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Abstract
The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells

in the oral cavity. In recent years, its involvement in membrane glucose sensing was discov-

ered in endocrine cells regulating glucose homeostasis. We investigated importance of

extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose

homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that

encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests

measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3
+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfmmice lacking the

entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with

Tas1r3+/+ mice, Tas1r3-/-mice lacked attraction to sucrose in brief-access licking tests, had

diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced

insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically,

which suggests that these effects are due to absence of T1R3. Impairment of glucose clear-

ance in Tas1r3-/-mice was exacerbated with age after intraperitoneal but not intragastric

administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent

mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incre-

tin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood

glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gas-

trointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein

plays an important role in control of glucose homeostasis not only by regulating sugar intake

but also via its extraoral function, probably in the pancreas and brain.

Introduction
The search for key regulators of blood or tissue glucose levels is relevant to treatments of diabe-
tes, obesity, and metabolic syndrome. Sensing of glucose in viscera and brain is crucial for con-
trol of energy homeostasis. Cells involved in regulation of blood glucose concentration (the
insulin-secreting β-cells of the pancreas, enteroendocrine L-cells of the small intestine, and glu-
cose-excited neurons of ventromedial hypothalamus) share a metabolic mechanism of glucose
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sensing controlled by glucose transporters and glucokinase (hexokinase IV). This mechanism
involves an increase of cytoplasmic glucose resulting in a series of intracellular events leading to a
rise in the cytosolic ATP/ADP ratio and subsequent closure of ATP-sensitive potassium (KATP)
channels, which leads to cell depolarization [1, 2]. However, several lines of evidence, including
pharmacological blockage of glucokinase and gene knockout of the Kir6.2 subunit of the KATP

channel, strongly suggest that glucosensing involves additional signaling pathways that do not
require intracellular metabolic processing of glucose, that is, KATP-independent pathways [3–6]. In
recent studies, membrane glucose-sensing mechanisms involving the T1R2/T1R3 heterodimeric
complex of G-protein-coupled sweet taste receptor proteins [7, 8] and related intracellular trans-
duction components, operating independently of cellular glucose transport and metabolism, were
found in gastrointestinal, nervous, and endocrine cells regulating glucose homeostasis [9–17].

Results of in vitro and some in vivo studies confirm the role of T1R-related mechanisms in
regulation of glucose metabolism. In cultures of enteroendocrine cells, these mechanisms
involve insulinotropic hormones, or incretins: glucagon-like peptide 1 (GLP-1) and glucose-
dependent insulinotropic peptide (GIP) [11–14]. Consistent with this, mice lacking Gα-gust-
ducin or T1R3 demonstrated deficient incretin production and glucose tolerance after adminis-
tration of glucose in the gastrointestinal tract [18–20].

In cultures of pancreatic islets or the glucose-responsive β-cell line MIN6, T1R-related
mechanisms of glucose regulation involve insulin secretion [16, 17, 21]. However, physiological
importance of pancreatic sweet taste receptors in control of blood glucose level in vivo was
examined in only a few studies, which did not fully confirm it. In fasted mice, deletion of T1R2
or T1R3 did not affect glucose tolerance after systemic administration of glucose, which
bypasses the intestinal lumen and thus does not induce secretion of incretins [19, 22]. This lack
of consistency between the in vitro and in vivo studies may be due to differing nutrition status
of cells in these two types of experiments. While in vitro studies use cell cultures supplied with
nutrients, in vivo studies typically involve testing food-deprived mice. Overnight fasting (typi-
cally for 16–18 h) provokes in mice, which are nocturnal and eat during nighttime, a catabolic
state and substantial reduction of incretins and insulin release, as well as changes in insulin sen-
sitivity [23–25]. In contrast to humans, in rodents prolonged fast also enhances insulin-stimu-
lated glucose utilization [26, 27]. Thus, overnight fasting is considered more useful for studies
of glucose utilization (e.g., effects on muscle uptake of glucose), whereas reduced fast duration
is better for assessing insulin action within a more physiological context [24].

Therefore, we compared glucose tolerance of nonfasted Tas1r3 knockout [28] and wild-type
mice to examine the in vivo importance of the extraoral T1R3 taste receptor protein in control-
ling blood glucose homeostasis. To assess the role of T1R3 in the effect of incretins, we com-
pared glucose clearance after intragastric or intraperitoneal administration of glucose.
Additionally, there is substantial evidence showing that aging is associated with decreased glu-
cose tolerance, primarily due to impairment of β-cell sensitivity to glucose, decreased insulin
production, and increased tissue tolerance to insulin (for review see [29, 30]). To examine
whether aging could affect involvement of extraoral sweet taste reception in glucose metabo-
lism, we have studied effects of Tas1r3 deletion on glucose and insulin tolerance in mice of dif-
ferent ages. We confirmed the role of the oral T1R3 receptor in behavioral studies assessing
taste responses to sucrose in Tas1r3 knockout and wild-type mice.

Materials and Methods

Animals
The described experimental procedures have been approved by the Institutional Animal Care
and Use Committee (IACUC) at the Pavlov Institute of Physiology (Animal Welfare Assurance
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#A5952-01). The study was performed with 8- to 36-week-old male mice of two strains:
C57BL/6ByJ bearing the wild-type Tas1r3 allele, used as control (Tas1r3+/+; Jackson Labora-
tory, Bar Harbor, ME), and C57BL/6J-Tas1r3tm1Rfm lacking the entire T1R3 coding region and
devoid of T1R3 protein [28] (Tas1r3-/-; kindly provided by Dr. R. F. Margolskee, Monell
Chemical Senses Center, Philadelphia, PA, USA). Separate groups of mice were used in differ-
ent tests. (Numbers of mice are shown in the table and figures below.) During the study, ani-
mals were housed individually (taste tests) or by 4–5 in standard polycarbonate cages on a 12-h
light-dark cycle (lights on at 8:00 a.m.) in a temperature- and humidity-controlled room.
Throughout the study, mice were fed with a standard lab chow (PK-120, MEST Ltd., Moscow,
Russia) containing 67% carbohydrates, 5% lipids, and 19% proteins, with an energy value of
13,000 kJ/kg; food and tap water were available ad libitum.

Taste tests
Behavioral taste responses to 0.03–0.93 mol/L sucrose (Sigma-Aldrich St. Louis, MO, USA)
were assessed in separate groups of mice using the brief-access licking test (BALT) and the
48-h two-bottle preference test. The BALT was conducted during the light period using proce-
dures similar to those described by Glendinning et al. [31]. Before testing, mice had restricted
access to water (1.5 mL for 22–23 h), while access to food remained unlimited. During the test
session, an animal was exposed in gustometer Davis MS-160 (DiLog Instruments, Tallahassee,
FL, USA) to three repetitive blocks of stimuli, each consisting of eight trials: six concentrations
of sucrose presented in ascending order, and two presentations of distilled water as "washout,"
one before each of the two highest sucrose concentrations. Access to each solution lasted for 5
s, with 20-s interpresentation interval. Licking ratio was calculated as the percentage of licks to
sucrose solution relative to the mean number of licks in the two preceding trials with water. In
the 48-h two-bottle tests [32], mice in their home cages had free access to two tubes containing
distilled water or sucrose solution. Positions of tubes was changed after 24 h. Sucrose prefer-
ence was calculated as consumed sucrose solution as a percentage of total fluid intake.

Glucose and insulin tolerance tests
Glucose and insulin tolerance tests were started at 3–4 p.m. (7–8 h after the beginning of the
light period). In the glucose tolerance test (GTT), matching specific recommendations of the
Mouse Metabolic Phenotyping Center [25], nonfasted conscious animals received glucose (2 g/
kg, 0.1 ml per 10 g body weight; Sigma-Aldrich St. Louis, MO, USA) either intraperitoneally
(IP) or by intragastric gavage (IG). Aqueous solution was used in the IG GTT; in the IP GTT,
glucose was dissolved in saline. In the insulin tolerance test (ITT), nonfasted mice were injected
with insulin (2 U/kg, IP; insulin aspart, Novo Nordisk A/S, Bagsvaerd, Denmark). Blood was
sampled by tail cut, and two measurements of glucose concentration for each time point were
made 0–120 min after the infusion of glucose or insulin using the One Touch Ultra glucometer
(LifeScan, Inc., USA). During the GTT, animals were gently held in custom-made restraint
tubes, to which they were habituated during the preceding 2 days. During the ITT, mice were
left unrestrained in their home cages.

Statistical analysis
Statistical analysis was performed using Statistica 7.0 software (StatSoft, Tulsa, OK, USA). Data
from the behavioral taste tests and glucose clearance in the GTT and ITT were compared with
two-way ANOVA. Concentration (for taste tests) and time (for GTT or ITT) were considered
as within-subject factors, and strain was considered as a between-subject factor. Post hoc paired
comparisons were made with Fisher’s least significant difference (LSD) test. Blood glucose area
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under the curve (AUC) was calculated using the trapezoidal rule, and differences between
AUCs were assessed with one-way ANOVA. Between-strain comparisons of baseline glucose,
body weight, and age were performed using the Student’s t-test. To quantify the correlation of
physiological parameters within groups, the Pearson product-moment correlation coefficient
was used. All data are presented as mean ± SEM; P values less than 0.05 were considered
significant.

Results
Body weight of Tas1r3-/-mice was about 6% greater than body weight of Tas1r3+/+mice (t-
test, p<0.01), and for both strains it increased with age (Table 1). Baseline blood glucose level
was similar in both strains. There was no significant relationship between baseline glucose and
body weight or age (Table 1).

Tas1r3-/-mice had a substantially reduced attraction to sucrose both in the BALT (Fig 1A)
and in the 48-h two-bottle test (Fig 1B). Two-way ANOVA of the BALT data revealed signifi-
cant effects of strain (F(1, 36) = 65.13, P<0.001) and concentration (F(5, 180) = 3.04,
p<0.001), as well as strain × concentration interaction (F(5, 180) = 2.33, P<0.01). Mouse
strains significantly differed in licking 0.23 and 0.46 mol/L sucrose solutions. A concentration-

Table 1. Age, body weight, and baseline blood glucose level in nonfasted Tas1r3 +/+ and Tas1r3-/-mice (combined data from all experiments).

Tas1r3+/+ (n = 73) Tas1r3-/-(n = 81) t-Test

Characteristic Age range (weeks) 8–36 8–36 NS

Baseline glucose (mM) 8.67±0.02 8.69±0.01 NS

Body weight (g) 27.23±0.05 29.07±0.05 P<0.01

Pearson product-moment correlation coefficient Age × baseline glucose level -0.02, NS -0.03, NS

Body weight × baseline glucose level 0.10, NS 0.07, NS

Age × body weight 0.65, p<0.05 0.66, p<0.05

doi:10.1371/journal.pone.0130997.t001

Fig 1. Taste responses to sucrose solutions in naïve Tas1r3 +/+ and Tas1r3-/- mice. A) Licking ratio (%) as a function of sucrose concentration in the
brief-access licking test (mean±SEM); n(Tas1r3+/+) = 15, n(Tas1r3-/-) = 29. B) Sucrose preference scores (%) in the 48-h two bottle test; n(Tas1r3+/+) = 18, n
(Tas1r3-/-) = 12. Post hoc comparisons with Fisher LSD test (Tas1r3 +/+ vs. Tas1r3-/-): *—p<0.05, ***—p<0.001

doi:10.1371/journal.pone.0130997.g001
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dependent increase in the licking ratio of sucrose to water was detected for Tas1r3+/+mice at
concentrations greater than 0.06 mol/L (P<0.01, Fisher LSD test); Tas1r3-/-mice licked all
concentrations of sucrose at the same rate as they licked water. Similarly, in the 48-h two-bottle
tests, two-way ANOVA also revealed strong strain differences in preference for 0.03–0.93 mol/
L sucrose solutions (effect of strain: F(1, 28) = 640.42, P<0.0001; effect of concentration: F(5,
140) = 93.44, P<0.0001, strain × concentration interaction: F(5, 140) = 49.68, P<0.0001).
Strain comparisons between preference scores at different concentrations confirmed concen-
tration dependence of response. Tas1r3+/+mice clearly preferred sucrose to water at concen-
trations of 0.03 mol/L and higher and showed maximal level of sucrose preference starting at
0.06 mol/L. Knockout mice were indifferent to 0.03–0.12 mol/L sucrose and preferred 0.23
mol/L and higher concentrations (P<0.001, Fisher LSD test).

After IP load with glucose, a significant Pearson’s correlation between AUC of the time
course of blood glucose concentration and age was found for Tas1r3-/-mice (r = 0.59, P<0.05),
while Tas1r3+/+mice demonstrated only a nonsignificant tendency of age dependence (Fig
2A). Based on this result, we divided animals of each strain into two age-matched groups (9–21
and 22–34 weeks old) and analyzed within-group differences. Tas1r3-/-mice of both ages had
significantly impaired glucose tolerance compared with Tas1r3+/+mice (Fig 2B and 2C).
Although initial peaks of glucose concentrations (15 min after IP administration of glucose)
were similar in Tas1r3-/- and Tas1r3+/+mice, the subsequent decrease of blood glucose level
was much slower in Tas1r3-/-mice, particularly in the older group. For 9- to 21-week-old
mice, two-way ANOVA revealed significant effects of strain (F(1, 35) = 8.80, P<0.01), time (F
(7, 245) = 112.11, P<0.000001), and strain × time interaction (F(7, 245) = 6.72, P<0.000001);

Fig 2. Blood glucose concentration during the intraperitoneal glucose tolerance test (glucose 2 g/kg) in nonfasted Tas1r3+/+ and Tas1r3-/-mice.
A) Relationship between glucose AUC and age. Pearson’s coefficient of correlation was calculated; n(Tas1r3+/+) = 29, n(Tas1r3-/-) = 30. B, C) Blood glucose
concentration (left) and glucose AUC (right) in 9- to 21-week-old (B) and 22- to 34-week-old (C) mice. B) n(Tas1r3+/+) = 19, n(Tas1r3-/-) = 18; C) n(Tas1r3+/+)
= 10; n(Tas1r3-/-) = 12. Post hoc comparisons with Fisher LSD test (Tas1r3 +/+ vs. Tas1r3-/-): *—p<0.05, **—p<0.01, ***—p<0.001.

doi:10.1371/journal.pone.0130997.g002
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for 22- to 34-week-old animals two-way ANOVA revealed significant effects of strain (F(1, 20)
= 12.60, P<0.01), time (F(7, 170) = 59.95, P<0.000001), and strain × time interaction (F(7,
140) = 6.95, p<0.000001). In the 9- to 21-week-old group, blood glucose AUC of Tas1r3-/-
mice was about 25% greater than in age-matched Tas1r3+/+mice (Fig 2B; F(1, 35) = 9.38,
P<0.01, one-way ANOVA); in the 22- to 34-week-old group it was about 75% greater (Fig 2C;
F(1, 20) = 15.00, P<0.001, one-way ANOVA).

In the IG GTT, no significant correlations between blood glucose concentration and age
were found for either Tas1r3+/+ or Tas1r3-/- animals (Fig 3A). There was a marked augmenta-
tion of blood glucose levels in both age groups of knockout mice compared with Tas1r3+/+
mice (Fig 3B and 3C). For 9- to 21-week-old and 22- to 34-week-old mice, respectively, two-
way ANOVA showed significant effects of strain (F(1, 26) = 16.20, P<0.001; and F(1, 19) =
4.71, p<0.05), time (F(7, 182) = 103.10, P<0.000001; and F(7, 133) = 47.69, p<0.000001), and
their interaction (F(7, 182) = 3.76, P<0.001; and F(7, 133) = 4.42, P<0.001). In both age
groups, blood glucose AUC was about 30% greater in Tas1r3-/-mice than in age-matched
Tas1r3+/+mice, as confirmed by one-way ANOVA (for 9- to 21- and 22- to 34-week-old
mice, respectively: F(1, 26) = 13.52, P<0.01; and F(1, 19) = 4.26, p<0.05; Fig 3B and 3C).

Additional analysis of the data showed an impact of the route of glucose administration,
which was similar in both strains (S1 Fig). In general, blood glucose utilization occurred faster
after IG infusion than after IP load in mice of both age groups. For 9- to 21- and 22- to
34-week-old Tas1r3+/+mice, respectively, two-way ANOVA showed a significant influence of
the route of glucose administration (F(1, 19) = 6.40, p<0.05; and F(1, 13) = 15.23, p<0.002),
time (F(7, 133) = 35.99, p<0.0001; and F(7, 91) = 40.01, p<0.0001), and their interactions

Fig 3. Blood glucose concentration during the intragastric glucose tolerance test (glucose 2 g/kg) in nonfasted Tas1r3+/+ and Tas1r3-/-mice. A)
Relationship between glucose AUC and age. Pearson’s coefficient of correlation was calculated. n(Tas1r3+/+) = 23, n(Tas1r3-/-) = 26. B, C) Blood glucose
concentration (left) and glucose AUC (right) in 9- to 21-week-old (B) and 22- to 34-week-old (C) mice. B) n(Tas1r3+/+) = 13, n(Tas1r3-/-) = 15; C) n(Tas1r3
+/+) = 10; n(Tas1r3-/-) = 11. Post hoc comparisons with Fisher LSD test (Tas1r3 +/+ vs. Tas1r3-/-): *—p<0.05, ***—p<0.001.

doi:10.1371/journal.pone.0130997.g003
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(F(7, 133) = 0.96, p>0.46; and F(7, 91) = 3.60, p<0.002). Glucose AUC was greater in the IP
GTT groups than in the IG GTT groups of Tas1r3+/+mice (one-way ANOVA: F(1, 19) = 4.88,
p<0.05; and F(1, 13) = 12.03, p<0.01, respectively). For 9- to 21- and 22- to 34-week-old
Tas1r3-/-mice, respectively, two-way ANOVA also showed an effect of the route of glucose
administration (F(1, 26) = 5.05, p<0.05; and F(1, 21) = 9.42, p<0.01), time (F(7, 182) = 109.72,
p<0.0001; and F(7, 147) = 73.49, p<0.0001), and their interactions (F(7, 182) = 0.94, p>0.47;
and F(7, 147) = 2.70, p<0.05). Glucose AUC after IP administration was significantly larger
than after IG administration only in the older group of Tas1r3-/-mice (one-way ANOVA: F(1,
21) = 8.33, p<0.01) but not in the younger group (F(1, 26) = 3.51, p>0.07).

Injection of insulin (2 U/kg, IP) caused a rapid reduction of blood glucose concentration,
reaching a minimum 15 min after injection (Fig 4B and 4C). In both strains, basal glucose level
was completely restored within 120 min. Hypoglycemia induced by insulin did not depend on
age (Fig 4A) or body weight in either strain (data not shown); therefore, calculations were
made for the combined group with ages ranging from 8 to 36 weeks. Analysis of both absolute
data (Fig 4B) and percentage of basal glucose level (Fig 4C) demonstrated that Tas1r3-/- mice
had impaired sensitivity to insulin. For absolute values, the two-way ANOVA revealed a signif-
icant effect of time (F(3, 108) = 211.16, P<0.000001) and strain × time interaction (F(3, 108) =
11.34, P<0.01); effect of strain was nonsignificant. Fisher’s LSD post hoc test revealed a differ-
ence in glucose levels between Tas1r3-/- and Tas1r3+/+ mice at 60 min (Fig 4B; P<0.05,
n = 20–31). Comparisons of values normalized relative to baseline showed significant effects of
strain (F(1, 36) = 4.79, P<0.05), time (F(2, 72) = 167.10, P<0.000001), and strain × time inter-
action (F(2, 72) = 8.63, P<0.001). Post hoc tests confirmed difference in normalized glucose
levels between Tas1r3-/- and Tas1r3+/+ mice at 15 and 60 min (Fig 4C; Fisher’s LSD, P<0.05).

Discussion
Our results support the important role of cell membrane sensing of sweeteners with T1R3 taste
receptor protein at different levels of control of carbohydrate ingestion and homeostasis. Mice
lacking the Tas1r3 gene demonstrated reduced behavioral taste responses to sucrose: they had
totally suppressed attraction to sucrose when they were presented with different concentrations
for 5-s periods in the BALT (Fig 1A) and had lower preferences for sucrose than Tas1r3+/+
mice in the 48-h two-bottle test. However, unlike during the BALT, during the long-term

Fig 4. Insulin tolerance test in nonfasted Tas1r3+/+ and Tas1r3-/- mice. A) Relationship between glucose AUC and age. Pearson’s correlation
coefficients (r) were calculated. B) Absolute values of blood glucose concentration. C) Percentage relative to baseline level. Insulin (2 U/kg, IP) was injected
at zero time point; n(Tas1r3+/+) = 18, n(Tas1r3-/-) = 20. Post hoc comparisons with Fisher LSD test (Tas1r3 +/+ vs. Tas1r3-/-): *—p<0.05

doi:10.1371/journal.pone.0130997.g004
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preference tests Tas1r3-/-mice preferred higher concentrations of sucrose (�0.23 mol/L) over
water (Fig 1B). These data are consistent with earlier studies of Tas1r3-/-mice, which revealed
a residual behavioral preference of caloric sugars but not nonnutritive sweeteners such as
sucralose, acesulfame K, SC-45647, and saccharin, in long-term preference tests [28, 33]. Both
Tas1r3-independent pre- and postingestive mechanisms could be involved in the observed
residual preference of sucrose. The Tas1r3-independent preingestive effects are supported by
results from a recent study with Tas1r3-/-, TRPM5-/-, and Gα-gustducin-knockout mice, in
which chorda tympani nerve activity in response to sucrose was reduced by roughly 80% rela-
tive to wild-type mice but responses to glucose were reduced only by 40% [34]. This suggests
that in taste cells, sugars such as sucrose and glucose can activate an additional taste transduc-
tion pathway that does not require T1R3, gustducin’s Gα subunit, or TRPM5 and was pro-
posed to be metabolic and KATP channel dependent [35]. The Tas1r3-independent
postingestive factors likely include conditioned flavor preference reinforced by nutritive value
of sucrose [36].

Our results demonstrate that in nonfasted mice Tas1r3 deficiency markedly worsens glucose
tolerance, regardless of whether the route of glucose administration is intragastric or intraperi-
toneal (Figs 2 and 3), indicating possible involvement of T1R3-mediated glucose sensing in
intestinal enteroendocrine, pancreatic, and/or brain mechanisms controlling glucose metabo-
lism. It is well established that T1R3 is expressed in a variety of tissues beyond the tongue and
gut mucosa (e.g., 9–15); however, it is still not clear to what extent these extraoral taste recep-
tors are involved in control of carbohydrate metabolism. In early studies in the human pan-
creas, T1R3 was immunolabeled in excretory ducts and centroacinar cells, but the endocrine
portion of the gland was immunonegative [37]. Later, RT-PCR showed expression of the
TAS1R3 gene in human pancreatic islets [22] and in MIN6 cells, a glucose-responsive β-cell
line [16]. Mouse islets [2] and MIN6 cells [17] express elements of intracellular taste signal
transduction cascade as well. The sweet taste receptor system of mouse pancreatic β-cells and
MIN6 cells seems functional since artificial sweeteners are able to stimulate insulin secretion,
which was attenuated by gurmarin, an inhibitor of the mouse sweet taste receptor [16, 22]. In
human pancreatic islets, potentiation of insulin release induced by fructose was suppressed by
lactisole, an allosteric inhibitor of human T1R3. Further, in vitro, genetic ablation of T1R2 or
T1R3 led to substantial reduction of the effect of sweeteners on insulin output from mouse
islets [19, 22].

In contrast with these results of in vitro studies, recent in vivo studies in food-deprived mice
revealed that the lack of T1R2 [22] or T1R3 [19] had no significant effect on the blood glucose
level after IP administration of glucose, although after IG glucose administration Tas1r3-/-
mice had higher blood glucose and lower plasma insulin levels than did wild-type controls
[19]. A likely explanation for this discrepancy between in vitro and in vivo results is the differ-
ence in nutrition status of cells. In cultured mouse islets, positive effects of fructose or noncalo-
ric sweeteners on insulin secretion require presence of an optimal glucose level in the medium.
For instance, a sharp reduction of glucose concentration in islet media abolished the potentiat-
ing effect of fructose [22] and stimulated activity of noncaloric sweeteners [16] in MIN6 cells.
Therefore, pre-experimental fasting can also influence results of in vivo experiments. Overnight
fasting provokes a catabolic state in mice, which have a unique metabolic response to pro-
longed fasting that differs from the response to fasting seen in humans. Specifically, fasting
impairs insulin-stimulated glucose utilization in humans but enhances it in normal mice [26,
27]. In mice and rats, fasting, or even mild caloric deprivation, leads to the increase in insulin
binding in the tissues [38, 39]. Earlier, we found out that effect of T1R3 ablation on glucose uti-
lization was more pronounced in euglycaemic state than after fasting [40]. The present data
show that in mice in the nonfasted state, when β-cells are already partially depolarized due to
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KATP-dependent mechanisms [22, 35] and maintain basal levels of insulin secretion, deletion
of T1R3 causes a significant impairment of glucose tolerance in both IP GTT and IG GTT.
Thus, the apparent discrepancy between our data and these previous results is likely due to pro-
longed fasting used in these other studies, which likely caused marked changes in blood glucose
regulation mechanisms.

Potentially, T1R3-signalling could be also involved in regulation of glycogenolysis and/or
gluconeogenesis. In the adipose tissue, T1R3-signalling induced by non-caloric sweeteners
stimulates adipogenesis and suppresses lipolysis [41]. T1R3 is expressed in excretory ducts of
the liver [37], where it probably does not interact with glycogenolysis. However, an involve-
ment of T1R3-dependent mechanisms in fat, liver and other tissues in direct or indirect control
of glycogen breakdown and gluconeogenesis in our study is unlikely because animals in all our
experiments were in non-fasting state, in which synthesis of glucose from polysaccharides and
non-carbohydrates is suppressed.

Additionally, our results demonstrate that in the IP (but not IG) GTT, the effect of T1R3 dele-
tion was age related (Fig 2A), suggesting that normal T1R3-mediated extraoral sensing of sweet-
eners somewhat prevents deterioration of glucose tolerance with age. Decreased insulin secretion
due to the loss of β-cell mass or impaired β-cell function and increased insulin resistance are con-
sidered two major factors leading to impaired glucose tolerance in the elderly [42–44].

According to the classical concept, the oral ingestion of glucose stimulates more insulin
release than does intravenous infusion while causing a similar elevation of the plasma glucose
level [45]. This phenomenon, known as the incretin effect, is largely attributable to two insuli-
notropic hormones released in response to food ingestion from intestinal enteroendocrine K-
cells (GIP) or L-cells (GLP-1). Both GIP and GLP-1 have direct stimulatory effects on pancre-
atic β-cells (for review see [46]). The combined action of incretins is believed to account for
about 50% of the total insulin secretory response after a meal [47]. In recent years, sweet taste
molecules, including T1R3, as well as intracellular taste signal transduction machinery in the
gut enteroendocrine cells were described among the regulators of incretin production. Immu-
nolabeling has revealed taste signal transducing elements in a number of intestinal L-cells,
ranging from 15% in mouse jejunum up to 90% in the human duodenum [11, 48], whereas K-
cells likely express only marginal levels of sweet taste protein transcripts [14]. The artificial
sweetener sucralose administrated to the mouse enteroendocrine GLUTag cell line or to the
human L-cell line NCI-H716 enhances GLP-1 output that could be blocked by species-specific
inhibitors of the sweet taste receptors [14, 18]. Knockout mice lacking T1R3, or ileum explants
from these mice, showed markedly reduced GLP-1 release in response to luminal infusion of
glucose [19, 20]. Consistent with this and with our results (Fig 3), Tas1r3-/-mice had higher
blood glucose and lower plasma insulin levels during an oral glucose challenge compared with
wild-type controls [19]. However, in mouse or rat duodenum and jejunum, only a small num-
ber of taste proteins are colocalized with enteroendocrine cells [13, 49], and there is still no
convincing evidence that T1R3-dependent intestinal endocrine mechanisms are potent enough
to control blood glucose levels in vivo.

In our study, like in classical investigations [45], the involvement of T1R3 in regulation of
intestinal secretion of incretins could be evident by comparing blood glucose clearance after
administration of the same dose of glucose by different routes. We show that both Tas1r3+/+
and Tas1r3-/-mice demonstrated similar incretin effects (S1 Fig): in both types of mice blood
glucose clearance was more active after IG glucose administration than after IP administration.
Pancreatic β-cells and gut enteroendocrine cells use a common metabolic mechanism of glu-
cose sensing, which requires glucose transporter GLUT2, the glycolytic enzyme glucokinase,
and the KATP channel [50–52]. Therefore, because the route of glucose administration affected
blood glucose clearance in Tas1r3-/-mice, we suggest that in the euglycemic state KATP-
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dependent metabolic mechanisms predominantly determine gut regulation of the glucose
homeostasis.

Impaired glucose tolerance is usually associated with reduced insulin sensitivity, which was
also demonstrated for Tas1r3-/-mice in our study (Fig 4A). Higher body mass of Tas1r3-/-
mice could have contributed to their lower insulin sensitivity, but the difference in body weight
was small (about 6%, Table 1), and body weight did not correlate with glucose level. Reduction
of insulin tolerance also did not correlate with age (Fig 4B) and body weight. Therefore, higher
body weight of Tas1r3-/- mice seems insufficient to explain their reduced insulin sensitivity.
Another possible cause of decreased insulin sensitivity of Tas1r3-/-mice could be chronic ele-
vation of postprandial glucose level, which was shown in our glucose tolerance experiments. In
particular, raised blood glucose levels cause overactivity of the hexosamine biosynthesis path-
way of glycolysis via modulation of transcriptional factors by O-N-acetylglucosamine, includ-
ing transcriptional factors of the insulin receptor substrate and probably GLUT4 (for review
see [53]), which may lead to reduced insulin sensitivity observed in Tas1r3-/-mice.

There is evidence that in addition to the gastrointestinal tract and pancreas, the central ner-
vous systemmay have sweet taste signaling mechanisms that play an important role in regulating
glucose homeostasis and therefore may be involved in effects of T1R3 deficiency found in this
study. The fall of central glucose levels causes a sequence of neurohormonal reactions known as
feedback response launched mainly by activation of glucose-sensing neurons in ventromedial
hypothalamic nuclei, orexin neurons in perifornical area, and neurons in the brainstem [54–56];
this includes sympathoadrenal activation followed by increases of plasma epinephrine, norepi-
nephrine, and glucagon, which in turn leads to hepatic gluconeogenesis and inhibition of pancre-
atic insulin secretion [57]. An acute increase in central glucose, which likely occurs in our
experimental protocol, results in an opposite response: an increase in insulin levels and suppres-
sion of hepatic glucose production through reduction of gluconeogenesis and glycogenolysis
[58]. Several mechanisms of glucose sensing, which do not require intracellular glucose metabo-
lism or glucokinase/KATP pathways, have been demonstrated in the hypothalamus (for review
see [59]). It is quite plausible that glucosensing neurons could use a sweet taste receptor. Ren
et al. [15] have reported that T1Rs and α-gustducin are highly expressed in neurons of mouse
hypothalamus compared with cortex and hippocampus. Strong expression of T1R2 and T1R3
was found in arcuate and paraventricular nuclei of the hypothalamus, as well as in the medial
habenula and the epithelial cells of the choroid plexus. Importantly, the arcuate nucleus is a key
region detecting peripheral metabolic status and then relaying this information to other hypotha-
lamic nuclei, including the ventromedial nucleus and paraventricular nuclei 53].

Most of glucose-sensing neurons are glucose inhibited (GI) and reduce their activity during
elevation of blood glucose above the euglycemic level. Both glucose-excited (GE) and GI neu-
rons of the hypothalamus are extremely sensitive to glucose changes when extracellular con-
centrations are less than 2 mM, which occurs at euglycemic blood levels [60], and they have
minimal response when glucose levels in the hypothalamus exceed 2 mM, suggesting that these
glucose-sensing neurons primarily sense glucose deficit [5, 61]. An additional smaller popula-
tion of glucose-sensing units is present in the arcuate nucleus, which include high-GE and
high-GI neurons responding to an increase in extracellular glucose from 5 to 20 mM; however,
it is still not clear whether these neurons play role in regulating hyperglycemic states. It is inter-
esting that glucose sensing of the high-GE and high-GI neurons is KATP independent [6]. Col-
lectively, there is evidence that glucose-metabolism-independent pathways in the central
nervous system may involve T1Rs and take place under control of peripheral glucose homeo-
stasis in the hyperglycemic state; however, their role needs to be elucidated. Additional investi-
gations of neurotransmitter and hormonal specificity of hypothalamic neurons expressing
T1R3 possibly will shed light on their physiological relevance.
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Measures of glucose metabolism used in this study may have been affected by direct effects
of absence of the T1R3 protein in extraoral cells, as well as by indirect effects from these cells to
other tissues (e.g., mediated by metabolic, hormonal or paracrine effects). The goal of our
ongoing studies is to find out, which of these mechanisms are involved in impaired glucose
metabolism in Tas1r3-/-mice. If genetic variants of the Tas1r3 gene alter glucose metabolism
in mice, then similar relationships may also exist in humans. Human T1R genes are polymor-
phic [62], and some of these polymorphisms are associated with taste functions [63–67]. Our
study suggests that these functional polymorphisms of human T1R genes may also be associ-
ated with glucose metabolism and related diseases in humans. This emphasizes importance of
human studies of T1R genes as potential new targets for diagnostics, prevention and treatment
of metabolic diseases.

In conclusion, we have shown that the lack of attraction to sucrose demonstrated in
Tas1r3-/- mice, compared with Tas1r3+/+ mice, is associated with reduced glucose tolerance in
these mice. In nonfasted mice, the deletion of the T1R3 subunit of the sweet taste receptor
results in substantial impairment of blood glucose clearance after both intragastric and intra-
peritoneal glucose administration. This clearly indicates involvement of the extraorally
expressed T1R3 protein in control of glucose homeostasis in hyperglycemic states. Deletion of
T1R3 had minor impact on the incretin effect, which suggests that intestinally expressed T1R3
protein is less important for regulation of blood glucose level compared with other extraoral
sites, such as pancreas or brain. Reduced glucose tolerance after T1R3 deletion was associated
with impaired insulin sensitivity. We have also demonstrated a marked age dependence of the
effect of T1R3 receptor protein on blood glucose levels in the intraperitoneal glucose tolerance
test. Altogether, our results suggest that further investigation of visceral reception of sugars
with the T1R3 protein may lead to therapeutic approaches in the treatment of carbohydrate
homeostasis disorders.

Supporting Information
S1 Fig. Effect of intraperitoneal (IP) versus intragastric (IG) administration of glucose (2
g/kg) on blood glucose concentration (left) and glucose AUC (right).Nonfasted Tas1r3+/+
(A, B) and Tas1r3-/- (C, D) mice 9–21 weeks of age (A, C) and 22–34 weeks of age (B, D). Post
hoc comparisons with Fisher LSD test (IP vs. IG): �p<0.05, ��p<0.001.
(TIF)
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