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Abstract
Physical systems with time-varying internal couplings are abundant in nature. While the full

governing equations of these systems are typically unknown due to insufficient understand-

ing of their internal mechanisms, there is often interest in determining the leading element.

Here, the leading element is defined as the sub-system with the largest coupling coefficient

averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM)

method has been employed to determine causality and dominant component in weakly cou-

pled systems with constant coupling coefficients. In this study, CCM is applied to a pair of

coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching

between dominant sub-systems in different periods. Four sets of numerical experiments are

carried out. The first three cases consist of different coupling coefficient schemes: I) Peri-

odic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experi-

ment of cases II and III are repeated with imposed temporal uncertainties as well as additive

normal noise. Our results show that, through detecting directional interactions, CCM identi-

fies the leading sub-system in all cases except when the average coupling coefficients are

approximately equal, i.e., when the dominant sub-system is not well defined.

Introduction
Identifying the leading [sub–]system from a pair of coupled dynamical systems using only
time–series is challenging when nothing or little is known about the underlying dynamics. The
definitive approach to detect causal relationships between components of a system is to fully
identify the underlying physical mechanisms and governing equations. However, we only have
partial knowledge about the internal physical mechanisms in most cases and must resort to
observed data to establish the existing causal relationships in such cases.

In linear systems, lead time of the driver (or equivalently, latency of the response) may indi-
cate a causal relationship, which hence could be identified by [linear] lag–correlation analysis.
In a nonlinear system, however, there may be no persistent lead–lag between the two signals,
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for example, due to feedback loops between the variables. Therefore, a linear lag–correlation
analysis may not reliably determine the correct causal relationship in a nonlinear system [1].
For example, Fig 1 shows lead–lag switching between two coupled variables. If one considers
short intervals of the time–series and takes lead time and strong correlation as the indicators of
causation, an incorrect conclusion about the causal relationship between the variables could be
made. In such circumstances, one may analyze the signal phases to establish temporal prece-
dence and exploit the phase slope index to estimate the flow direction of information flux [2].

The concept of information transfer has been used as an indication of causality. A practical
measure of information transfer is the transfer entropy which distinguishes directional com-
munications between variables of a system [3]. This probabilistic measure has been used in a
variety of fields such as neuroscience [4, 5], the study of chemical processes [6], and cellular
automata [7]. A more general form of the transfer entropy that has an augmented time–delay
parameter can detect the propagation time in addition to the asymmetric information transfer
between observed signals [8].

Before establishing the general notion of information transfer (and transfer entropy), a
practical definition of causality was proposed by Wiener [9], and later adopted and formalized
in terms of linear autoregression by Granger [10, 11]. In the context of information transfer,
Granger causality is shown to be equivalent to transfer entropy for Gaussian variables [12].
Although the standard [linear] Wiener–Granger method was first introduced for economic
systems, the method and its extended nonlinear versions gained widespread use in other fields
such as neuroscience and finance [13–18]. According to the Wiener–Granger definition of cau-
sality, a candidate driver is among the drivers of a response signal if the response prediction
error increases significantly by removing the candidate driver data from the universe of all
drivers. More precisely, given sets of interdependent variables X and Y, it is said that “X causes
Y” if, in an appropriate statistical sense, X assists in predicting the future of Y beyond the
degree to which Y already predicts its own future [12]. The Granger method is a forward
method as it uses the driver data to predict the response. An important characteristic of the
Granger method is that it requires the signals to be separable and have non–zero entropy rates
[19]. In a separable system, it is possible to separate a candidate driver’s data from other factors,
thus enabling prediction to be conducted using data sets including and excluding the candidate
driver. Separability is a restrictive conditions since many observed signals of interest are from
deterministic nonlinear systems with feedbacks between state variables, resulting in mixed
information from different sources.

Although information transfer and Granger causality provide valuable statistical informa-
tion about the observed signals and their asymmetric connectivity, “efficient” causal relation-
ship, as defined by Lizier and Prokopenko, between variables of a system can ultimately be
identified by interventional methods, i.e., perturbing the candidate cause variable to investigate
its direct influence on the response variable [20, 21]. Information flow was proposed as a quan-
titative measure of intervention. This Bayesian probabilistic measure quantifies the distribution
of a response variable as a result of “imposing” conditions. However, there are some practical
limitations for applying this measure and detecting causal relationships in realistic systems.
For example, one may need to know about the structure of the causal links in a network or the
underlying rules of the causal interactions. But understanding such structures, not known a
priori, is the purpose of a causality study. The back–door adjustment criterion was proposed to
solve this problem under certain conditions [20–22].

Sugihara et al.[23] investigated the problem of causality from a new perspective, proposing
the Convergent Cross Mapping (CCM) method for deterministic nonlinear systems with
smooth manifolds. The fundamental idea of the CCMmethod is that if Y is causally influenced
by X, then Y has signatures of X such that the historical record of Y can reliably estimate the
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state of X. Therefore, a better estimate of the driver variable, X, shows stronger causal influence
on the response variable, Y.

It is important to note that: (i) unlike Granger causality that uses prediction as its funda-
mental basis, the CCMmethod is not based on the prediction of a variable; (ii) the CCM
method does not apply Bayesian probability, which is the core concept of the transfer entropy
and information flow measure; and (iii) the CCMmethod is not an interventional method.
Therefore, it does not perturb the system to identify the micro–level causal effects in a system.
It measures the correlation between the reconstructed and recovered manifolds of the observed
signals (see x1).

Sugihara et al. [23] showed that CCM can identify unidirectional and bidirectional causa-
tion, and dominant driver, in weakly coupled nonlinear systems with constant coupling coeffi-
cients. They also considered [in Supplementary Materials] examples of systems with
asymmetrical couplings, external forcing, and time delays [lagged influences]. They presented
successful applications of the CCMmethod in ecology, biology, and geoscience [23–25]. Our
study is motivated by the need to identify the dominant constituent in systems that are specu-
lated to have time–varying interconnections with switching between the dominant elements in
different periods. A challenging application is to identify the dominant variables of the global
climate system from geophysical records of greenhouse gases concentrations and temperature
proxy [26–28]. For this purpose, we consider coupled systems that (i) have variable coupling
parameters in sequential periods, and (ii) the larger coupling coefficient is not fixed for a

Fig 1. An example of lead–lag switching between two signals of a nonlinear system.Observation of the
leading signals (shown by the colored arrows) in short intervals may result in an incorrect conclusion about
the cause–effect relationship. The time–series in this figure are generated by Eq (9).

doi:10.1371/journal.pone.0131226.g001
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specific sub–system. Thus, we may observe switching between the dominant sub–systems dur-
ing successive periods. We investigate whether CCM, through detecting directional interac-
tions, can identify the leading sub–system from a pair of coupled sub–systems under different
conditions. In this paper, the leading sub–system is defined as the system with a larger average
coupling coefficient over specified intervals of the time–series assuming that the coupled sys-
tems have the same time scales. To do that, we perform numerical experiments with different
[linear] coupling schemes of Lorenz system [29] with asymptotic synchronization [30]. We
consider periodic–constant (case I), normally distributed (case II), and mixed normally/non–
normally distributed (case III) coupling coefficients. We also investigate the CCM results in the
presence of temporal uncertainties and additive noise (case IV). Our results indicate that CCM
can identify the leading sub–system, except when the average coupling coefficients are approxi-
mately equal, i.e., when the leading sub–system is not well-defined.

This article is organized as follows. Section x1 covers mathematical details of the CCM
method. Section x2 describes the coupling schemes. In section x3, we show results of the
numerical experiments. In section x4, we summarize and discuss our findings.

1 Method
In the CCMmethod, it is assumed that a response signal has signatures from its driver so that
the approximate behavior of the driver can be estimated (or recovered) from the response sig-
nal. Thus, a better estimate of the driver shows stronger causal influence on the response vari-
able. To implement the CCMmethod, we use the concept of one–to–one mapping between the
original smooth manifold of the [full] system and the compact reconstructed phase spaces
(shadowing manifolds) of the observed signals [31, 32]. If the two observed signals belong to
the same dynamical system, a one–to–one mapping between the two reconstructed phase
spaces could be established by considering the original manifold as an interface. If the dimen-
sion of the reconstructed phase spaces are selected based on the criteria of the false neighbor-
hood method [33], arbitrary nearby points on the driver’s reconstructed phase space map to
the nearby points on the original attractor. Because of the causal influence of the driver, the
nearby points on the original manifold stay close on the reconstructed phase space of the
response signal. The stronger causal influence of the driver on the response, the closer the
mapped points of the response signal on its shadowing manifold [23].

We assume, without loss of generality, that x(t) is the driver and y(t) is the response. The
time–series x(t) and y(t) are sampled at equally spaced time intervals Δt,

xn ¼ xðtÞ ¼ xðt0 þ ðn� 1ÞDtÞ
yn ¼ yðtÞ ¼ yðt0 þ ðn� 1ÞDtÞ ð1Þ

(

where n = 1, 2, � � �, N, and N is the total number of data points in each time–series. We set t0 =
0 to simplify the notation. We use [x(t), y(t)] and [xn, yn] notations interchangeably.

CCM uses the time–delay coordinates to reconstruct the phase spaces of the L-point win-
dows from the time–series x(t) and y(t) [34]. The L–point windows are defined as

Wi;L
x ¼ fxi; xiþ1; � � � ; xiþL�1g

Wi;L
y ¼ fyi; yiþ1; � � � ; yiþL�1g

ð2Þ
(

for i = 1 to i = N + 1 − L and Lmin <= L<= Lmax. We define Lmin and Lmax below. The L-point
windows sweep the entire time–series x(t) and y(t) (see Fig 2a).

We use the average mutual information measure, I, a nonlinear generalization of the corre-
lation function, to select the time lags τ as an integer multiple of Δt. This measure shows the
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average amount of information about a signal at t + t0, i.e., s(t + t0), when s(t) is observed

Iðt0Þ ¼
XN
n¼1

PðsðtÞ; sðt þ t0ÞÞ log 2

PðsðtÞ; sðt þ t0ÞÞ
PðsðtÞÞPðsðt þ t0ÞÞ

� �
; ð3Þ

where P(s(t), s(t + t0)) is the joint probability of measuring s(t) and s(t + t0). We choose τ where

the first minimum of I(t0) occurs [31, 35, 36].
We employ the false neighborhood method to determine the embedding dimension, E. The

correct embedding dimension prevents self overlapping of the projected manifold. Therefore,
“if E is qualified as an embedding dimension by the embedding theorem [31, 32], then any two
points which stay close in the E-dimensional reconstructed space will be still close in the (E
+ 1)-dimensional reconstructed space. Such a pair of points are called true neighbors, other-
wise, they are called false neighbors” [33].

By these two parameters, i.e., τ and E, we generate the time–delay coordinates as well as the
reconstructed phase space resembling the original manifold of the attractor. The E-dimen-
sional time–delay coordinate vectors corresponding toWi;L

x andWi;L
y are shown as

mi;L
x ðtÞ ¼ ½xðt � ðE � 1ÞtÞ; � � � ; xðt � tÞ; xðtÞ�

mi;L
y ðtÞ ¼ ½yðt � ðE � 1ÞtÞ; � � � ; yðt � tÞ; yðtÞ� ð4Þ

(

for t = (i − 1)Δt + (E − 1)τ to t = (i + L − 2)Δt. Limits of t are chosen such that the first/last com-
ponent ofmi, L vectors corresponds to the first/last point ofWi, L windows. The reconstructed
phase spaces are

Mi;L
x ¼ fmi;L

x ðtÞg
Mi;L

y ¼ fmi;L
y ðtÞg

ð5Þ
(

each containing L − (E − 1)(τ/Δt) vectors.

Fig 2. Schematics of L–point windows and reconstructed phase spaces. (a) Two time–series x(t) and y(t) and a schematic of the L–point windows with
different lengths sweeping the whole span of the time–series. (b) A schematic of the reconstructed phase spaces of the L–point windows corresponding to
two time–series. For each E-dimensional Y–central point, Yc, in the response reconstructed phase space,My, a sufficient number of nearest neighbor points
are selected (empty circles, Yj, right) and their distances, dj, to Yc are determined. For each neighbor point, its contemporaneous point in the driver
reconstructed phase space,Mx, is determined (empty circles, Xj, left). The weighted average of these points, X̂ , is compared with Xc, the true
contemporaneous point inMx corresponding to Yc. The CCM coefficient, ρ(L), is defined as the correlation coefficient between X̂ and Xc, averaged over all
possible L–point windows.

doi:10.1371/journal.pone.0131226.g002
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After reconstructing the phase spaces, sufficient numbers of nearest neighbor points are
selected for each E-dimensional vector inMi;L

y , referred to as a Y–central point, Yc (see Fig 2b).

The neighbor points are denoted by Yj, ordered by their distance, dj, to Yc, from nearest to far-
thest. This means Y1 is the nearest neighbor to Yc. The number of selected neighbor points
should be equal or larger than E + 1 so the simplex method can represent the dynamics on an
E-dimensional manifold [37]. This requirement specifies Lmin = (E + 2) + (E − 1)(τ/Δt). We use
the corresponding contemporaneous points of the Yj inMx, denoted by Xj, to calculate the

position of a single point that represents them, X̂ . We define the exponentially decaying
weights based on the distances between the Yc and its neighbor points, dj, as

uj ¼ exp � kdjk
kYc � Y1k

� �

oj ¼
ujP
uj

ð6Þ

8>>><
>>>:

where k � k is the Euclidean norm. The position of the representative point inMx is calculated
as

X̂ ¼
X

ojXj: ð7Þ

The set of these recovered points, X̂
� �

, is the recovered phase space. If x(t) and y(t) are

dynamically coupled, X̂
� �

should be strongly correlated toMx = {Xc}, where Xc is the point

corresponding to Yc (see the star and black filled circle in Fig 2b). In addition, as L increases,
the density of the points in the reconstructed phase space increases, hence the distances

between the nearest neighbors shrink. Thus, X̂ converges to a vicinity of Xc that becomes
smaller as the causal effect of the driver increases. Therefore, the CCM coefficient, ρ(L), as a
measure of causal relationship between the [candidate] driver and the response signal is

defined as the correlation coefficient between X̂ and Xc, averaged over all possible L–point win-
dows,

rXc ;X̂ jMy
ðLÞ ¼

�
covðX̂ ;XcÞ
sX̂sXc

	
L

: ð8Þ

If there is a causal relationship between the signals, ρ converges to a constant equal or less

than one. Note that h � iL indicates averaging over all L–point windows, and X̂ j My emphasizes

that X̂ is estimated givenMy. If we study the opposite roles, i.e., y(t) as the driver and x(t) as the
response, the CCM coefficient would be shown by rYc ;Ŷ jMx

. We simplify this notation by setting

rX̂ jY ¼ rXc ;X̂ jMy
and rŶ jX ¼ rYc ;Ŷ jMx

.

It is important to note that: (i) the CCMmethod, through detecting directional dynamical
interactions, can investigate causal relationship over any window of the time–series that con-
tains sufficient information about the attractor of the dynamical system. In the case of nonsta-
tionary signals, the CCM results during the considered time interval are presumably valid if the
original manifold and the reconstructed phase spaces do not have significant changes, i.e., if
the near–stationary condition holds. We do not discuss the application of CCM to nonstation-
ary signals in this paper. (ii) CCM only considers the past data and does not attempt to predict
the signals. Therefore, CCM could be robustly applied to chaotic systems, where predictions
may rapidly diverge from the true/observed states. (iii) The identified causal relationship by
the CCMmethod is not exclusive, i.e., the identified driver might be one of the many drivers of
the system. Therefore, in systems with multiple variables, CCM can be applied and repeated
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for different combinations of the candidate driver and response signals. (iv) Our results (not
shown here) show that the CCMmethod is not sensitive to increases in the embedding dimen-
sion if it is chosen by the false neighborhood method. By increasing the embedding dimension
beyond what is prescribed by the false neighborhood method, computation cost increases
because the search process for the nearest neighbors should be performed in a larger space
dimension. However, the CCM results remain almost unchanged because the extra dimensions
do not add new information. In addition, the CCM results are not sensitive to small changes of
τ if the embedding parameter remains in the vicinity of the first minimum of the average
mutual information measure.

2 Experiment design with coupled Lorenz systems
In order to study the applicability of the CCMmethod to [strongly] coupled systems with vari-
able coupling coefficients, we apply it to a pair of identical Lorenz systems [29], LX and LY, cou-
pled with different coupling schemes. We choose to study synchronized dynamical systems, in
which the coupling is canonically between two identical [sub–]systems coupled simultaneously
with a linear coupling term where the dominant element is clearly identified by its larger cou-
pling coefficient. Study of synchronized dynamical systems has expanded beyond the canoni-
cal case to included “generalized synchronization” [38], in which the two systems differ. Other
work in synchronized dynamical systems has studied “lagged synchronization” [39]. Since this
application of the CCMmethod is a new, we choose to focus on the canonical representation of
the problem and allow for similar extensions in future work to address these more complex var-
iations of the general problem.

The general form of LX and LY is given by Eq (9).

LX

(
_x1 ¼ sðx2 � x1Þ þ kmmðy1Þ
_x2 ¼ x1 ðr� x3Þ � x2

_x3 ¼ x1x2 � bx3

LY

(
_y1 ¼ sðy2 � y1Þ þ kZZðx1Þ
_y2 ¼ y1 ðr� y3Þ � y2

_y3 ¼ y1y2 � by3

ð9Þ

The parameters of the Lorenz–63 systems are (σ, ρ, β) = (16, 45.92, 4) throughout this
paper. μ and η are the coupling coefficients, and kμ and kη are the binary on–off switches. Vari-
ations of the coupling coefficients, activation of the on–off switches, and duration of successive
periods are discussed in section x3.

We investigate whether CCM can distinguish the leading system by detecting the difference
between the CCM coefficients rX̂ jY and rŶ jX . We probe one signal from each system, x1(t) and

y1(t) in the following experiments. When the two systems are strongly correlated, for example,
due to a strong feedback loop, rX̂ jY and rŶ jX are close to each other for large L’s. (This is

expected, unless the two systems have different amplitudes and time scales, as in the case of the
ocean–atmosphere models [40].) Thus, one must investigate small differences between rX̂ jY
and rŶ jX .

A brief description of the four experiments is as follows. In case I, LX and LYare coupled by
a periodic on–off switching mechanism and constant coupling coefficients during all periods.
We cover 100 different combinations of coupling coefficients. In case II, both coupling coeffi-
cients in all periods are normal random variables with specified means and standard deviations.
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In case III, one of the coupling coefficients is a normal random variable and the other one is
from a Weibull (skewed non–normal) distribution [41]. In case IV, we consider the original
pairs of signals from cases II and III and impose relative temporal shifts (representing temporal
uncertainties) as well as additive Gaussian noise. In all experiments, we observe a strong corre-
lation between the probed signals x1(t) and y1(t) due to bidirectional couplings in system Eq
(9).

As discussed in x1, ρ(L) converges to a constant by increasing the length of the L–point win-
dows, provided that the two signals are dynamically connected. We test convergence of ρ(L)
over the range L = 25 to 500. We observe negligible variations in the CCM coefficients for
L� 300. We choose L = 500 to report all the CCM coefficients. This choice of L is equivalent to
0.5 time unit since we sample the signals 1000 times per non–dimensional time unit.

3 Experiment results
Below we present the results of four sets of numerical experiments with the system Eq (9).

3.1 Case I: Coupled Lorenz systems, periodic–constant coupling coefficients. In this
case, coupling coefficients μ and η assume constant integers 1 to 10, resulting in 100 combina-
tions, during 10 consecutive periods of the time–series, each spanning 10 non–dimensional
time units. The switching mechanism is controlled by kμ and kη, such that in odd periods kμ =
0 and kη = 1 and in even periods kμ = 1 and kη = 0 as described in Eq (10).

ðZ; mÞ ¼ int½1 : 10� � int½1 : 10�
kZ ¼ 1 odd periods; 0 even periods

km ¼ 0 odd periods; 1 even periods

ð10Þ

8><
>:

Fig 3a shows rŶ jX at L = 500 for different values of μ and η and random initial conditions.

We observe similar patterns in rŶ jX and rX̂ jY (not shown here) such as vertical and horizontal

bands. For example, we see a blue horizontal band near μ = 1 in Fig 3a, showing that the influ-

ence of LY on Lx is small. Therefore, Ŷ
� �

(the recovered phase space of LY from LX), is poorly

correlated toMy (the reconstructed phase space of LY), hence the small values for rŶ jX on the

band. Another observed pattern is the high values of ρ in the regions with the strongest cou-
pling between the two sub–systems (high μ and η), showing the large mutual influence between
the two systems.

To address the main question of this study we investigate rŶ jX � rX̂ jY . We expect that if LY

is the leading sub–system, then rŶ jX is larger than rX̂ jY and similarly, rX̂ jY is larger than rŶ jX if

LX is the dominant sub–system. Referring to Fig 3b, we observe that rŶ jX > rX̂ jY when μ> η

(upper diagonal of Fig 3b) and rX̂ jY > rŶ jX when η> μ (lower diagonal of Fig 3b).

This numerical experiment with 100 combinations of coupling coefficients shows that even
when ρ values are close to each other (rŶ jX � rX̂ jY), CCM can capture the leading system

through small differences between the CCM coefficients, except for μ� η where neither system
is leading.

3.2 Case II: Coupled Lorenz systems, normally distributed coupling
coefficients
In section x3.1, we studied CCM’s capability to identify the leading system in coupled systems
with periodic constant coupling coefficients. A more general and realistic case is a system with
randomly distributed coupling coefficients and with random lengths of time periods. In this
section, we choose the coupling coefficients from normal distributions. Note that these
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coefficients are constant during each period. In Eq (9), we set η = ηN and μ = μN, where sub-
script N stands for normal random variables. We set the mean and standard deviation of the
coupling coefficients such that the ratio of the averaged coupling coefficients �ZN=�mN covers the
approximate range (0.5,5) and we have enough data points both above and below 1. The
switching coefficients, kη and kμ, are kept on for all periods in order to have bidirectional com-
munication between the two sub–systems. We also choose the duration of each period, Ti,
from a normal distribution as described in Eq (11).

kZ ¼ 1; km ¼ 1 for all periods

Z ¼ ZN ¼ N ð5:5; 2Þ
m ¼ mN ¼ N ða; 2Þ j a 2 int½1 : 10�
Ti ¼ N ð�T ¼ 10; s ¼ 2Þ j i 2 int½1 : 20�

ð11Þ

8>>>><
>>>>:

Again, to address the main question of this study, we investigate the difference between the
CCM coefficients, Dr ¼ rX̂ jY � rŶ jX , at L = 500 as a function of �ZN=�mN , where �ZN and �mN are

the mean values of ηN and μN over the entire time–series. Fig 4a shows that the difference
between the CCM coefficients is negative for ð�ZN=�mNÞ < 1 and positive for ð�ZN=�mNÞ > 1. We
also observe a close–to–linear relationship between �ZN=�mN and Δρ in the considered range of
the coupling coefficients.

We extend this analysis using the Monte Carlo method. We generate 1000 independent
realizations of the coupled system for each α 2 int [1:10] (thus, we have 10,000 individual data
points) and calculate the difference between the CCM coefficients at L = 500. As we observe in
Fig 4b, Δρ is negative for almost all realizations when ð�ZN=�mNÞ < 1 and positive when
ð�ZN=�mNÞ > 1. Note that the distribution of the points on the two sides of ð�ZN=�mNÞ ¼ 1 depends
on the choices of ηN and μN in Eq (11). Fig 4a and 4b shows that CCM can determine the lead-
ing system when the coupling coefficients are normally distributed except when �ZN � �mN , i.e.,
when the leading sub–system is not well–defined.

Fig 3. Case I: periodic–constant coupling coefficients. (a) rŶ jX at L = 500 over the range of μ and η given by Eq (10) and for random initial condition. (b)
Difference between the CCM coefficients, rŶ jX � rX̂ jY , at L = 500 over the specified range of μ and η.

doi:10.1371/journal.pone.0131226.g003
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Because ρ(L) is obtained by averaging over all possible L–point windows (see Eq (8)), one
might be concerned whether the difference between ρ values, i.e., Dr ¼ rX̂ jY � rŶ jX , is statisti-

cally significant and meaningful. To address this concern, we perform a non–parametric one–
sample Kolmogorov–Smirnov test for all data points of Fig 4a. Results of this test, for rX̂ jY and

rŶ jX , fail to reject the null hypothesis that the data in the ρ vectors come from a standard nor-

mal distribution at 0.001 significance level. Next, a group t–test shows that for all the data
points the obtained t–values exceed the required minimum corresponding to a critical p–value
of 0.01. Therefore, we can conclude that the differences, Δρ, are significant at 0.01 level. For
example, for the smallest absolute value of Δρ in Fig 4a, the calculated t–value equals 3.16
which is larger than 2.58 corresponding to 0.01 critical p–value. These numerical values corre-
spond to the sample size of the L–point windows at L = 500. Therefore, we can reject the null
hypothesis that there is no significant difference between the mean values of ρ.

3.3 Case III: Coupled Lorenz systems, normally and non–normally
distributed coupling coefficients
For numerical experiments x3.1 and x3.2, we considered constant and normally distributed
coupling coefficients, respectively. In case II, the difference between the two coupling coeffi-
cients is also a normal variable because both coefficients are normal variables. In case III, to
further generalize our study, we break the symmetry of the coupling coefficients by choosing
one of them from a normal and the other from a non–normal random distribution. By this
selection, the difference between the coupling coefficients is not a normal variable. We set η =
ηN as in x3.2 but choose μ = μWb fromWeibull distributions [41]. As before, each time–series

Fig 4. Case II: normally distributed coupling coefficients. (a) The difference between the CCM coefficients, Dr ¼ rX̂ jY � rŶ jX , at L = 500 as a function of
the ratio of the averaged coupling coefficients, �ZN=�mN. (b) Monte Carlo simulation of 1000 independent realizations of Eq (11) to calculate Δρ at L = 500 as a
function of �ZN=�mN. �ZN and �mN are the mean values of ηN and μN over the span of the time–series. Δρ = 0 and �ZN=�mN ¼ 1 are shown by dashed, bold lines.

doi:10.1371/journal.pone.0131226.g004
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consists of twenty periods with normally distributed lengths. (During each period, the coupling
coefficients remain constant.) The current setting is summarized in Eq (12).

kZ ¼ 1; km ¼ 1 for all periods

Z ¼ ZN ¼ N ð5; 2Þ
m ¼ mWb ¼ Weibullða; 1:2Þ j a 2 int½1 : 11�
Ti ¼ N ð�T ¼ 10; s ¼ 2Þ j i 2 int½1 : 20�

ð12Þ

8>>>><
>>>>:

Parameters of the Weibull distribution are chosen in order to have sufficient values of
�ZN=�mWb both below and above one. The same reasoning also applies to setting Eq (11) of exper-
iment case II. Fig 5 shows the asymmetric Weibull probability density function for the parame-
ters of Eq (12).

Similar to cases I and II, we investigate Dr ¼ rX̂ jY � rŶ jX as a function of �ZN=�mWb at L = 500

(see Fig 6a). Similar to Fig 4a, we observe that Δρ is negative for ð�ZN=�mWbÞ < 1 and is positive
for ð�ZN=�mWbÞ > 1. This result supports our expectation about the ability of the CCMmethod
to distinguish the leading sub–system.

We employ the Monte Carlo method to generate 1000 independent realizations of the cou-
pled Lorenz systems with setting Eq (12) which results in a total of 11,000 individual data
points. Then we calculate Δρ for each realization at L = 500, shown in Fig 6b. We again observe
that Δρ is negative for ð�ZN=�mWbÞ < 1 and positive for ð�ZN=�mWbÞ > 1, except for a small fraction
of points around �ZN=�mWb � 1 where the leading system is not well–defined. Therefore, CCM
can distinguish the leading sub–system in a coupled system with normal/non–normal

Fig 5. Weibull probability density function for α 2 int [1:11] and shape factor equal to 1.2 in Eq 12.

doi:10.1371/journal.pone.0131226.g005
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coefficients, except when the two sub–systems have almost equal coupling coefficients. We also
note that in both cases II and III, detection of the leading sub–system is more reliable for larger
values of ð�Z=�mÞ.

In contrast to case II, we observe a nonlinear relationship between Δρ and �ZN=�mWb, i.e., the
rate of change of Δρ decreases rapidly as �ZN=�mWb increases. Thus, we see a faster saturation in
Fig 6 compared to Fig 4. Also, non–symmetric distribution of the data points around the verti-
cal line �ZN=�mWb ¼ 1 in Fig 6b is due to the range of �ZN=�mWb according to Eq (12), which has a
longer tail on the right hand side (�ZN=�mWb > 1). If we plot�Dr ¼ rŶ jX � rX̂ jY vs. �mWb=�ZN , we

would see a similar trend as in Fig 6b, although some ranges are non–overlapping due to the
asymmetric distribution of the coupling coefficients.

Similar to case II, we repeat the non–parametric one–sample Kolmogorov–Smirnov test
and t-test for Δρ values of Fig 6a. In this case, except one data point that lies closest to the verti-
cal axis �ZN=�mWb ¼ 1, all other data points have t–values larger than the required minimum cor-
responding to a critical p–value of 0.01. Therefore, we can reject the null hypothesis and
conclude that Δρ is significant at 0.01 level.

3.4 Case IV: Coupled Lorenz systems, temporally shifted and noisy
signals
In this section, we investigate the ability of the CCMmethod for detecting the leading system
in the presence of chronological uncertainties (temporal uncertainty between the two time–
series) as well as additive Gaussian white noise. We simulate the chronological uncertainties by
relative shifting of the two time–series. We take the signals from cases II and III and apply rela-
tive shifts of 2.5 and 5% of the full length of the time–series.

For the additive Gaussian white noise, we consider a normal random variable with zero
mean and standard deviation set at 5 and 10% level of the standard deviation of the original

Fig 6. Case III: mixed normal–nonnormal coupling coefficients. (a) Dr ¼ rX̂ jY � rŶ jX at L = 500 as a function of �ZN=�mWb. (b) 1000 independent realizations
of Eq (12) and the corresponding Δρ at L = 500 as a function of �ZN=�mWb. �ZN and �mWb are the mean values of ηN and μWb over the span of the time–series. Δρ =
0 and �ZN=�mN ¼ 1 are shown by dashed, bold lines.

doi:10.1371/journal.pone.0131226.g006
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signals in cases II and III. By this choice, the signal–to–noise ratios (SNR) are equal to 400 and
100 respectively, showing moderate noise levels.

As before, we compute Δρ with respect to the ratio of the averaged coupling coefficients,
ð�Z=�mÞ, under different conditions. Results of the experiments with chronological uncertainties
and additive noise (see Figs 7 and 8) show the same features as in Figs 4a and 6a. For example,
Δρ is negative when ð�Z=�mÞ < 1 and positive when ð�Z=�mÞ > 1, with few exceptional data points

Fig 7. Case IV: experiments on signals of cases II and III with imposed temporal uncertainties.We consider temporal shifts corresponding to 2.5% and
5% of the full length of the time series in cases II and III. (a) Δρ at L = 500 as a function of �ZN=�mN for shifted signals of case II. (b) Δρ at L = 500 as a function of
�ZN=�mWb for shifted signals of case III. Δρ = 0 and �ZN=�mN ¼ 1 are shown by dashed, bold lines.

doi:10.1371/journal.pone.0131226.g007

Fig 8. Case IV: experiments on signals of cases II and III with imposed additive Gaussian noise.We consider noise levels at 5% and 10% of the
standard deviation of the original signals in cases II and III. (a) Δρ at L = 500 as a function of �ZN=�mN for signals of case II. (b) Δρ at L = 500 as a function of
�ZN=�mWb for signals of case III. Δρ = 0 and �ZN=�mN ¼ 1 are shown by dashed, bold lines.

doi:10.1371/journal.pone.0131226.g008
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that are close to ð�Z=�mÞ ¼ 1 in each figure. Also, we observe almost linear distribution of the
data points in Figs 7a and 8a similar to the results of case II, Fig 4a, and nonlinear distribution
of the data points in Figs 7b and 8b similar to case III, Fig 6a. These similarities show that the
CCM results are robust to the imposed temporal uncertainties and additive white noise, espe-
cially for larger ratios of the coupling coefficients.

4 Summary
There is often interest in determining causal relationship between variables of a physical sys-
tem. Establishing a method for causality analysis is hence of paramount importance [22]. Lin-
ear lead–lag analysis is commonly applied to underpin causal relationship when there are some
evidences about the internal mechanisms of the system. But quite frequently, two signals show
inconsistent lead–lag behavior in different time windows due to nonlinearities of the system.
Therefore, lead–lag analysis cannot conclusively determine causality over the full time span of
observed signals. Introducing Granger causality [10] was a turning point in the field of causal-
ity analysis. Based on Wiener’s definition of causality, Granger proposed a practical method
that is founded on the idea of predicting a variable both with and without a candidate driver. If
forecast is significantly improved when the information of the candidate driver is included in
the set of predictors, the Granger method concludes that the candidate signal is a driver. Trans-
fer entropy was introduced as a measure of directional communication between elements of a
system [3]. Later, it was shown that Granger causality and transfer entropy are equivalent for
Gaussian variables [12]. Although information transfer measures provide important under-
standing about the directional interconnections in a system, they do not identify efficient causal
relationships. It is shown that interventional methods and information flow can identify
micro–level causal relationships [21]. Sugihara et al. [23] proposed a new idea for causality
analysis, applicable to deterministic nonlinear systems, based on cross convergent mapping
between shadowing manifolds. They successfully applied the CCMmethod to analyze causality
in weakly coupled systems with constant coupling coefficients.

This study was inspired by identifying the leading element in systems that are speculated to
have time–varying internal connections with probable change of dominant sub–system in dif-
ferent periods, for example, the earth system with its many interconnected sub–systems. For
the first time, we addressed applicability of the CCMmethod to coupled systems with time–
varying coupling coefficients and switching between dominant elements in different periods.
We conducted numerical experiments with I) periodic–constant, II) normal, and III) mixed
normal and non–normal coupling coefficients. In experiment IV, we imposed temporal uncer-
tainties and additive noise to the observed time–series of cases II and III. We investigated
whether the CCMmethod can identify the leading sub–system that has a larger average cou-
pling coefficient over the entire span of the time–series.

Our main conclusions are:

1. If the averaged coupling coefficients are not approximately equal, i.e., �Z≉�m, and a leading
system exists, then the CCM coefficient of the leading system is significantly larger than the
CCM coefficient of the system with a smaller average coupling coefficient.

2. If the ratio of the average coupling coefficients is close to one ð�Z=�m � 1Þ, the leading system
is not well–defined and the CCMmethod is not applicable.

3. The CCM results are quite robust to temporal uncertainties and moderate levels of additive
Gaussian noise.
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4. For normally distributed coupling coefficients (case II), a close–to–linear relationship
between Δρ and the ratio of the average coupling coefficients is observed (in the range of the
selected coefficients).

5. For mixed normally and non–normally distributed coupling coefficients (case III), a [satu-
rating] nonlinear relationship between Δρ and the ratio of the average coupling coefficients
is observed (in the range of the selected coefficients).

According to these observations, we conclude that when the ratio of the average coupling
coefficients is not close to one, the CCMmethod can detect the leading sub–system in a set of
two coupled systems with time–varying coupling coefficients—even in the presence of chrono-
logical uncertainties or additive Gaussian noise.

There are still questions regarding applicability of CCM to systems with time delays [lagged
influences], different time scales, different embedding dimensions, non-identical sub–systems,
nonlinear influences, and non–smooth manifolds. Application of CCM to high–dimensional
systems and non–stationary signals demands future studies too. Sufficiency of the number of
observed data points for a reliable CCM analysis is another question that remains open. All of
these open questions call for potential extensions of our study.

We anticipate the CCMmethod can be employed to study causal relationships between var-
iables of systems such as those in atmospheric science, biology, ecology, epidemiology, and
sociology.
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