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Abstract
We examined the role of γδ T cells in the induction of alternatively activated M2 macro-

phages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and

mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to

72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WTmice,

M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary

mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone.

In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not

TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT

mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2

gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutro-

phils and macrophages resolved quickly after cessation of ozone exposure returning to air

exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was asso-

ciated with delayed clearance of inflammatory cells after cessation of ozone and increased

accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung

architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T

cells are required for the resolution of ozone-induced inflammation, likely because γδ T

cells, through their secretion of IL-17A, contribute to changes in macrophage polarization

that promote clearance of apoptotic cells.

Introduction
Exposure to the air pollutant, ozone (O3), has a significant impact on human health. O3 expo-
sure causes respiratory symptoms, reductions in lung function, and may even increase the risk
of mortality in those with preexisting lung disease [1,2,3,4,5,6]. O3 causes oxidative stress and
subsequent damage to lung and airway epithelial cells, leading to the production of numerous
cytokines and chemokines, and recruitment of neutrophils and macrophages to the lungs [1,7].
In WT mice, the resolution of inflammation and injury occurs within 72 hours of cessation of
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subacute O3 exposure (0.3 ppm for 72 h) [8], though some effects of O3 persist even 72 h after
a more prolonged exposure [9]. While the processes promoting O3-induced inflammation are
relatively well understood, the processes that control the resolution of O3-induced inflamma-
tion are not. Nevertheless, termination of O3-induced inflammation and repair of damaged
lung cells is key to protecting the lung from the cytotoxic effects of inflammatory cells and
mediators.

Alternatively activated M2 macrophages have the capacity to phagocytose apoptotic cells
and debris from necrotic cells, and participate in the resolution and repair of tissue damage
induced by a variety of agents [10,11]. For example, M2 macrophages contribute to epithelial
tubular cell repair after ischemic renal injury [12]. M2 macrophages, particularly M2c macro-
phages, are also required for clearance of apoptotic neutrophils and macrophages [13,14]. M2
macrophages are observed in the lungs after acute high dose O3 exposure in mice [15,16], but
whether such cells are present in the lungs after a lower concentration, but longer duration of
O3 exposure has not been established.

γδ T cells compose part of the innate immune system and are found primarily in non-lym-
phatic organs, including the lung [17]. γδ T cells contribute to inflammatory cell recruitment
in response to many types of injury and infection, both in the lungs and in other tissues
[18,19,20,21,22,23]. However, γδ T cells also participate in the resolution of injury and inflam-
mation. For example, γδ T cells are important for wound repair in the skin [24]. In the lung, γδ
T cells are required for the resolution of eosinophilic inflammation after allergen challenge
[25] and for the resolution of macrophage infiltration after S. pneumonia infection [26]. The
role of γδ T cells in the resolution of pulmonary injury and inflammation after subacute O3

exposure has not been established, but could be important.
Since IL-17A promotes M2c polarization [13], γδ T cells could contribute to resolution of

O3-induced injury and inflammation via their capacity to produce IL-17A. We have established
that pulmonary Il17amRNA abundance increases after O3 exposure and that O3 increases the
number of IL-17A+ γδ T cells in the lungs [27,28]. Furthermore, γδ T cells are required for
expression of IL-17A after subacute ozone [28]: O3-induced increases in pulmonary Il17a
mRNA are observed in wildtype (WT) mice but not in mice lacking γδ T cells (TCRδ-/- mice).
The purpose of this study was to examine the hypothesis that γδ T cells contribute to M2 mac-
rophage polarization and the resolution of inflammation and injury after subacute O3 exposure
in mice. To test this hypothesis, we assessed lung M2 macrophages and M2 gene expression by
flow cytometry and RT-qPCR, respectively, during and after exposure of mice to O3 (0.3 ppm
for up to 72 h). Experiments were performed both in WT and TCRδ-/- mice. We also per-
formed bronchoalveolar lavage (BAL) in order to examine the clearance of inflammatory cells
and mediators recruited to lungs by O3 exposure. Finally, we used flow cytometry to examine
the apoptotic status of macrophages after cessation of O3 exposure. Our results indicate the γδ
T cells are required for M2 macrophage polarization after subacute O3 exposure, likely as a
result of the ability of γδ T cells to produce IL-17A. Moreover, the absence of M2 macrophages
in γδ T cell deficient mice was associated with delayed clearance of inflammatory cells and
retention of apoptotic macrophages in the lungs of these mice after cessation of O3 exposure.

Methods

Animals
This study was approved by the Harvard Medical Area Standing Committee on Animals. Male
age-matched WT and TCRδ-/- mice were bred in house from breeding pairs originally pur-
chased from The Jackson Laboratory (Bar Harbor, ME). All mice were on a C57BL/6J back-
ground, fed a standard mouse chow diet, and were 10–13 weeks old at the time of study.
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Protocol
Mice were exposed to room air for 48 h or to O3 (0.3 ppm) for 24, 48 or 72 h and euthanized
immediately after exposure with an overdose of sodium pentobarbital. These mice were previ-
ously described [28]. Other mice were exposed to O3 (0.3 ppm) for 72 hours, allowed to recover
in room air, and euthanized 1, 3, or 5 days after cessation of exposure. Tissue and BAL were
then collected and analyzed as previously described [27,28]. In another cohort of mice, whole
lungs were processed for flow cytometry to examine macrophage apoptosis. BAL was not per-
formed on these mice so that we could examine both alveolar and interstitial macrophages for
evidence of apoptosis. The protocols used for anti-IL-17A treatment were previously described
[27,28].

Ozone exposure
During O3 exposure, mice were placed in their regular home cages with the microinsulator
lids removed. Cages were placed inside stainless steel and Plexiglas exposure chambers and
exposed as described previously [27]. Mice had free access to normal chow and to water during
exposure.

Bronchoalveolar lavage
BAL was performed and cells counted as previously described [27]. BAL supernatant was
stored at −80°C until assayed for G-CSF and MCP1 by ELISA (R&D Systems) and TNFα by
ELISA (eBioscience San Diego, CA). Total BAL protein was measured by Bradford assay (Bio-
Rad, Hercules, CA).

Flow cytometry
The left lung was harvested and placed on ice in RPMI 1640 media containing 2% FBS and
HEPES. Lungs were digested, prepared for flow cytometry, and analyzed as previously
described [27,28]. For M1/M2 macrophage analysis the following antibodies were used: Alexa
Fluor 488 anti-F4/80 (clone: BM8), PE—anti-CD206 (clone: C068C2), Percp/cy5.5- anti-CD80
(Clone: 16-10A1). For macrophage apoptosis staining, the whole lung (without bronchoalveo-
lar lavage) was used and single cell suspension was stained with the following antibodies: PE-
cy7 anti-F4/80, PE—anti CD11c (clone: N418), 7-AAD, and FITC anti-Annexin V.

Real-time PCR
RNA was extracted from lung tissue and cDNA prepared for qPCR as previously described
[27]. The primers for Il17a, Rplp0, Cldn4, Clec10a (Mgl1), Retnla and Il13 were all previously
described [29,30,31,32]. In addition, the following primers were used: Arg1 forward: GTGTA
CATTGGCTTGCGAGA; reverse: GGTCTCTTCCATCACCTTGC. Melting curves yield a single
peak for each primer; Ym1 forward: GAA GGA GCC ACT GAG GTC TG; reverse: TTG TTG TCC
TTG AGC CAC TG;Mrc1 forward: CAA GGA AGG TTG GCA TTT GT; reverse: CAA GGA AGG
TTG GCA TTT GC Expression values were normalized to Rplp0 expression using the ΔΔCt
method.

Histology
Lungs were fixed with 4% paraformaldehyde under 20 cm of pressure for 1 min. The mainstem
bronchus was then tied off. The lung was removed and placed overnight in a 50 ml conical con-
taining 4% paraformaldehyde. Lungs were then transferred to tubes containing 70% ethanol.
Lungs were sliced, first sagittally and then transversely. Slices were embedded in paraffin,
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sectioned, and stained with hematoxylin and eosin by the Rodent Histology Core (Harvard
Medical School, Boston, MA). Histological examination of sections from O3-exposed mice
indicated interstitial expansion of mononuclear cells and hyperplasia of epithelial cells in the
region of terminal bronchioles. The slides were blinded and then each terminal bronchiole was
scored for the number of cellular layers below the epithelium using the following scoring sys-
tem: 0 for no lesions, 1: 1–2 cells, 2: for 3 cells, 3: for 4 cells, and 4: for 5 cells or more. At least 8
terminal bronchioles were scored in each mouse and the scores averaged to obtain a total lesion
score for each mouse.

Statistical analysis
ANOVA or factorial ANOVA using STATISTICA software (Statistica, StatSoft; Tulsa, OK)
was used to analyze the data with either genotype and duration of time post exposure or just
duration of time post exposure as main effect. To examine the effects of anti-IL-17A on M2
gene expression, factorial ANOVA using antibody treatment and exposure time (48 or 72 h)
was used. A p value<0.05 was considered significant.

Results

Subacute ozone exposure induces M2 macrophage polarization in WT
but not TCRδ-/- mice
Total macrophages (F4/80+ cells) and M2 macrophages (F4/80+CD206+CD80- cells) were mea-
sured by flow cytometry in lungs of WT mice exposed to air or to ozone (0.3 ppm) for 24, 48 or
72 hours and studied immediately after cessation of exposure. O3 caused a time dependent
increase in total lung macrophages (Fig 1A), and in M2 macrophages (Fig 1B). For M2 macro-
phages, the peak occurred after 72 hours of exposure. In WT mice, the pulmonary mRNA
abundances of Arg1, Clec10a, and Retnla, markers of M2 polarization [33,34], were also
increased after O3 exposure (Fig 1C, 1D and 1E). O3-induced increases in total lung macro-
phages and M1 macrophages (F4/80+CD206-CD80+) were not affected by γδ T cell deficiency
(Fig 1F), but M2 macrophages were reduced in O3 exposed TCRδ-/- versus WT mice (Fig 1G
and 1H). We also observed no induction of the M2 macrophage markers, Arg1 and Clec10a, in
TCRδ-/- mice after O3 (Fig 1C and 1D), RetnlamRNA was induced by O3 in TCRδ-/- mice (Fig
1E). However, compared to WT mice, in TCRδ-/- mice levels of Retnla were significantly lower
after 48 and 72 h of exposure consistent with decreased M2 macrophages. Of note, Retnla is
also highly expressed in epithelial cells [35], and the RetnlamRNA observed in O3-exposed
TCRδ-/- mice (Fig 1E) may derive from epithelial cells rather than M2 macrophages. To deter-
mine whether the decrease in M2 macrophages in TCRδ-/- mice was associated with increased
activity of M1 macrophages, we measured BAL TNFα (Fig 1I): TNFα is predominately
expressed by M1 macrophages [36]. BAL TNFα was higher in the TCRδ-/- versus WT mice
after 48 hours of O3 exposure, the point where gene express for M2 macrophages peaked in
WTmice (Fig 1C to 1E).

To determine the duration of elevations in M2 macrophages after cessation of O3 exposure,
we measured the pulmonary abundance of Arg1, Clec10a, and Retnla in mice after air exposure,
and immediately after or 1 or 3 days after cessation of O3 exposure (Fig 2A to 2C). In WT
mice, the pulmonary mRNA abundances of Arg1, Clec10a, and Retnla were elevated immedi-
ately after cessation of O3 exposure, as described above. Both Arg1 and Clec10a returned to air
exposed levels within 1 day after cessation of exposure (Fig 2A and 2B). RetnlamRNA abun-
dance also declined rapidly after cessation of O3, but was still elevated through day 3 (Fig 2C).
In contrast, in TCRδ-/- mice, Arg1 and Clec10a were not induced at any time after cessation of
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O3 exposure (Fig 2A and 2B). As described above, Retnla levels were significantly lower in
TCRδ-/- mice than in WT mice immediately after cessation of O3, but resembled levels in WT
thereafter, likely because the persistent Retnla expression derived from epithelial cells rather
than M2 macrophages. IL-13 and IL-4 can induce M2 polarization [37], but microarray data
from our lab indicates no changes in Il4 mRNA expression after O3 [32] O3-induced changes
in pulmonary IL-13 mRNA abundance were similar in TCRδ-/- and WTmice (Fig 2D).

IL-17A can also drive M2 macrophage polarization [13] and we have previously reported
that pulmonary mRNA abundance of Il17a is increased after subacute O3 exposure in WT but
not TCRδ-/- mice [28]. RT-qPCR confirmed and extended these observations: in WTmice, pul-
monary Il17amRNA peaked immediately after cessation of O3 and then gradually resolved
over the next 3 days, whereas no increase in Il17amRNA abundance was observed in TCRδ-/-

mice at any time after cessation of O3 exposure (Fig 2E). We have also reported that in WT

Fig 1. Induction of M2macrophage by subacute O3 exposure is reduced in TCRδ-/- mice.WTmice were exposed to either air or O3 (0.3 ppm) for 24, 48
or 72 hours and euthanized immediately after exposure. (A) Total lung macrophages (F4/80+ cells) and (B) total lung M2 macrophages (F4/80+CD80-CD206+

cells) were measured by flow cytometry. The pulmonary mRNA abundance of M2 markers (C) Arg1 (D) Clec10a and (E) Retnla were also assessed by
RT-qPCR in WT and TCRδ-/- mice exposed to room air or O3. Total macrophages (F), M1 macrophages (G) and M2 macrophages (H) were also assessed in
WT and TCRδ-/- mice exposed to air or O3 (0.3 ppm for 72 h). (I) BAL TNFα was measured in the BAL by ELISA. Results are mean ± SE of 4–8 air exposed
mice and 6–14 O3 exposed mice in each group. * p<0.05 versus air; # p<0.05 versusWTmice.

doi:10.1371/journal.pone.0131236.g001
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mice the number of IL-17A+γδ T cells increases with O3 exposure[27,28]. Flow cytometry indi-
cated that the number of IL-17A+γδ T cells remained elevated in the WTmice until day 3 post
exposure (Fig 2F). Consequently, we examined the hypothesis that the lack of M2 polarization
in TCRδ-/- mice after O3 exposure was the result of their inability to produce IL-17A. To do so,
WT mice were treated with either isotype control antibody or with anti-IL-17A [27,28] prior to
exposure and examined immediately after either 48 or 72 h of O3 exposure. Factorial ANOVA
using exposure time (48 or 72 h) and treatment (isotype or anti-IL-17A) as main effects indi-
cated a significant effect of treatment on mRNA expression of both Arg1 and Clecl10a (Fig 3A
and 3B) and that the effect lay in the animals exposed to O3 for 48 h, the peak of O3-induced
changes in M2 gene expression (Fig 1C to 1E). Note that Arg1 and Clec10amRNA abundances
were significantly lower in anti-IL-17A versus isotype treated mice (i.e. ΔΔCt values were
higher). There was also a trend towards reduced expression of two other M2 genes,Mrc1 and
Retnla, at 48 hour of O3 exposure, but the effect did not reach statistical significance (data not
shown). BAL levels of TNFα were also increased by anti-IL-17A treatment, indicating more
M1 activation, similar to what was observed in TCRδ-/- mice (Fig 1I).

Role of γδ T cells in the resolution of O3-induced increases in BAL
inflammatory cells
To determine if γδ T cells are required for resolution of O3-induced inflammation, mice were
exposed to O3 (0.3 ppm) for 72 h and then allowed to recover in room air for 1, 3, or 5 days.
Compared to air, BAL neutrophils and macrophages were significantly increased by O3 expo-
sure (Fig 4A and 4B) in WTmice, consistent with previous reports by ourselves and others
[28,32,38,39]. BAL neutrophils and macrophages declined rapidly thereafter, returning to

Fig 2. Pulmonary M2 gene expression after cessation of O3 exposure. Pulmonary (A) Clec10a, (B) Arg1, (C) Retnla, (D) Il13, and (E) Il17amRNA
abundance in WT and TCRδ-/- mice exposed to room air or to ozone (O3, 0.3 ppm for 72 h) and then euthanized either immediately or 1 or 3 days after
cessation of O3 exposure. (F) IL-17A

+γδ were determined by flow cytometry. Note that data from the air and immediately post mice have been previously
published [28] Results are mean ± SE of 4–8 air exposed mice and 6–14 O3 exposed mice in each group. * p<0.05 versus air; # p<0.05 versus 72 hour O3; $
p<0.05 versusWTmice.

doi:10.1371/journal.pone.0131236.g002
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Fig 3. Blocking IL-17A reduces pulmonary expression of Arg1 and Clec10a. Pulmonary mRNA abundance of (A) Clec10a and (B) Arg1measured as
changes in Ct values in lungs frommice treated with IL-17A neutralizing versus isotype control antibody injected i.p. prior to O3 exposure. Note that an
increase in Ct indicates a decrease in expression. Mice were exposed to O3 for either 48 or 72 h and euthanized immediately after cessation of exposure.
Other data from these mice has been previously published [27,28]. (C) As a marker of M1 activation, TNFα was measured in the BAL by ELISA. Results are
mean ± SE 5–7 mice in each group. % p<0.05 versus isotype control, as assessed by factorial ANOVA.

doi:10.1371/journal.pone.0131236.g003

Fig 4. O3-induced inflammation in WT and γδ T cell deficient mice after cessation of O3 exposure. Bronchoalveolar lavage (BAL) neutrophils (A),
macrophages (B), G-CSF (C), MCP-1 in wildtype (WT) and γδ T cell deficient (TCRδ-/-) mice exposed to room air or to ozone (O3, 0.3 ppm for 72 h) and then
euthanized either immediately or 1, 3, or 5 days after cessation of O3 exposure. Data for the air and immediately post O3 time points have been previously
published [28]. Results are mean ± SE of 4–8 air exposed mice and 6–14 O3 exposed mice in each group. * p<0.05 versus air; # p<0.05 versus immediately
post O3; $ p<0.05 versusWTmice.

doi:10.1371/journal.pone.0131236.g004
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values not significantly different from pre-exposure (air) values within 3 days of the cessation
of O3 exposure (Fig 4A and 4B). In TCRδ-/- mice, BAL neutrophils and macrophages were
significantly lower than in WT mice immediately after cessation of O3 exposure (Fig 4A and
4B), as we have previously reported [28]. However, in contrast to WT mice, there was no
reduction in either BAL neutrophils or BAL macrophages 1 day after versus immediately
after cessation of exposure in TCRδ-/- mice (Fig 4A and 4B). Indeed, in TCRδ-/- mice, BAL
neutrophils actually peaked not immediately after O3 exposure, as in the WT mice, but 1 day
after cessation of exposure and began to decline thereafter (Fig 4A). In addition, in TCRδ-/-

mice, O3-induced elevations in BAL macrophages were sustained through 5 days after expo-
sure (Fig 4B). This delayed clearance of inflammatory cells in TCRδ-/- mice was not the result
of more sustained increases in neutrophil and macrophage chemoattractant/survival factors
in these mice: in both WT and TCRδ-/- mice, BAL G-CSF and MCP-1 were induced by O3

but returned to levels not different from air exposed controls within 1 day of cessation of O3

exposure (Fig 4C and 4D).

Macrophage apoptosis
We considered the possibility that reduced M2 polarization in TCRδ-/- mice (Fig 1) would
reduce clearance of apoptotic cells, including apoptotic macrophages, thus accounting for the
sustained elevations of BAL macrophages after cessation of O3 exposure observed in TCRδ-/-

mice (Fig 4B). To address this possibility, we used flow cytometry to measure the number of
apoptotic macrophages in the lung tissue of WT and TCRδ-/- mice after O3 exposure. For these
experiments, BAL was not performed. As described above, in WT mice, total lung macro-
phages (F4/80+ cells) were elevated in mice studied immediately after cessation of O3 exposure
(Fig 1A). Increased total lung macrophages were sustained through 1 day after O3 exposure,
and then declined at 3 days post O3 exposure (Fig 5A). This increase in lung macrophages was
mostly due to an influx of F4/80+CD11c- cells (interstitial macrophages [40]), which accounted
for ~75% of the macrophages in the lung (compare Fig 5B and 5C). The number of early apo-
ptotic (annexin V+/7-AAD-) CD11c- macrophages (left upper quadrant in Fig 5D) peaked
immediately post exposure and returned to air exposed levels within 3 days after O3 exposure
(Fig 5E). Late apoptotic (annexin V+/7-AAD+) Cd11c- macrophages (right upper quadrant in
Fig 5D) peaked one day after O3 and returned to levels not different from air exposed mice
within 3 days post O3 (Fig 5F). To determine if there were sustained elevations in apoptotic
CD11c- macrophages in TCRδ-/- mice, we selected the 3 day post time point, as this was the
time when apoptotic macrophages had returned to air exposed levels in WT mice. The number
of interstitial macrophages (F4/80+CD11c- cells) was significantly greater in TCRδ-/- versus
WT mice studied 3 days post O3 (Fig 6A). There were also greater numbers of non-apoptotic
interstitial macrophages and of both early and late apoptotic in TCRδ-/- versus WT mice (Fig
6B to 6D). We also found a trend towards an increase in alveolar macrophages (F4/80+CD11c+

cells) in TCRδ-/- versus WT mice 3 days post O3 (data not shown) in TCRδ-/- versus WT mice.
In contrast the number of necrotic macrophages (upper left quadrant of Fig 5D) were similar
between TCRδ-/- and WTmice (data not shown).

Role of γδ T cells in the resolution of O3-induced lung injury
Recovery from the effects of O3 requires repair of the damaged epithelium. In WTmice, BAL
protein, an index of alveolar/capillary permeability reflecting damage to the lung epithelium
[41], and Cldn4, a protein found in the tight junctions between pulmonary epithelial cells [42],
were increased above air-exposed values immediately after cessation of O3 exposure, but not
thereafter (Fig 7A and 7B), indicating very rapid resolution of changes in alveolar capillary
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permeability, likely reflecting restored formation of tight junctions. However, the lung architec-
ture did not resolve as quickly. O3 causes terminal bronchiolar lesions [43,44], that reflect a
combination of macrophage accumulation and epithelial hyperplasia. These lesions were
scored from histological slides of lungs of WT and TCRδ-/- mice (Fig 7C)[45], as described in
methods. In WT mice, lesions were significantly greater in mice studied immediately after ces-
sation of O3 exposure than in air exposed mice, but within 1 day of cessation of exposure, the
lesion score declined significantly (Fig 7C). O3 also increased lesions in TCRδ-/- mice though
the score immediately post exposure was lower than in WTmice (Fig 7C). However, in con-
trast to WT mice, there was no reduction in the lesion score 1 day after compared to immedi-
ately after cessation of O3 exposure (Fig 7C).

Discussion
We have previously reported that γδ T cells contribute to the pulmonary recruitment of neu-
trophils and macrophages that occurs after subacute O3 exposure in mice [28]. We now report
that γδ T cells are also required for the induction of M2 macrophages after subacute O3 (Fig 1),
likely as a result of the ability of γδ T cells to produce IL-17A (Fig 3). Consequently, after cessa-
tion of O3 exposure, clearance of apoptotic cells and resolution of pulmonary inflammation are
delayed in TCRδ-/- mice that lack γδ T cells (Figs 4 and 6) after O3.

Our data indicated that in WT mice, M2 macrophages were induced by subacute O3 expo-
sure, with levels peaking between 48 and 72 hours of exposure (Fig 1B). M2 gene expression
also increased, peaking at 48 hours of exposure (Fig 1C to 1E). The slight difference in time
course between M2 macrophages assessed by flow cytometry and M2 gene expression may

Fig 5. Lung apoptotic macrophages are elevated after O3 exposure.WTmice were exposed to either air or O3 (0.3 ppm for 72 h) and lungs were
harvested either immediately or 1 or 3 days after cessation of O3 exposure. (A) Total macrophages, (B) Alveolar Macrophages, and (C) Interstitial
macrophages assessed by flow cytometry. (D) Representative gating for apoptotic macrophages in a WTmouse studied 1 day after cessation of O3

exposure. (E) Early apoptotic interstitial macrophages and (F) late apoptotic interstitial macrophages in WTmice at various times after cessation of O3

exposure. Results are mean ± SEM for 4–6 mice per group. * p<0.05 versus air; # p<0.05 versus immediate post.

doi:10.1371/journal.pone.0131236.g005
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Fig 6. Macrophages accumulate in the lungs of TCRδ-/- mice. (A) Total interstitial macrophages, (B) alive
macrophages, (C) early apoptotic interstitial macrophages, and (D) late apoptotic interstitial macrophages in
lungs of WT and TCRδ-/- mice exposed to O3 for 72 h, and then transferred to room air and studied 3 days
later. Results are mean ± SEM for 4–6 mice per group. $ p<0.05 versusWTmice.

doi:10.1371/journal.pone.0131236.g006

Fig 7. O3 induced injury. (A) pulmonary Cldn4mRNA abundance, (B) BAL protein, and (C) terminal bronchiolar lesions, scored as explained in the
methods. Results are mean ± SE of 4–8 air exposed mice and 6–14 O3 exposed mice in each group. * p<0.05 versus air; # p<0.05 versus immediate post
O3; $ p<0.05 versusWTmice.

doi:10.1371/journal.pone.0131236.g007
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result from reductions in M2 gene expression that occur after macrophages polarize to M2b
and M2c [46,47]. M2 macrophages are also induced in the lungs by acute O3 exposure (2 ppm
for 3 h) [15] and by other insults that induce oxidative stress in the lungs [48]. In contrast,
compared to WT mice, in TCRδ-/- mice we observed decreased numbers of M2 macrophages
(Fig 1H) and decreased pulmonary mRNA abundance of M2 genes after subacute O3 (Fig 1C
to 1E and Fig 2A to 2C), indicating that γδ T cells are required for induction of the M2 pheno-
type. M1 macrophages also increased after O3 exposure, but were not affected by TCRδ defi-
ciency (Fig 1G). However, BAL TNFα, was higher in TCRδ-/- versus WT mice, at least during
the first 48 hours of exposure (Fig 1I). M1 macrophages are a likely source of this TNFα [36]
and the increase in BAL TNFα could thus reflect an increase in M1 activity in the TCRδ-/- mice
versus WT mice.

Given the close apposition of γδ T cells and macrophages within the lungs and airways [17],
it is certainly possible that factors released from γδ T cells after O3 might have the capacity to
polarize macrophages. For example, type 2 cytokines, including IL-13, promote M2 skewing in
macrophages [49], and γδ T cells have the capacity to produce IL-13 [50]. However, RT-qPCR
indicated that O3-induced changes in pulmonary Il13mRNA abundance were essentially simi-
lar in WT and TCRδ-/- mice (Fig 2D). In addition to IL-13, IL-17A can interact with IL-10 to
induce macrophage polarization towards an efferocytic M2c phenotype that promotes inflam-
matory cell clearance [13]. We have previously reported that γδ T cells in the lungs of O3-
exposed mice produce IL-17A [27,28]. and that increases in pulmonary Il17amRNA abun-
dance induced by subacute O3 exposure are absent in TCRδ-/- mice [28], suggesting that the
role of γδ T cells in the M2 polarization observed after subacute O3 may be related to the ability
of γδ T cells to release IL-17A. Indeed, our data indicated no evidence of Il17amRNA expres-
sion in TCRδ-/- mice either immediately after cessation of O3 exposure or at any time over the
next 3 days (Fig 2E and 2F). Furthermore, when we blocked IL-17A with anti-IL-17A in WT
mice, we found that the induction of M2 macrophages was attenuated (Fig 3A and 3B) and the
activity of the M1 macrophages was increased (Fig 3C). IL-17A+ γδ T cells are also required for
the resolution of eosinophilic inflammation after allergen challenge in mice [25] and IL-17A is
also protective in several mouse models of colitis [51,52]. The mechanistic basis for these pro-
tective effects of IL-17A has not been established, but our data suggest that they may be the
result of the ability of IL-17A to promote polarization of macrophages to an M2c phenotype,
thereby permitting clearance of dead and dying inflammatory cells.

In WT mice, significant increases in BAL neutrophils and macrophages were observed
immediately after cessation of O3 exposure, but both cell types declined significantly within 1
day of the termination of exposure and returned to levels not different from air exposed con-
trols within 3 days (Fig 4A and 4B). These data are consistent with the results of Kleeberger
et al [8], who used the same O3 exposure regimen and also reported resolution of inflammation
within 3 days of the termination of exposure in WT mice. Although the initial increases in BAL
neutrophils and macrophages induced by O3 were significantly lower in TCRδ-/- than WT
mice, as described previously [28], the return of these cells towards normal air-exposed values
after cessation of O3 was slower in TCRδ-/- versus WT mice (Fig 4). In TCRδ-/- mice, BAL neu-
trophils actually increased transiently after cessation of O3 (Fig 4A), and even 3 days after ces-
sation of exposure BAL macrophages had not declined from values reached immediately after
exposure (Fig 4B). Similarly, the number of lung macrophages (F4/80+) (the majority of which
are interstitial macrophage (data not shown)) were similar between the WT and TCRδ-/- mice
immediately after exposure (Fig 1F), but by 3 days after cessation of exposure there were more
pulmonary interstitial macrophages in the TCRδ-/- vs the WT mice (Fig 6A). While it is con-
ceivable that the observed genotype-related differences in the time course of changes in inflam-
matory cells after cessation of O3 exposure (Fig 4A and 4B) represent delayed induction of
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inflammation rather than reduced resolution of inflammation in the TCRδ-/- versus WT mice,
however our data provide little support for such a hypothesis, since other non-cellular inflam-
matory parameters decreased rapidly once the O3 exposure was terminated, even in TCRδ-/-

mice (Fig 4C and 4D). To separate effects of γδ T cells on the resolution of inflammation from
their effects on the induction of inflammation, the ideal design would have been to ablate γδ T
cells immediately after exposure to O3, for example with anti-TCRδ antibodies [25], so that the
induction of inflammation was not impacted. Unfortunately, the time course of resolution of
inflammation after O3 was sufficiently quick that it did not permit such a design: most inflam-
matory parameters had returned to air-exposed levels within 1 to 3 days after O3 cessation, and
eliminating γδ T cells with antibodies could not be achieved in this time frame. Instead, we
used TCRδ-/- mice, in which both the induction and resolution of inflammation were impacted.
The use of TCRδ-/- mice to study the initiation and resolution of inflammation has also been
employed in other disease models with similar results [19,26,28,53]. In addition, the observa-
tion that in the lungs of TCRδ-/- mice studied 3 days after cessation of exposure, most of the
macrophages were in an apoptotic state (Fig 6B to 6D), suggests that lack of clearance rather
than continued recruitment accounts for greater numbers of macrophages in the lungs of
TCRδ-/- versus WT mice at this time (Fig 6A). These findings are similar to the results of Pono-
marev et al [53] who reported reduced numbers of macrophages in the central nervous system
of TCRδ-/- versus WT mice during induction but greater numbers of macrophages during reso-
lution of inflammation in a model of experimental autoimmune encephalomyelitis (EAE). Sim-
ilarly, Kirby et al [26] reported greater numbers of lung macrophages in TCRδ-/- versus WT
mice during the resolution phase of S. pneumoniae-induced pulmonary inflammation.

In addition to an accumulation of apoptotic macrophages, the number of non-apoptotic
(alive) macrophages were also increased in the TCRδ-/- versus WT mice 3 days after cessation
of O3 (Fig 6B). γδ T cells can promote death of activated macrophages via their ability to recog-
nize heat shock proteins expressed by these activated cells [54]. In addition, γδ T cells express
FASL and can induce the apoptosis of macrophages [55] after bacterial infections. Our data
suggests that after O3 γδ T cells have a dual role in the clearance of macrophages, namely to
induce their apoptosis and to induce the polarization of macrophages to M2 phenotype which
then clear the apoptotic cells.

As discussed above, our data suggest that the delayed clearance of inflammatory cells
observed in TCRδ-/- mice after cessation of O3 exposure (Fig 4A and 4B; Fig 6A) is at least in
part the result of the reduced M2 macrophage polarization observed in the TCRδ-/- mice (Figs
1 and 2). Efferocytic M2c macrophages are required for phagocytosis of apoptotic cells, includ-
ing neutrophils and macrophages [56] and our data indicate that many of the macrophages
that remained in the lungs after cessation of O3 exposure were indeed apoptotic (Fig 6C and
6D). The observations that both early and late apoptotic interstitial macrophages (Fig 6C and
6D) were greater in TCRδ-/- than WTmice 3 days post of cessation of O3 suggests that apopto-
tic macrophages are cleared less effectively in TCRδ-/- mice. Indeed most of the increased total
interstitial macrophages in TCRδ-/- mice observed 3 days after cessation of O3 exposure con-
sisted of apoptotic cells (compare Fig 6A to Fig 6C and 6D). Such results are consistent with
the lack of M2 macrophages observed in O3-exposed TCRδ

-/- mice (Figs 1 and 2).
In addition to clearing apoptotic macrophages, M2 macrophages are important in the repair

of the damaged tissue [37]. In this respect, reduced induction of M2 macrophages in TCRδ-/-

mice (Figs 1 and 2) is consistent with delayed restoration of the normal architecture of the lung
in TCRδ-/- mice (Fig 7C). Terminal bronchiolar lesions, which in part reflect injury-induced
changes to epithelial cells, resolved rapid in WTmice: lesions were reduced to only a third of
their peak value within 1 day of cessation of exposure. In contrast, in TCRδ-/- mice, lesions
were still unchanged from peak values 1 day after cessation of exposure.
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While our data strongly suggest that lack of M2 macrophages capable of phagocytosing apo-
ptotic inflammatory cells accounted for the delayed clearance of inflammatory cells observed
in TCRδ-/- versus WT mice, we cannot rule out the possibility that other factors also contrib-
uted to the role of γδ T cells in these events. For example, as discussed above γδ T cells can
induce macrophage apoptosis and γδ T cells are found in close proximity to the pulmonary epi-
thelium [17] and can secrete epithelial growth factors [57]. Hence, it is also possible that loss of
such effects in TCRδ-/- mice might translate into altered secretion of pro-resolving molecules
that contribute to the resolution of inflammation, many of which are derive from the epithe-
lium [58].

In summary, our data indicate that γδ T cells are required for induction of M2 macrophages
and consequent inflammatory cell clearance and repair of the epithelial layer in mice after sub-
acute O3 exposure. These data have potentially important implications for public health, espe-
cially for pollutant-exposed immune-compromised individuals who have dysfunctional T cells.
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