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Abstract

Although the insulin secretion deficit in hypothyroid male rats has been documented, the
underling mechanisms of the effect of hypothyroidism on insulin secretion are not clear. Iso-
lated islets of the PTU-induced hypothyroid and control rats were exposed to glibenclamide,
acetylcholine, and nifedipine in the presence of glucose concentrations of 2.8 or 8.3 and
16.7 mmol/L. Glucokinase and hexokinase specific activity, glucokinase content, and glu-
cose transporter 2 protein expression were also determined in the isolated islets. Isolated
islets from the hypothyroid rats showed a defect in insulin secretion in response to high glu-
cose. In the presence of glibenclamide or acetylcholine, the isolated islets from the hypothy-
roid and control rats stimulated by glucose concentration of 16.7 mmol/L secreted similar
amounts of insulin. In the presence of glucose concentrations of 8.3 mmol/L and 16.7 mmol/
L, nifedipine was able to diminish insulin secretion from isolated islets of both groups, indi-
cating that probably the defect may not arise from L type calcium channels or the steps
beyond depolarization or the elements involved in the acetylcoline signaling pathway. Glu-
cokinase content and hexokinase specific activity were also the same in the control and
hypothyroid groups. On the other hand, glucokinase specific activity and glucose trans-
porter 2 protein expression were significantly (p<0.001 and p<0.01 respectively) lower in
the islets isolated from the hypothyroid rats (6.50 + 0.46 mU/min/mg protein and 0.55 + 0.09
arbitrary unit) compared to the controls (10.93 + 0.83 mU/min/mg protein and 0.98 + 0.07
arbitrary unit) respectively. In conclusion, the results of this study indicated that hypothyroid-
ism reduced insulin secretion from isolated pancreatic islets, which confirms the finding of
the previous studies; in addition, the insulin secretion deficit observed in hypothyroid rats
may arise from the abnormalities in some parts of the glucose sensor apparatus of the pan-
creatic islets including glucokinase activity and glucose transporter 2 protein expression.
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Introduction

Thyroid hormones are the critical regulators of metabolism in many cells; thus, derangement
of thyroid function can affect many organs. Thyroid hormone receptor isoform alphal has
been identified in adult pancreatic islets. It is believed that thyroid hormone is a physiological
stimulus for the postnatal maturation of functional beta cells [1, 2]. Effects of hypothyroidism
on insulin secretion have not been clearly elucidated. Lack of experiments on the human iso-
lated islets insulin secretion in hypothyroidism is apparent but literature review reveals that all
studies on animal isolated islets report impaired and not increased insulin secretion in response
to glucose in hypothyroidism. Therefore, enhanced insulin response or concentrations that
have been reported in some homeostatic models or glucose tolerance tests in hypothyroid
humans or animals could attribute to insulin resistance, changes in insulin clearance, sex differ-
ences, or extent of thyroid hormones reduction, needs to be clarified. In line with other rodent
studies on isolated islets [3-5], in our previous study [6], we showed impaired insulin secretion,
in vivo and in vitro, in hypothyroid rats; moreover, our results showed a positive correlation
between islet insulin secretion and serum T3 and T4 concentrations in thyroidectomized male
rats. Nevertheless, the underlying mechanisms of the effect of hypothyroidism on insulin secre-
tion are not yet clear.

It has also been reported that mitochondrial T3 receptor p43 regulates insulin secretion and
the p437/mice have a major defect in insulin secretion and a loss of glucose-stimulated insulin
secretion [7]. Glucose sensing is the initial event of glucose-stimulated insulin secretion. There-
fore, it is necessary to maintain adequate expression levels of glucose transporter 2 (GLUT2)
and glucokinase (GK) to ensure normal beta cell function [8]. Triiodothyronine (T3) can mod-
ulate the expression of GLUT?2 protein and GK mRNA in pancreatic islets [9] and liver [10].
The effect of hypothyroidism on the expression of these glucose sensors in pancreatic islets is
however not clear. The aim of this study was therefore to determine the possible mechanisms
by which hypothyroidism impairs insulin secretion in rats.

Materials and Methods
Materials

Nifedipine, glibenclamide, acetylcholine, sodium pentobarbital, bovine serum albumin (BSA),
HEPES, DL-Dithiothreitol (DTT), and 6-propyl-2-thiouracil (PTU) were purchased from
Sigma (St. Louis, MO, USA); collagenase P, NADP disodium salt, ATP disodium salt, glucose-
6-phosphate dehydrogenase from Roche (Roche Diagnostic, Mannheim, Germany), and all
other reagent-grade chemicals from Merck (Darmstadt, Germany).

Stock solutions of nifedipine and glibenclamide, were prepared in ethanol and dimethyl
sulphoxide (DMSO) and the other substances were dissolved in H,O or directly added into the
incubation media.

Animals and study design

Forty-two male Wistar rats, age- and weight-matched, belonging to a local stock bred in the
animal facility of the Research Institute for Endocrine Sciences (RIES) of Shahid Beheshti Uni-
versity of Medical Sciences (Tehran, Iran) were used. The animals were randomly divided into
two groups, control and PTU-induced hypothyroid (HR) rats. All animals were housed in
groups of three per cage, under controlled conditions of light (12 h light/dark cycles), tempera-
ture (22 + 3°C) with free access to food and water. The PTU-induced hypothyroid group
received 0.025% (250 ppm) PTU in drinking water during the experiments [11], while the con-
trol group consumed tap water. During this period, water consumption and food intake were
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measured at 48-hour intervals. There was no mortality among the animals of the two groups.
Avoiding suffering, the animals were anesthetized and sacrificed by heart incision prior to islet
isolation. Animals were handled according to the standard principles of laboratory animal
care; the study was approved by the local ethics committee of the RIES, Shahid Beheshti Uni-
versity of Medical Sciences. After five weeks of PTU administration, thyroid hormones were
measured. The pancreatic islets were isolated and glucose induced insulin secretion in the pres-
ence of glibenclamide, acetylcholine, and nifedipine were assessed. Hexokinase and glucokinase
specific activity, glucokinase content, and GLUT2 protein expression were also determined.

Measurement of serum T3 and T4

Blood samples collected at the time of islets isolation, were centrifuged (3000xg, 10 min at 4°C)
and sera were stored at -20°C for measurement of thyroid hormones. T5 and T, were measured
using ELISA kits (DiaPlus, US).

Islet isolation

For islet isolation, the modified method of Lacy and Kostianovsky [12] with slight further mod-
ification was used. In brief, the animals were anesthetized (60 mg/kg sodium pentobarbital i.p),
laparotomized, and sacrificed by heart incision. The pancreas was inflated through the bile
duct with an injection of 10 ml ice-cold Hanks’ balanced salt solution (HBSS) containing 0.5
mg/mL of collagenase P, then removed, minced with scissors, and digested for 15-17 min at
37°C. Digestion was terminated by adding 30 ml ice-cold HBSS, and the tube was shaken for 1
min. The suspension was filtered through a 500 pm plastic mesh to discard any undigested tis-
sue. After three washes with cold HBSS, islets were hand-picked under a stereomicroscope.
The islets were used fresh for studies related to insulin secretion or stored frozen at -80°C until
further use [6].

Insulin secretion study

ATP-sensitive K* channels and voltage-gated Ca®* channels are the key components in the
insulin secretion process. Pancreatic B-cells also express muscarinic acetylcholine receptors
that are linked to G proteins of the Gq family. Ligand activation of these receptors facilitates
glucose-induced insulin release [13]. For evaluation of insulin secretion in response to glucose
and drugs, batches of 8 islets were incubated in 1 ml Krebs-Ringer solution containing: NaCl
(115), KCl (5), CaCl, (2.5), MgCl, (1), NaHCO; (24), and HEPES (16) (all in mmol/L), pH 7.4,
supplemented with 5 g/L BSA and glucose concentrations of 2.8 or 8.3 and 16.7 mmol/L in the
presence of glibenclamide (150 umol/L), an ATP-sensitive K" channel blocker [14], acetylcho-
line (100 umol/L), a muscarinic receptor agonist [15, 16], and nifedipine (5 pmol/L), a voltage-
-gated Ca** channel blocker [17]. Islets were incubated for 60 min in a 37°C water bath and
gassed with 95% O,, 5% CO, for 5 min at initiation of incubation time. The incubation
medium was removed and kept at -20°C for insulin measurement [11].

Glucokinase and hexokinase activity assay

Glucose phosphorylating activity was assayed by a modified method described by Ueda et al.
[18]. In brief, 300 islets were homogenized with 400 pL of lysis buffer containing: HEPES,
pH = 7.4 (50), dithiothreitol (2.5) EDTA (1), KCI (100), and MgCl, (5) (all in mmol/L), fol-
lowed by sonication (20 KHz, 60 W, 3 x 10 s on ice). The homogenate was centrifuged at
12000xg at 4°C for 20 min and glucokinase and hexokinase activity was determined in the
supernatant in the presence of 0.5 or 100 mmol/L glucose.
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In the spectrophotometrical procedure, the incubation buffer contained 50 mmol/L HEPES/
HCI (pH 7.4), 100 mmol/L KCl, 7.5 mmol/L MgCl,, 0.5 mmol/L NADP+, 0.05% BSA (w/v),
4 TU/mL glucose-6-phosphate dehydrogenase (from yeast), and glucose (0.5 or 100 mmol/L).
The reaction was initiated by the addition of 5 mmol/L ATP, and the rate of reduced nicotin-
amide adenine dinucleotide phosphate (NADPH) production was measured at 340 nm. Cor-
rection for hexokinase activity was applied by subtracting the activity measured at 0.5 mmol/L
glucose from the activity measured at 100 mmol/L glucose. Protein concentrations were deter-
mined by the Bradford method using a Bio-Rad assay kit, and enzyme activities were expressed
as milli unit per milligram protein per minute (mU/mg protein/min).

Glucokinase content

A part of the homogenate, prepared earlier for the glucokinase and hexokinase activity assay
(100 p1) was used to measure glucokinase content in pancreatic islets, using the rat glucokinase
ELISA kit (Cusabio biotech, Japan, CSB-E13865r), with a sensitivity of 0.156 ng/mL.

Western blot analysis for GLUT2

For this analysis, 250 islets were hand-picked and homogenized in 100 L lysis buffer

(150 mmol/L NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sul-
phate (SDS), 50 mmol/L Tris, pH 8.0 supplemented with protease inhibitor tablet (Roche Diag-
nostics), followed by sonication (20 KHz, 60 W, 3 x 10 s on ice). Equal amounts of protein

(60 pg) were loaded onto a 12.5% sodium dodecyl sulfate polyacrylamide gel. Following elec-
trophoresis, the proteins were transferred overnight to polyvinylidene fluoride membranes
using a constant current of 30 mA. The membranes were incubated with a 1:500 dilution of
rabbit polyclonal GLUT?2 antibody (Santa Cruz Biotechnology Inc., #sc-9117)) for 3 hours.
The membranes were then washed three times in 0.1 M PBS/0.1% TWEEN 20 (PBST) and
incubated with a secondary antibody horseradish peroxidase-conjugated goat anti-rabbit IgG
(Santa Cruz Biotechnology Inc., #sc-2030)), 1:2000. Primary and secondary antibodies were
diluted in the 2% nonfat dry milk in PBST. For a protein loading control, the membranes were
reprobed with primary and secondary antibodies for beta actin. All incubations were per-
formed at room temperature. The bands were scanned and transformed to digital images, and
then analysed with Image] software.

Statistical analysis

All data are expressed as mean + SEM and were analyzed with GraphPad Prism software (Ver-
sion 5). In normally distributed data, paired and unpaired t-tests were used to evaluate differ-
ence between two sets of data appropriately. If data was not normally distributed, Mann
Whitney test was used to evaluate difference between two groups. Two-way ANOVA was used
for analyzing water consumption and food intake data and Bonferroni test was used for multi-
ple comparisons. Differences with a P value < 0.05 were considered statistically significant.

Results
Weight gain, water consumption and food intake

Weights of rats at the beginning of the experiment were similar in both the control (302 £ 4 g,
n = 21) and hypothyroid (304 + 7 g, n = 21) groups. As expected, weights of the control animals
after 5 weeks increased (336 * 3 g) whereas those of the hypothyroids (264 + 6 g) decreased sig-
nificantly (p<0.001).
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Details of the animals’ daily water consumption and food intake during the experiment
period have been depicted in Fig 1. In order to show significant reduction of food intake in the
hypothyroid rats during experiment, relative food intake of this group in the last 6 days of the
experiment period was also compared with intakes in the first 6 days.

Serum levels of thyroid hormones

Total serum T3 and T, concentrations at the time of islets isolation were measured and results
showed that serum T and T, concentrations in the hypothyroid group (28.82 + 2.34 ng/dL)
and (0.33 + 0.05 pg/dL) were significantly (p<0.001) lower than the values in the control group
(67.48 £ 5.24 ng/dL and 1.97 + 0.23 ug/dL, respectively).

Glucose stimulated insulin secretion

Insulin secretion in response to glucose concentrations of 2.8, 8.3, and 16.7 mmol/L in the
experimental groups is given in Fig 2. In the PTU group, in response to glucose concentration
of 8.3 and 16.7 mmol/L, insulin secretion was significantly lower than in the control group
(P<0.05 and P<0.01 respectively).

Effect of glibenclamide and acetylcholine on insulin secretion. In the presence of gliben-
clamide (part A) or acetylcholine (part B), the isolated islets from the hypothyroid and control
rats stimulated by glucose concentration of 16.7 mmol/L secreted similar amounts of insulin
(Fig 3).

Effect of nifedipine on insulin secretion. Results showed that nifedipine could diminish
insulin secretion significantly in response to glucose concentrations of 8.3 and 16.7 mmol/L in
both groups (Fig 4).

Hexokinase and glucokinase specific activity and glucokinase content

There was no significant difference between specific activity of enzyme hexokinase, assayed in
the isolated islets of the PTU-induced hypothyroid and the control groups. Nevertheless gluco-
kinase specific activity of the islets isolated from the PTU-induced hypothyroid was signifi-
cantly (p<0.001) lower than that of the controls (Fig 5). The glucokinase content was the same
in the islets isolated from the control (138.2 + 3.7 ng/mg of protein, n = 9) and PTU induced
hypothyroid (158.3 + 12.7 ng/mg of protein, n = 9) groups.

GLUT2 protein expression

Western blot results showed that the amount of GLUT2 protein expression in islets isolated from
the hypothyroid rats was significantly (p<0.01) lower than the values in the controls (Fig 6).

Discussion

Similar to previous data, results of this study confirm that hypothyroidism reduces glucose
stimulated insulin secretion in rats, a finding that may be due to abnormality in some parts of
glucose sensor apparatus of the beta cells, including GLUT2 protein levels and glucokinase spe-
cific activity. Our results also show that observed decreased insulin secretion may not be related
to L type calcium channels, the steps beyond depolarization, the elements involved in the ace-
tylcholine-signaling pathway, or changes in hexokinase activity or glucokinase content.

In our previous study [6], in addition to the impaired insulin secretion, in vivo and in vitro,
in hypothyroidism, a positive correlation was demonstrated between islet insulin secretion and
serum T5 and T, concentrations in thyroidectomized male rats; we previously discussed that
the controversy about insulin secretion in hypothyroidism may be related to the gender of
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Fig 1. Water consumption and food intake of the animals during the experiment period. In (A) and (B), each point represents the average amounts of
daily water consumption and food intake of the rats in each cage respectively (three/cage). Data are expressed as meantSEM. A significant difference was
assessed by two-way ANOVA and Bonferoni post-test. * p<0.001, represents statistically significant difference, the PTU Induced hypothyroid (7 cages)
versus the controls (7 cages). In (C), each bar represents percentage of food intake in the hypothyroid rats relative to the controls. A significant difference
was assessed by unpaired t test. * p<0.001, represents statistically significant difference, between the hypothyroid rats food intake in the first and in the last 6
days of the experiment period.

doi:10.1371/journal.pone.0131198.9001
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Fig 2. Insulin secretion by islets in different glucose concentrations. Each bar presents the mean+SEM
from 12—15 batches of eight islets from 5 or 6 rats, incubated for 60 min in 1 ml of medium containing different
glucose concentrations. Differences were analyzed by Mann Whitney test. *p<0.05, **p<0.01, represent
statistically significant differences, the PTU induced hypothyroid rats versus the controls.

doi:10.1371/journal.pone.0131198.9002

animals used in some experiments, presence or absence of insulin resistance, or the severity of
the hypothyroidism. Tonooka and Kobayashi, have reported the circadian variation of plasma
TSH and a sex related variation in the acute stage of hypothyroidism resulting from PTU treat-
ment; they showed that following administration of PTU, nycthemeral fluctuation in male rats
rapidly disappeared, whereas it was preserved in female rats. Furthermore, female rats showed
higher concentrations of plasma TSH after PTU treatment compared to male ones [19]. How-
ever a part of the controversy in addition to sex differences, might arise from higher plasma
insulin concentrations which may develop as a compensation in insulin resistance [20]. It is
worth mentioning that enhanced insulin response is only observed in some homeostatic mod-
els or glucose tolerance tests while all studies in isolated islets including our current one have
documented impaired and not increased insulin secretion in hypothyroidism.

The insulin content of islets in our previous study was also similar in the control and hypo-
thyroid groups, suggesting that the reduced insulin release was not attributable to reduced
available pool of insulin, but rather to alterations in the insulin secretion pathways [6].

Glucose is transported by membrane-bound GLUT?2 into the beta cell, where it is phosphor-
ylated by GK to yield glucose 6-phosphate, thereby initiating glycolysis. The resultant increase
in the ATP/ADP ratio causes the closure of the ATP-sensitive K™ channels (K, rp channel) and
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Fig 3. Insulin secretion by islets exposed to glucose concentration of 2.8 and 16.7 mmol/l in the
presence of glibenclamide 150 pmol/L (A) and acetylcholine 100 umol/L (B). Each bar presents the mean
+SEM from 13—15 batches of eight islets from 5 or 6 rats, incubated for 60 min in 1 ml of medium containing the
glucose concentrations and secretagogues. Differences were analyzed by Mann Whitney test. **p<0.01,
represents statistically significant difference, the PTU induced hypothyroid rats versus the controls.

doi:10.1371/journal.pone.0131198.9003
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the mean+SEM from 12—17 batches of eight islets from 5 or 6 rats, incubated for 60 min in 1 ml of medium containing the glucose concentrations and
nifedipine. Differences were analyzed by Mann Whitney test. *p<0.05, **p<0.01 represent statistically significant differences, the PTU induced hypothyroid
rats versus the controls. xp<0.05, xxxp<0.001 represent statistically significant differences, in the presence of nifedipine compared to its absence in each

group.
doi:10.1371/journal.pone.0131198.g004

subsequent depolarization of the plasma membrane. Oscillatory changes in the membrane
potential activates the opening and subsequent closure of the voltage-gated Ca** channels to
allow an influx of extracellular Ca®" [21] and an increase in cytoplasmic Ca”* triggers insulin
exocytosis [22, 23]. Shimoni and Light have shown that T; regulates several K* currents in the
rat heart and K*-ATP channels are under the influence of long-term regulatory effect of thy-
roid hormone [24, 25]. They have reported that hypothyroidism could significantly decrease
the sensitivity of K*-ATP channels to ATP [25].

It has also been indicated that muscarinic stimulation of pancreatic beta cells leads to a
series of biochemical events that are usually associated with the activation of Gg-type G pro-
teins, including the activation of phospholipase C, protein kinase C, and phospholipase A2.
Stimulation of these signaling cascades eventually results in elevated intracellular calcium levels
and an increase in the efficiency of calcium-dependent exocytosis of insulin-containing storage
vesicles [26-28]. M3 receptor activity in beta cells is critical for the maintenance of blood glu-
cose homeostasis and disruption of this pathway in transgenic mice results in reduced insulin
release and impaired glucose tolerance. In contrast, increasing the number of beta-cell M3
receptors in transgenic mice leads to enhanced insulin release and greatly improved glucose
tolerance [29, 30]. Nevertheless in the present study, there was no difference between insulin
secreted in response to high glucose stimulation in the presence of glibenclamide or
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Fig 5. Hexokinase and glucokinase specific activity. Each bar presents the mean+SEM from 9 cups of 9 rats. Each cup contained 300 islets in 400 pL of
lysis buffer. Differences were analyzed by unpaired t test. ***p<0.001, represents statistically significant differences, the PTU induced hypothyroid rats
versus the controls.

doi:10.1371/journal.pone.0131198.g005

acetylcholine in isolated pancreatic islets. It may indicate that the pathways recruited by these
secretagogues are probably not involved in the insulin secretion deficit.

In the present study, we used a Ca>* channel blocker to investigate the involvement of cal-
cium channels in the altered islets insulin secretion of hypothyroid rats. Yu et al, have shown
that thyroid hormones increase L-type calcium channel mRNA expression and L-type calcium
current in the rabbit myocytes [31]. It has been demonstrated that in the sinus node of the left
atrium, some of the ion channels, such as L-type calcium channels are targets of thyroid hor-
mone action [32]. In our study, in both groups, nifedipine significantly suppressed islet insulin
secretion in the presence of 8.3 and 16.7 mmol/L glucose concentrations, indicating thereby
that L-type calcium channels are still responsive to blockers in pancreatic islets and probably
they are not responsible for the insulin secretion deficit observed in hypothyroidism.

Impairment in glucose sensing contributes to pancreatic beta cell dysfunction. The GK and
GLUT?2 are key molecules with a high Km for glucose phosphorylation and glucose transport
respectively, which affect various processes of glucose sensing in pancreatic beta cells [33].

At the entry of glycolysis, GK plays a primary regulatory role in the control of glucose
metabolism in beta cells [34-36]. Two important properties enable GK to function as a glucose
sensor in beta cells, distinguishing it from other hexokinases. The first property is its relatively
lower affinity for glucose than other hexokinase isoforms. The Km of glucokinase is 6 mmol/L,
placing it in the middle of the normal blood glucose range (4-10 mmol/L), while other
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Fig 6. Western blot analysis of GLUT2 protein in isolated islets in hypothyroidism. Data are expressed as mean+SEM from 10 protein bands of 5 rats in
each group. Unpaired t test. **p<0.01, represents statistically significant difference, the PTU induced hypothyroid rats versus the controls.

doi:10.1371/journal.pone.0131198.g006

hexokinases function at maximal velocity at this glucose concentration. The second property is
that it is not inhibited by its product, often a regulatory feature in metabolism, which enables
its continued activity in spite of a high glycolysis load. GK is thus the rate-limiting step in beta
cell glucose metabolism and is considered to be an important glucose sensor [37].

Our results showed that specific activity of GK but not hexokinase was significantly lower in
hypothyroid islets compared to that of controls; this reduction of activity is not related to
reduction of GK content because it was not changed significantly but may reflect changes in its
function. Studies have shown that thyroid hormones can modulate the activities of many
enzymes including pancreatic and hepatic GK [9, 38]. It appears that reduced GK activity leads
to lowering glycolytic flux, reducing the ATP/ADP ratio, decreasing numbers of closed ATP-
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sensitive K channels and reducing insulin secretion. Data supports the notion that, under cer-
tain conditions, decreased activity of glucose-phosphorylating enzymes could contribute to
insulin hyposecretion. It can be suggested that, hypothyroid rats present alterations in the regu-
lation of glucose-induced insulin secretion, at least partly as a result of changes in early stages
of the glycolytic pathway.

In our study, GLUT?2 protein level in the isolated islets was significantly reduced in hypo-
thyroid rats. Whereas some reports suggests that glucose stimulated insulin secretion could
proceed normally even in the presence of low levels of this transporter [39], others support a
specific role for GLUT2 [40, 41]. It has been found that GLUT2 plays an essential role in glu-
cose sensing in different tissues [42-45]. GLUT2 null mice are hyperglycemic, hypoinsuline-
mic, hyperglucagonemic, and glycosuric and die within the first 3 weeks of life [46, 47].
Reexpressing GLUT2 in beta cells of GLUT2 null mice results in nearly normal glucose stimu-
lated insulin secretion and fatality [48]. Studies with gene knockout mice have indicated that
GLUT?2 is also required for the function of glucose sensors present in the hepatoportal vein
area and in the central nervous system [49]. It has been shown that glucokinase activity can
be elevated in the presence of increased GLUT2 protein levels [50]. It has also been indicated
that GLUT?2 protein and mRNA levels decrease in the mouse liver in hypothyroidism and
increase in hyperthyroidism [10, 51]. To the best of our knowledge, this is the first study to
evaluate pancreatic islets glucokinase activity and protein and GLUT2 protein in
hypothyroidism.

Thyroid hormone receptor isoform alphal has been identified in adult pancreatic islets. It is
believed that thyroid hormone is a physiological stimulus for the postnatal maturation of func-
tional beta cells [1]. Data shows that overexpression of MafA in neonatal islets to approxi-
mately adult MafA mRNA levels induces glucose-responsive insulin secretion and thus
facilitate the functional maturation of beta cells [52]. Mazzucato et al showed that in vitro
exposure of immature islets to T3 enhances MafA expression and increases glucose responsive-
ness, effects that are abolished in the presence of dominant negative MafA [53]. Data demon-
strate that MafA-deficient mice and islets are unable to respond to glucose. It has been shown
that Pdx1 expression is regulated by MafA in beta cells and is diminished in MafA-deficient
mice [54, 55]. PdxI7islets display abnormal response to glucose and KCl accompanied with
decreased protein levels of Glut-2 and glucokinase [56]. Pdx1 and MafA display beta cell
restricted expression [57-59]. Therefore, it needs to be clarified whether the effect of hypothy-
roidism on glucokinase activity and GLUT?2 expression in the pancreatic islets, observed in this
study, is due to the general regulating effect of thyroid hormones, because it also takes place in
the liver, or whether is specifically through Pdx1 and MafA.

In conclusion, the results of this study indicate that hypothyroidism reduces insulin secre-
tion from isolated pancreatic islets, confirming the results of previous studies; in addition, the
reduction observed in insulin secretion from pancreatic islets of hypothyroid rats may be due
to decline in both levels of GLUT2 protein and GK functioning.
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