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Abstract

We tested whether two basic thermal requirements for insect development, lower develop-
mental thresholds, i.e. temperatures at which development ceases, and sums of effective
temperatures, i.e. numbers of day degrees above the lower developmental thresholds nec-
essary to complete development, differ among insect species that proved to be successful
invaders in regions outside their native range and those that did not. Focusing on species
traits underlying invasiveness that are related to temperature provides insights into the
mechanisms of insect invasions. The screening of thermal requirements thus could improve
risk-assessment schemes by incorporating these traits in predictions of potentially invasive
insect species. We compared 100 pairs of taxonomically-related species originating from
the same continent, one invasive and the other not reported as invasive. Invasive species
have higher lower developmental thresholds than those never recorded outside their native
ranges. Invasive species also have a lower sum of effective temperatures, though not signif-
icantly. However, the differences between invasive and non-invasive species in the two
physiological measures were significantly inversely correlated. This result suggests that
many species are currently prevented from invading by low temperatures in some parts of
the world. Those species that will overcome current climatic constraints in regions outside
their native distribution due to climate change could become even more serious future
invaders than present-day species, due to their potentially faster development.

Introduction

Temperature is one of the most important environmental factor affecting insect growth rate,
fecundity, mortality and movement [1,2]. Consequently, temperature-based insect phenology
models, constructed from the virtually linear relationship between the rate of development and
temperature, have long been used to help growers predict pest occurrence or performance of
pests’ natural enemies [3,4]. More recently, these models have been used as a component of
risk analysis for predicting the establishment and spread of exotic pests [5,6].
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Phenology models require knowledge of two thermal requirements, the lower developmen-
tal threshold (LDT), i.e. the temperature at which development ceases, and the sum of effective
temperatures (SET), i.e. day degrees (D°) above the LDT necessary for completion of a develop-
mental stage. The concept of thermal dependence of development, first suggested nearly three
hundred years ago [7], make it possible to predict when a particular stage in the development
of an individual insect will be completed. The prediction of phenology model is then based on
accumulating D° above LDT, which in most cases is based on daily maximum and minimum
temperatures, assuming a sine curve can be used as an approximation of the diurnal tempera-
ture curve [8]. By linking these thermal requirements, which define the environmental condi-
tions in which a species can maintain populations, with geo-referenced meteorological data, it
is now possible to predict species distributions using deductive climate models [6] such as CLI-
MEX [9] and NAPPFAST [10].

Insect invasions have been receiving much attention recently both in terms of producing
large-scale inventories and identifying underlying mechanisms and impact [11-14]. Recent
analyses of large data sets improved understanding of the role of climate in insect invasions.
For example, it has been demonstrated that over the second half of the 20th century increasing
establishment rates of invasive insects in China were positively related to rising surface air tem-
perature and the relationship remained significant after accounting for increase in interna-
tional trade [15]. Therefore the increase in establishments of invasive alien insects could be
explained only in part by introduction rate and propagule pressure; similar relationships have
been also reported from the UK and United States [15]. Warmer temperatures can favor estab-
lishment and spread of alien insects by providing new areas suitable for colonization, enabling
insects to shift their geographic range polewards, and crossing barriers that previously limited
their natural ranges [16-19]. This brings about the need to consider global warming when
designing strategies and policies to deal with insect invasions [15]. It seems therefore plausible
to focus, at least partly, on species traits related to temperature, to obtain insights into the
mechanisms of insect invasions and improve predictions of future invaders.

Although the use of species traits for predicting species invasiveness has been questioned
recently [20], available evidence suggests rather the opposite [21-24]. Traits associated with
invasion success are commonly used in invasion risk-assessment schemes for alien plants [25],
fish [26], mammals [27], birds [28] and specific groups of insects (e.g. [29-33]).

Here we provide an analytical background for using thermal requirements to predict insect
invasions, without the need to incorporate these traits into phenological and climatic models.
The approach adopted here is based on the assessment of whether the two basic thermal
requirements, LDT and SET, differ among related species that are successful invaders and
those that are not. For this purpose, we define an invasive species as one that is known to have
established self-sustaining populations outside its supposed native range without being inten-
tionally introduced by humans, and a non-invasive as one that is not known to have done so.
We evaluated pairs of related species differing in invasiveness because thermal requirements
are known to be similar for related taxa [34,35]. Moreover, we use pairs of related species native
to the same continent because by focusing on pools of species that originate from the same
region, we also partly eliminate other potential biases such as those related to regional varia-
tions in the volume of trade and potential for accidental transport between regions. Because
the analysed species are mainly pests and their natural enemies, using this so-called source-
area approach members of a fauna are deemed relatively comparable in terms of their chance
of being transported by humans from their native region to other parts of the world [36,37].
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Materials and Methods

A database of 1,368 primary research studies providing the development times of 659 species
of insects and mites at various temperatures was gathered by Alois Honék and colleagues [38-
40]. Lower developmental thresholds (LDTs) and sums of effective temperatures (SETs) were
calculated for each insect and each study from the linear relationship between the developmen-
tal rate and temperature as described in S1 File. This database was merged with a database of
thermal requirements gathered by online search of CAB Abstracts between 1972 and 2004 by
Nietschke and his colleagues [41], which contain data on LDTs and SET's of more than 500 spe-
cies of insect, and is being continuously updated. Overall, the merged database of thermal
requirements (DTR, [35]) comprised 2,722 original studies of nearly 1,000 species of insects
and mites under laboratory conditions, many for several populations, mostly pests and their
natural enemies from all over the world (available at https://secure.fera.defra.gov.uk/pratique/
publications.cfm?deliverables=1). This DTR was the source of the 100 pairs of species used for
comparisons of their thermal requirements (S2 File).

Pairs of species originating from the same continent were selected on the basis of their taxo-
nomic relatedness, i.e. the pairs belonged to the same genus, tribe, sub-family or family, in this
order of preference. Biological control agents and other intentionally introduced insects were
excluded, unless it was clear that their introduction into a new continent was accidental (e.g.
several Coccinellidae). Pests of stored products were also excluded because most of them have
a worldwide distribution and are cryptogenic, i.e. their area of origin is unclear. Where several
independently studied populations of the same species were available, average LDT and SET
values from all these populations were used in analyses. When many values were available for
the same species, doubtful values that were obviously too different from the others (outliers)
were discarded. When several species of similar relatedness were available for comparison, a
single non-invasive species was compared with the average value for several related invasive
species; we considered this to be more conservative than choosing a single species for compari-
son subjectively or randomly. For the same reason, non-invasive species were coupled only
once but, in a few cases, different non-invasive species were coupled with the same related inva-
sive species (S2 File). When possible, for each species pair, SETs for the total (egg to adult) pre-
imaginal development were used but, when not available, specific developmental stages were
used. Similarly, LDT's based on the whole development were preferred but, when not available,
LDTs of any developmental stage (or the average of LDTs of different developmental stages)
were taken since all the developmental stages within a population of a species are supposed to
have the same LDT [40,42-44]. The sample size for SETs was slightly smaller (n = 88) than for
LDTs (n = 100). Most of the LDT's were for species pairs that originated in Europe (n = 36,
including species with a Palaearctic distribution) and North America (n = 43, including species
with native range extending into Central and exceptionally into the north of South America),
and less from Asia (n = 15, mostly originating from East Asia) or other continents (n = 6:
Africa, Oceania and South America). The subset of SETs for paired species included 33 Euro-
pean, 35 North American, six Asian and five from elsewhere.

Because the same invasive species was sometimes used more than once for comparison with
several native species and because the species relatedness varied within pairs, we used three dif-
ferent statistical analyses of LDTs and SET's to remove potential statistical biases. First, we com-
pared LDT's and SETs of invasive and non-invasive species without taking into account that
the differences in LDTs and SET's between pairs can vary specifically depending on their taxo-
nomic affiliation. This analysis, done by two-sample t-test with invasive/non-invasive status of
each species as a fixed factor (e.g. [45]), is compromised by the fact that the chosen pairs of
invasive and non-invasive species are not independent. On the other hand, it can alleviate the
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problem of the underestimation of variation of LDTs and SET's for invasive species that were
used repeatedly in the same analysis. Second, to reveal taxonomic effects for pairs of closely
related invasive and non-invasive species, linear mixed effect models with the taxon to which
each pair belongs as a random factor and status of each species (invasive/noninvasive) as a
fixed factor were applied. These analyses were analogous to paired t-tests ([46], p. 135-146)
but unlike these tests, they also enabled distinguishing, after explaining the part of variation
due to differences between the paired species, the part of residual variation within paired spe-
cies from residual variation between taxa, which can be used to calculate intraclass correlation
between non-invasive and invasive species within pairs. Third, we used linear mixed-effect
models on nested taxonomic hierarchy that take into account the differences in species related-
ness within pairs. In these analyses, the status of each species (invasive/noninvasive) was con-
sidered as a fixed factor and insect taxa as a random factor (e.g. [47-49]). To reveal hierarchical
effects of taxonomy, likelihood ratio (LR) tests on the nested model structures were performed.
The nested models included (i) a model without taxonomy (i.e., with no random effect), (ii)
with orders, and (iii) with families within orders. Finally, to investigate the relationship
between the two physiological variables, differences in LDT and SET between invasive and
non-invasive species were analysed using a Pearson correlation.

Before analyses, normality of the LDTs and SET's was verified graphically, by calculating
skewness and kurtosis [45], and by Shapiro-Wilk tests [50]. Fitted models were checked by
plotting residuals, including residuals for random effect of taxa, against fitted values. Calcula-
tions were done in R 3.1.2, using library ImerTest 2.0-20.

Results

Invasive species had highly significantly higher LDT's than non-invasive species (Fig 1A). The
average difference in LDTs of the pairs of species was 1.4°C and invasive species had a higher
LDT in 71 out of the 100 pairs. Conversely, the SET' of the species that do not occur outside
their native ranges were higher than those recorded for the invasive species in each of the pairs
(Fig 1B), though not significantly. The average difference in SET was 39.3 day degrees (D°) and
invasive species had a lower SET in 51 out of the 88 pairs (with one pair showing equal SETs).

Although the differences in LDT between the pairs of invasive and non-invasive species
were significant even without taking into account that differences within the pairs can vary spe-
cifically depending on species relatedness, they became more pronounced when species relat-
edness was considered (Fig 1). The differences in LDT's were significantly affected both by
insect orders (likelihood L = 6.44, df = 1, P < 0.05) and families (L = 12.56, df = 1, P < 0.001),
but the intra-class correlation between closely related pairs of invasive and non-invasive spe-
cies, describing the association between LDT's values within each pair, was relatively low (intra-
class correlation ICC = 0.217). The differences in SET's remained non-significant after consid-
ering insect orders and families, though models changed significantly by including taxonomic
information for orders (L = 15.14, df = 1, P < 0.001). Families nested within orders did not
provide additional information (L = 23.12, df = 1, P < 0.0001), and the association between
SET's values within each pair was rather weak (ICC = 0.222).

Differences in LDT and SET between invasive and non-invasive species were significantly
inversely correlated (R =-0.276; p = 0.009; n = 88), 77% of the pairs having a higher LDT and a
lower SET, or vice-versa.

Discussion

It is well recognized that temperature and ongoing global change play a role in insect invasions
(e.g. [15-17]). Better information on traits related to temperature could thus improve our
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Fig 1. Lower developmental thresholds (LDTs) and sums of effective temperatures (SETs) of non-
invasive and invasive species. Average values + standard deviations of LDTs in °C, (A) and SETs in day
degrees [D°] above LDT (B) for pairs of related species of which one is invasive and the other is not. (A)
Invasive species have significantly higher LDTs than non-invasive species: t = 4.38, df = 99, P < 0.001 (two-
sample t-test not taking into account that paired differences can vary specifically depending on species
relatedness); t = 3.841, df = 93, P < 0.001 (linear mixed-effect model on closely related species pairs,
analogous to paired t-test); t = 4.35, df = 177.9, P < 0.001 (linear mixed-effect model on nested taxonomic
hierarchy). (B) Invasive species have non-significantly lower LDTs than non-invasive species: t = 1.52,

df =87, P = 0.13 (two-sample t-test not taking into account that paired differences can vary specifically
depending on species relatedness); t = 1.23, df = 81, P = 0.22 (linear mixed-effect model on closely related
species pairs, analogous to paired t-test); t = 1.29, df = 154.9, P = 0.2 (linear mixed-effect model on nested
taxonomic hierarchy).

doi:10.1371/journal.pone.0131072.g001
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understanding of mechanisms underlying the dynamics of the invasion process [51]. Our
results indicate a link between invasion potential of insect species and their temperature
requirements. In particular, invasive species clearly have a higher LDT than related non-inva-
sive species. The majority of pairs also had a lower SET for the invasive species, but the differ-
ences were not significant. There are indications in the literature of a general tendency for the
LDTs and SETs of related species to vary inversely [52-53] and this inverse relationship also
holds for all the insect data in the original database of thermal requirements used for this study
[38,54]. Similarly, in the sub-sample used for this analysis, the differences between invasive
and non-invasive species in the two physiological measures were significantly inversely corre-
lated. This suggests that both parameters could act in concert in insect invasions, as described
in Fig 2. Invasive species are constrained by their higher LDTs but possibly favoured by their
lower SETs, meaning that if the temperature in a region outside their native range is high
enough for them to develop they are more likely to become established there than species that
are currently non-invasive. The differences in response to temperatures, in terms of LDT and
SET acting in concert, indicate that those invasive species that overcome the low-temperature
constraints in target regions (they either make it or not, i.e. the qualitative barrier), could well
be predisposed to invasion due to their fast development (here the advantage becomes quanti-
tative). However, the relationship between invasive status and SET should be further studied
with more pairs, preferably composed of species that are taxonomically closely related (i.e.
same genera) and originating from precisely the same area.

Direct use of thermal requirements for evaluating the invasion potential of insects is cer-
tainly limited by other factors such as dependences of the survival of the species on their toler-
ances of cold, wet, dry or heat stress or water availability (e.g. [55-56]). Nevertheless, theory
[57] and empirical data [2] indicate that each species can only develop over a limited range of
temperatures about 20°C that is relevant for a real life of insects and other ectotherms. In this
range, the relationship between the rate of development and temperature is virtually linear (e.g.
[58]), and this range is used for calculation of the thermal requirements (S1 File). Moreover,
the thermal requirements used are those for the LDTs and SET's of non-dormant developmen-
tal stages. In particular, the limiting effect of a high LDT may be partly overcome by surviving
climatically unsuitable periods in dormant stages [59], which can reduce the limiting effect of
low temperatures. If a species enters diapause or hibernates, this has to be incorporated into
predictions of invasiveness, which can be further complicated by the fact that, in some species,
dormancy can be broken or induced in a new environment [59,60]. Finally, we assume that cli-
mate ultimately restricts species distributions. This is a common assumption of phenological
and climate-based distribution models because in most situations, climate is the only factor for
which data are readily available. However, in reality, the distribution of a species is also under
the influence of other environmental components like availability of food, effect of natural ene-
mies, competing species and further habitat-related factors as they are usually included in the
concept of the ‘realised niche’ [55,61].

It cannot be ruled out that some of the differences observed in thermal requirement between
invasive and non-invasive species may be caused by adaptive evolution in the invaded area,
which is commonly observed in biological invasions [62]. In insects, this has been demon-
strated, e.g., for the tiger mosquito, Aedes albipictus [63], or for parasitoids introduced as bio-
logical control agents [64]. Similarly, Preisser et al. (2008) [65] provide evidence for local
adaptation to extreme temperatures in the Asian elongate hemlock scale Fiorinia externa after
its introduction into Eastern North America.

From an analytical point of view, it also needs to be noted that our approach does not point
to causality between temperature-related traits of the insect species studied and their invasive-
ness. Even within the closely related species pairs, other traits correlated with fast development
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Fig 2. Model of the differences in thermal requirements of invasive (I) and related non-invasive species (N). General model based on the linear
relationship between the developmental rate and temperature. Invasive species have a higher lower developmental threshold (LDT)) than non-invasive
species (LDTy), i.e. a higher temperature at which the development ceases. However, as shown by the lines describing the increasing development rate of
invasive (DR)) and non-invasive (DRy) species with increasing temperature, above temperature T, the invasive species develop faster than non-invasive
species. Because the sum of effective temperatures (SET) necessary for a completion of a development is a reciprocal value of the slope of the
developmental rate on temperature (S1 File), faster development means lower SET for invasive than non-invasive species.

doi:10.1371/journal.pone.0131072.9002

and high LDT could also contribute to separation of invasive species from non-invasive ones.
Nevertheless, the differences in LDT between invasive and non-invasive species are more pro-
nounced if species relatedness is explicitly taken into account.

That invading species are limited by their temperature requirements was previously sug-
gested for springtails, based on comparison of egg development times of three native and four
invasive species on sub-Antarctic Marion Island; in this particular case, invasive species devel-
oped faster but the differences in LDT's were not significant [66]. Temperature barriers to
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invasion are suggested also for plants, based on both congeneric comparisons and comparisons
of whole floras. Alien plants differ in flowering phenology from native species [67-69] and the
ability to flower early and/or flower over a long period is a common trait of invasive plants.
This indicates that in regions that are climatically colder, many alien species do not become
established because they fail to complete their life cycle [21,68]. The role of climate in deter-
mining invasions is also demonstrated by the fact that it along with economic factors has
shaped the patterns of regional richness of alien birds, mammals and aquatic invertebrates in
Europe [70].

Because lower developmental thresholds increase with mean environmental temperature
[53-54], this relationship may give insight into the consequences of climate change. Should the
temperature in a particular region increase, species that are at present prevented from invading
would no longer be limited by low temperatures and a general increase in global temperatures
may possibly result in a greater species pool available for invasions globally.

As there are good data for some continents, e.g. [13], predictions of the effects of climate
change on invasions by insects could be made for particular regions or species. Although it is
not possible to make robust statements, based on the currently available data, about continent-
specific patterns, this is a promising venue for future research if more data are specifically col-
lected for understudied regions [71]. Nevertheless, insects that are currently non-invasive
clearly differ from related invasive species in important physiological traits that determine
their thermal requirements. The fact that thermal requirements that describe the response of
insects to temperature, i.e. the environmental factor most affecting their life history traits, differ
among related native and invasive species, contradicts views that traits cannot be used to pre-
dict invasiveness [20], and provides additional evidence in support of the importance of species
origins in biological invasions e.g. [22,24].

Supporting Information

S1 File. Calculation of the lower developmental threshold and the sum of effective tempera-
tures.
(DOC)

S2 File. Pairs of related species to compare lower developmental thresholds (°C) and sum of
effective temperatures (SET in day degrees, D°).
(DOC)
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