
term reflects the additional depletion of the concentration of n-complexes as a result of colli-
sions between n-complexes and n-complexes. The indicator variable 1{n�M / 2} in this term
indicates that the term is nonzero only when n�M / 2, i.e. two n-complexes will only aggluti-
nate when the resulting 2n-complex is smaller than or equal to the maximum complex sizeM.
The increase in n-complex concentration is given by the collision of (n − j)-complexes with j-
complexes, reflected in the summation for gn. In order to calculate an upper bound for aggluti-
nation, we assume that the reverse reaction—that of an n-complex uncoupling to become an j-
complex and (n − j)-complex—does not occur.

The reaction-diffusion system was simulated with a Forward Time-Central Space scheme in
one spatial dimension. Since the Smoluchowski encounter rate equation is valid for spherical
particles in three dimensions, the simulation is a one-dimensional projection of the dynamics
of the three-dimensional system. The simulations were also verified by an analytic estimate of
the virion load arriving at the epithelial layer that experiences no collisions (Figs 2B and 3; S1
File).

Estimating the hydrodynamic radius of an n-complex
The hydrodynamic radius of an n-complex is utilized directly in the calculation of the Smolu-
chowski encounter rate and indirectly in the calculation of the diffusion coefficient, which we
calculate from the Stokes-Einstein relation. Since the Smoluchowski encounter rate is valid for
spherical particle encounters, the equation may have some inaccuracy for complexes that are
far from spherical. In particular, a linear configuration of particles gives a larger surface area

Fig 2. Estimating the number of collisions of HIV virions. The number of collisions between (A) HIV
virions in the vagina, and (B) HIV virions that have diffused across CVM and reached the vaginal epithelium,
over the first 12 hours post deposition, assuming a viral load of 4.5 log10 RNA copies per mL, the mean peak
viral load for HIV in semen of acutely infected males most likely to transmit HIV [16].

doi:10.1371/journal.pone.0131351.g002
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relative to volume, increasing the probability of encounter. On the other hand, a more compact
structure reduces viscous drag, increasing the diffusion coefficient and thus the encounter rate.
Since the goal is to establish an upper bound on sIgA crosslinking, we utilize the larger hydro-
dynamic radius rn = nr1 (where r1 is the radius of a single virion) for the hydrodynamic radius
in the Smoluchowski relation while for the diffusion coefficient, we utilize the smaller hydrody-
namic radius �rn ¼ r1

ffiffiffi
n3

p
given by a spherical volume estimate. By the Stokes-Einstein relation,

D ¼ kBT
6pZ �rn

, where kB is Boltzmann's constant, T is temperature, and η is the viscosity.

Estimating the number of virions that experience no collisions
In Figs 3 and 4 we display an analytical approximation for the percentage of virions that experi-
ence no collisions. This formula approximates the simulations from the reaction-diffusion sys-
tem, and can be used to quickly estimate the extent of agglutination possible at known viral
concentration. The key to developing an explicit formula in this estimate is to replace the real
first passage time distribution with an exponential distribution with the analogous mean
parameter. The rationale for this approximation is that the virions that are most likely to expe-
rience collisions are the ones that take the longest time to exit the region. While the exponential
distribution does a poor job of approximating the passage time for the earliest exits, the match
is excellent for the latest exits. Deviations occur at high concentrations though, slightly under-
estimating agglutination levels.

Fig 3. MaximumHIV collision rates for peak HIV concentration. The fraction of HIV virions in ejaculate
that have undergone at least one, two, as well as three or more collisions over the first 12 hours post
ejaculation as a function of HIV virion density in semen for (A) all HIV virions in the female reproductive tract,
and (B) HIV virions that have diffused across CVM and reached the vaginal epithelium. Mean and maximum
HIV viral load in semen is obtained from [16]. To enable rapid estimation of the viral load that may result in
significant rates of agglutination, we also derived a mathematical equation (dashed curve; first summand of
Eq 10) and utilized an exponential approximation (solid curve; Eq 3) that directly estimate the virion load
arriving at the epithelial layer that experiences no collisions with other virions (see Appendix and S1 File).

doi:10.1371/journal.pone.0131351.g003
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To express the result, we view the dynamics from the point of view of a single virion and
compute the probability that it will not collide with any virions before passing through a layer.
In the Appendix, we will justify the following approximation:

PfParticle experiences no collision; given an exit before time Tg � 1� e�kSV0�tð1�e�T=�t Þ

kSV0�tð1� e�T=�tÞ ; ð2Þ

where kS is the Smoluchowski encounter rate, V0 is the initial viral concentration, T is the bio-
logical or experimental cutoff time, and

�t ¼ 1

6D
ð2L2 þ 2Ld � d2Þ ð3Þ

is the population average passage time. That is, �t is the expected amount of time for a virion
with diffusivity D to pass through an interval [0, L] with absorbing boundary conditions at
z = 0, reflecting boundary conditions at z = L, and initial distribution uniform over the semen
layer [d, L].

Fig 4. Estimating agglutination for pathogens of different size. Fraction of pathogens, (A) 50 nm and (B)
300 nm in diameter, that are predicted to diffuse from semen through CVM and reach the vaginal epithelium
over the first 12 hours post semen deposition and which have undergone no collision (singlets), one collision
(doublets) or two or more collisions (triplets+). The diffusivity of HPV in CVM is equivalent to that in buffer [17];
the diffusivity of Chlamydia, an obligate intracellular bacteria that lacks any active motility mechanism, is
assumed to be the same in CVM as in buffer. The median and max HPV load in semen is 3.5 and 4.5 log10
copies per mL [18], whereas the median and max Chlamydia load in semen is 3.5 and 4.2 log10 copies per
mL [19]. To enable rapid estimation of the viral load that may result in significant rates of agglutination, we
also derived a mathematical equation (dashed curve; first summand of Eq 10) and utilized an exponential
approximation (solid curve; Eq 3) that directly estimate the virion load arriving at the epithelial layer that
experiences no collisions with other virions (see Appendix and S1 File).

doi:10.1371/journal.pone.0131351.g004

Potential Limits to Viral Agglutination

PLOS ONE | DOI:10.1371/journal.pone.0131351 July 1, 2015 6 / 16



Results

HIV virions rarely collide with each other at viral loads commonly found
in genital secretions
For sIgA to protect by agglutinating a virus population, viruses must first encounter and collide
with other virions before reaching target cells. Men who are acutely infected with HIV are most
likely to transmit the infection due to elevated viral load in semen (i.e. 4.5 log10 RNA copies per
mL [16]) compared to those of chronically infected men. Thus, we are particularly interested in
evaluating the potential extent of sIgA-induced agglutination against HIV in semen of acutely
infected individuals. Even before extensive modeling, we quickly suspected that HIV agglutina-
tion may be a rare event. According to the classical Smoluchowski encounter rate (see Materials
and Methods for a full discussion), a 100 nm particle in water at the same 4.5 log10 concentra-
tion will encounter another particle at a rate of once per 500 hours. In comparison, the mean
passage time by Brownian diffusion for such a particle through a 50 μm thick mucus layer is a
little over 3 mins. Similarly, Chandrasekhar found that collision rate, which naturally depends
on the average spacing between virions, is proportional to the reciprocal of the cube root of the
concentration [20]. A simple calculation yields an average spacing of 300 μm, which is six
times the thickness of the mucus layer; any collisions acting as a precursor to agglutination
should therefore be exceedingly rare.

Nevertheless, these simple estimates do not provide insight into the extent of collision fre-
quency and potential extent of agglutination on a per virion basis, which is necessary for us to
begin to evaluate the extent of protection. We thus sought to develop a more complex model
that better describes the dynamics of individual HIV virions during male-to-female vaginal
transmission. We and others have previously described a mathematical model for characteriz-
ing the HIV diffusion across mucus secretions in the female reproductive tract [21–24]. From
the moment semen is deposited in the vaginal lumen (time T = 0), the model tracks the diffu-
sion of individual HIV virions from the semen layer (d< z< L) into the CVM layer (0< z<
d) and finally to the epithelium (z = 0) (Fig 1). We use reported rates of HIV diffusion in genital
secretions as well as estimated thicknesses of the mucus and semen layers (Table 1, Fig 1).
Using this model, we can tally the number of collisions for each virion over time as virions at a
known initial concentration in semen diffuse into the mucus layer.

In order to establish an upper bound on the rate of agglutination, i.e., biasing the model in
favor of agglutination, we make the extreme assumption that every collision event results in
immediate agglutination. Even then, we find that the vast majority (99.8%) of viruses deposited
into the vaginal lumen will not have collided even once with another virion over the course of
the first 12 hours post sperm deposition (Fig 2A). Of the remaining virions that will have col-
lided with another virion, virtually all of them will have collided with only one other virion.
Consequently, all but 0.2% HIV virions capable of penetrating across the mucus layer are
expected to do so as individual virions (Fig 2B). The remaining few virions will only have col-
lided with one or two other virions, which will only increase their hydrodynamic radius by a
factor of 2 and thereby knockdown their diffusion constant by the same factor.

The frequency of collision is naturally dependent on the viral load in semen: the more HIV
virions present, the more likely there will be virion encounters. To explore the significance of
viral load on agglutination, we simulate a range of viral loads in semen to identify a threshold
viral concentration where collisions between HIV virions become significant. Even at the
upper range of HIV viral load in acutely infected individuals (i.e. 6.67 log10 RNA copies per
mL), our model reveals that less than 20% of all HIV viruses will have collided with another
HIV virus after 12 hours (Fig 3A). Furthermore, because the highest concentration of HIV viri-
ons is found in semen at the moment of vaginal deposition, the probability that a virion will

Potential Limits to Viral Agglutination

PLOS ONE | DOI:10.1371/journal.pone.0131351 July 1, 2015 7 / 16



encounter another virion is substantially reduced as that particular virion diffuses into the
CVM layer (i.e. away from semen). Hence, the virions that most quickly penetrate into and dif-
fuse across the mucus layer are also least likely to be agglutinated. This analysis explains why
even at the highest HIV load, less than 17% of the virions that penetrate CVM within the first
12 hours post-deposition will have collided with at least one other virion (Fig 3B). In the major-
ity of vaginal HIV transmission events, the extent of viral collision is most likely much less.

Further reasons why HIV in mucus are unlikely to form large HIV/sIgA
complexes
Despite the modest increase observed in the collision count and fraction of HIV virions that
have collided with another virion at the exceedingly high viral concentrations, the true aggluti-
nated fraction must be substantially if not orders of magnitude lower. First, a successful bond
formation between an antibody and an antigen requires on the order of 103 collisions on aver-
age [32]. Second, the Env trimers that most HIV binding antibodies target are only present
with sparse density on the virus surface [25], which means the majority of the HIV surface will
not agglutinate upon collision. Third, for sIgA to crosslink two HIV virions, sIgA must either
be already bound to one virion and encounter a sIgA-free Env on a colliding virion, or simulta-
neously bind two sIgA-free Env on two colliding virions. Clearly, only a subset of virions will
experience either. Altogether, this suggests that even if it is possible to deliver or induce anti-
HIV sIgA in mucus coating the female reproductive tract with exceedingly high affinity to
HIV-Env, sIgA-induced agglutination is unlikely to be a dominant mechanism of protection
against male to female HIV transmission in humans.

Table 1. Parameters and values incorporated into modeling HIV diffusion across the vaginal mucosa.

Parameter Value Reference(s)

HIV-1

Diameter 100 nm [25]

Diffusivity in semen and CVM 1.27 μm2/s a [26]

Mean viral load in semen 4.5 log10 RNA copies per mL [16]

Max viral load in semen 6.7 log10 RNA copies per mL [16]

Vagina

Surface area of lumen 145 cm2 b [27, 28]

Volume of luminal CVM 750 μL [29, 30]

Volume of semen 3.0 mL [31]

Thickness of CVM layer 50 μm c

Thickness of semen layer 200 μm c

a Geometrically averaged Deff for HIV was previously measured to be 0.25 μm2/s, but with substantial

fraction of viruses exhibiting more rapid mobility. For the current analysis, we used 1.27 μm2/s, which

represented the top 25th percentile of virus mobility; this is in reasonable agreement with a more recent

study of HIV diffusion in genital secretions [13].
b The mean surface area of the vagina in the native state was previously estimated to be ~90 cm2 by

injection of vinyl polysiloxane casts vaginally. Alternatively, surface area of vaginal lumen may also be

inferred by the surface area of erect penis (average ~200 cm2) assuming complete insertion into the

vagina. We took the average from the two approaches.
c Thickness of CVM is estimated by (Volume of CVM/Surface area of lumen); Thickness of semen layer is

estimated by (Volume of semen/Surface area of lumen).

doi:10.1371/journal.pone.0131351.t001
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Minimal sIgA-induced agglutination for other sexually transmitted
viruses?
The surprisingly low agglutination rate for HIV-sized viruses led us to evaluate whether poor
agglutination is a unique feature of HIV (potentially as an evolutionary trait to evade mucosal
immunity), or if it is also characteristic of other sexually transmitted viral infections. To do so,
we simulate the collision rate of different sized spheres in the range of 50–300 nm over different
concentrations; this size range encompasses virions such as 55 nm Human Papillomavirus
(HPV), 180 nm Herpes Simplex Virus (HSV), and the intraceullar-obligate but non-mobile
bacteria Chlamydia (300 nm) (Table 2). We found that the number of collisions increased
slightly with particle radius but the collision rate remained minimal across the physiologically
relevant range of viral load (Fig 4). This suggests significant agglutination may likely be promi-
nent only at much higher concentrations more commonly associated with bacterial pathogens,
and/or with pathogens that possess alternative mechanisms of motion (e.g. flagella-driven
motility, chemotaxis), resulting in increased frequency of encountering another pathogen.

Discussion
The low agglutination frequency predicted may appear to contradict earlier in vivo studies that
showed sIgA confers improved protection compared to IgG and IgA against viral infections, as
well as previous studies that illustrate sIgA-induced agglutination of sperm. For example, topi-
cally applied dimeric IgA resulted in enhanced protection against rectal R5 SHIV transmission
compared to IgG1 with comparable neutralizing activity in vitro [33]. One possible difference
may be attributed to the relatively high dose of SHIV used in many rectal and vaginal challenge
studies, which would substantially increase the likelihood of agglutination. Even in studies that
measure protection against repeated low-dose challenges, the infectious titers used are still sub-
stantially greater than physiologically relevant titers in human vaginal transmission. While
sIgA can readily agglutinate sperm, it should be noted that sperm is markedly different than
HIV in concentration (~107–108 sperm per mL vs. ~104–106 HIV per mL), dimension (the
head of sperm is ~3x5 μm vs. ~100 nm for HIV), and mechanism of motility (active motion vs.
passive Brownian diffusion). Since each of these factors increases the collision frequency for
sperm relative to HIV in semen, we believe sIgA-induced agglutination of sperm should not be
used as a basis for assuming that sIgA can also agglutinate HIV under physiologically-relevant

Table 2. Parameters and values for other sexually transmitted pathogens.

Parameter Value Reference(s)

HPV

Diameter 55 nm [18]

Diffusivity in semen and CVM 11.9 μm2/s a [17]

Mean load in semen 3.5 log10 copies per mL [18]

Max load in semen 4.5 log10 copies per mL [18]

Chlamydia

Diameter 300 nm [19]

Diffusivity in semen and CVM 2.17 μm2/s a Calculated from Stokes-Einstein law

Median load in semen 3.5 log10 copies per mL [19]

Max load in semen 4.2 log10 copies per mL [19]

a The diffusivity was calculated from the Stokes-Einstein law in water, correct for HPV [17]. Diffusivity has

not been measured for chlamydia, thus we assumed its diffusivity in water.

doi:10.1371/journal.pone.0131351.t002
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conditions. It is also important to point out that sIgA may protect by other mechanisms than
agglutination. For example, a greater inter-Fab distance for dimeric IgA may enable more effi-
cient bivalent binding (i.e., greater avidity) of a larger fraction of the sparse Env trimers on
HIV-1 virions than IgG. The higher degree of glycosylation in sIgA may also trigger other
mechanisms of innate immunity [34]. While we found that endogenous, HSV-specific IgG in
CVM of women with largely Lactobacilli-dominated microflora were sufficiently stable to read-
ily bind and immobilize HSV virions [12], improved antibody stability may be relevant in
CVM from women with vaginal microbiota that produce substantial quantities of proteases
and glycosidases, such as microbes associated with bacterial vaginosis [35]. Last but not least,
sIgA may effectively agglutinate HIV-1-infected lymphocytes and help protect against mucosal
transmission by cell-associated HIV viruses.

An emerging mechanism of mucosal immune protection is the immobilization of individual
viruses due to antibody-mucin interactions, which in turn prevent viral translocation across
mucus. The interactions between antibodies and mucus are generally low-affinity and tran-
sient; for example, the diffusion of IgG and IgA molecules (diameter 10 nm) in human mucus
(pores 340 ± 50 nm [36]) is slowed only 5%-20% compared to buffer [17, 37]. We have recently
shown that this seemingly negligible affinity is sufficient for both endogenous and exogenously
added HSV-specific IgG to trap HSV-1 virions in human CVM with sub-neutralizing potency,
presumably because the array of virion-bound IgG ensures a sufficient number of transient
low-affinity bonds between the virus and mucins at any given time [12]. Since IgA molecules
possess similar mucin affinity to IgG [17, 37], virions may very well be immobilized by a collec-
tion of surface-bound sIgA. sIgA could confer an added advantage to mucosal protection in
CVM compared with IgG if the O-glycans-rich SC can interact more strongly with mucins
than the low-affinity observed between individual IgG/IgA and the predominantly Muc5B
mucins found in CVM. For example, Phalipon et al. previously suggested that SC may associate
with mucus lining and enhanced IgA-mediated protection against S. flexneri in the lung (note:
lung mucus consists of primarily Muc5B mucins, similar to genital secretions) [38]. Neverthe-
less, it is not obvious whether a stronger bond between individual antibody molecules and
mucins would necessarily enhance trapping potency, since an antibody that is stably anchored
to mucins would possess greatly limited range of motion that consequently reduces its binding
rate to an antigen target. Unfortunately, much remains unknown about the process by which
sIgA can dynamically block microbial invasion across a mucus layer [3]. Given the complexity
and number of confounding contributing factors, a systemic experimental study comparing
the ability of IgG and sIgA to block virus and bacteria translocation across mucus is needed,
and would no doubt clarify the potential role of sIgA-induced agglutination in vaginal immune
protection.

The long held notion that sIgA is critical to mucosal protection is based in part on the mas-
sive amount of sIgA secreted along the GI tract relative to IgG. In contrast, we generally mea-
sure a ratio approaching 1:1 to 1:2 for IgG:sIgA in respiratory secretions in our lab
(unpublished observations) and a ratio in excess of 10:1 or more (in favor of IgG) in genital
tract secretions. The markedly higher sIgA levels in the gut suggests sIgA may be adapted to
offer enhanced protection at the intestinal mucosa relative to other mucosal surfaces. A possi-
ble explanation may be attributed to the immense number of motile microbes in the gut, which
most likely results in markedly higher collision frequency–a first step in sIgA-induced aggluti-
nation. Likewise, many bacteria share homology with respect to their surface proteins (e.g.,
lipopolysaccharides between Salmonella typhimurium vs. Escherichia coli). This suggests that
the same sIgA molecule may bind to multiple different bacteria, leading to further increase in
the rates and prevalence of agglutination [39]. Last but not least, sIgA-mediated agglutination
can offer improved trapping potency compared to IgG. IgG-mediated trapping of individual
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highly motile microbes is likely to require many dozens if not hundreds of pathogen-bound
IgG. In contrast, as few as one single sIgA can agglutinate two bacteria, and the minimum
number of sIgA required to agglutinate multiple pathogens is likely to scale directly with the
order of pathogen number (e.g. two sIgA molecules can agglutinate three bacteria). Since
agglutination markedly suppresses the mobility of a bacterium, we speculate that sIgA likely
offers an exceptionally efficient mechanism of protection against dense populations of intesti-
nal bacterial microbes. sIgA has also been implicated in the protection against gastrointestinal
viruses such as poliovirus, norovirus and rotavirus. It remains to be determined experimentally
whether this is due to the highly efficient process for local sIgA production and secretion in the
GI tract relative to IgG, markedly higher viral titer for these viruses compared to sexually trans-
mitted viruses, or if sIgA can confer additional protection by other mechanisms.

Appendix
We begin our derivation of the approximate formula (2) by recording probability that a particle
experiences no collisions as of time t with a fixed particle concentration (i.e., ignoring that con-
centration changes due to particles exiting the domain). Let N(t) denote the number of colli-
sions that have occurred as of time t. Then, modeling collisions as a Poisson arrival process
with a rate being the product of the Smoluchowski encounter rate and the fixed viral concen-
tration, kSV0, we have that

PfN ðtÞ ¼ 0g ¼ expð�kSV0tÞ ð4Þ

For a population of particles with high diffusivity, however, there can be a significant alter-
ation in concentration over time as the particles leave the system. This leads to differing colli-
sion rates and significantly different collision counts for particles in the system in comparison
with those that have exited (i.e., particles that have left the system do not subsequently collide).
Thus, we examine the case with a particle concentration that changes over time. To this end,
assume that all virions have diffusivity D and radius r, while the semen-CVM system has width
L. Define τ to be the random time it takes for the virion to pass through the layer. Then the first
passage time density is given by

rðtÞ ¼ 2D
LðL� dÞ

X1
k¼0

cos
ð2kþ 1Þpd

2L
exp �ð2kþ 1Þ2 p2D

4L2
t

� �
; ð5Þ

where ρ(t) can be derived by solving the 1D heat equation on the interval [0, L] with the given
initial and boundary conditions [40]. The survival function, F(t): = P{τ> t}, can be expressed
in terms of the passage time density,

FðtÞ ¼ 1�
Zt

0

rðt0Þ dt0: ð6Þ

In this setting, we model the collisions by Poisson arrival process with a time-dependent
intensity given by the Smoluchowski encounter rate, λ(t) = kSV0F (t), where we recall that kS =
16πDr, V0 is the initial viral concentration, and F (t) is the fraction of virions remaining in the
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solution at time t. It follows that

PfNðtÞ ¼ 0g ¼ exp �
Zt

0

kSV0Fðt0Þdt0
0
B@

1
CA ð7Þ

Using the law of total probability, we have an exact formula for the probability that a given
virion does not encounter any others before exiting:

PfNðtÞ ¼ 0g ¼
Z1

0

PfNðtÞ ¼ 0 jt ¼ tgrðtÞdt

¼
Z1

0

expð�
Zt

0

kSV0Fðt0Þdt0ÞrðtÞdt:
ð8Þ

If there is an external cutoff time T (imposed by drainage of CVM, for example), we modify the
above formula as follows.

PfNðminðT; tÞÞ ¼ 0g ¼ PfNðtÞ ¼ 0; t < Tg þPfNðTÞ ¼ 0; t � Tg

¼
ZT

0

PfNðtÞ ¼ 0 jt ¼ tgrðtÞdt þPfN ðTÞ ¼ 0g
Z1

T

rðtÞdt

¼
ZT

0

expð�
Zt

0

kSV0Fðt0Þdt0ÞrðtÞdt þ expð�
ZT

0

kSV0Fðt0Þdt0Þ
Z1

T

rðtÞdt:

ð9Þ

Estimate of first-passage times
In order to derive a closed-form estimate for Eq (10), we approximate the passage time distri-
bution with an exponential distribution of the same mean, calculated below. Indeed, this
approximation is justified in that the viral population entering the epithelial layer closely
matches the exponential approximation (Figs 3 and 4). Using tildes to denote the analog den-

sity ~r and survival function ~F , we have

~rðtÞ ¼ 1

m
e�t=m and ~FðtÞ ¼ e�t=m: ð10Þ

The modified version of Eq (9) can be evaluated to give

PfNðtÞ ¼ 0g � 1

kSV0m
ð1� e�kSV0mÞ: ð11Þ

With an external cutoff time T, the modified first summand of Eq (10) is given by

PfNðtÞ ¼ 0; t < Tg � 1

kSV0m
1� e�kSV0m 1�e

�T
m

� �	 

: ð12Þ
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Meanwhile, the second summand is approximated as

PfNðTÞ ¼ 0; t � Tg � e

�

ZT

0

kSV0
~Fðt0Þdt0Z1

T

~rðtÞdt

¼ e�kSV0mð1�e�T=mÞe�T=m:

ð13Þ

Together,

PfN ðminðT; tÞÞ ¼ 0g � 1

kSV0m
� 1

kSV0m
� e�

T
m

	 

e�kSV0m 1�e

�T
m

� �
: ð14Þ

Conditioning on the population of virions that have entered the epithelial layer, Eq (3) is
obtained with the mean passage time μ (for a virion at a fixed initial location) in place of �t, the
population average passage time.

PfN ðTÞ ¼ 0 jt < Tg ¼ PfN ðTÞ ¼ 0; t < Tg
Pft < Tg ¼ 1� e�kSV0mð1�e�T=mÞ

kSV0mð1� e�T=mÞ :

Calculating the population average passage time
In order to calculate �t, the population average passage time, we consider particles diffusing
through the interval [0, L] where 0 is absorbing and L is reflecting. The initial condition is dis-
tributed over a subinterval [d, L] and we wish to compute the probability of particles diffusing
through the layer with no encounters. A first-order approximation is given by computing the
expected exit time from the interval [0, 2L] with initial condition uniformly distributed over [d,
2L − d]. The expected time to exit [0, 2L] from the initial position x, denoted u(x), satisfies the
ODE

Du@ðxÞ ¼ �1; uð0Þ ¼ uð2LÞ ¼ 0; ð15Þ

which has solution uðxÞ ¼ 1
2D
xð2L� xÞ. Now, integrating over the region of the initial condi-

tion, we obtain Eq (4):

�t ¼ 1

6D
ð2L2 þ 2Ld � d2Þ:

Supporting Information
S1 File. Analytical estimate of virions arriving at epithelial layer without collisions. The
Excel file gives an estimate of the virions arriving at the epithelial layer having experienced no
collisions (Eq 3), based on user-given input parameters.
(XLSX)
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