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Abstract
The financial crisis illustrated the need for a functional understanding of systemic risk in

strongly interconnected financial structures. Dynamic processes on complex networks

being intrinsically difficult to model analytically, most recent studies of this problem have

relied on numerical simulations. Here we report analytical results in a network model of

interbank lending based on directly relevant financial parameters, such as interest rates

and leverage ratios. We obtain a closed-form formula for the “critical degree” (the number of

creditors per bank below which an individual shock can propagate throughout the network),

and relate failures distributions to network topologies, in particular scalefree ones. Our crite-

rion for the onset of contagion turns out to be isomorphic to the condition for cooperation to

evolve on graphs and social networks, as recently formulated in evolutionary game theory.

This remarkable connection supports recent calls for a methodological rapprochement

between finance and ecology.

Introduction
In the financial sector, shock propagation mechanisms are at the core of systemic risk [1, 2],
and banks play the most important role [3]. An important and potentially vulnerable arena for
financial contagion is the interbank loan market, which allows banks to rapidly exchange large
amounts of capital for short durations to accommodate temporary liquidity fluctuations [4–6].
In a seminal work that laid down a framework for exploring systemic risk, Eisenberg and Noe
[7] developed a clearing payment algorithm for the interbank loan market and, subsequently,
interbank loan networks have been of particular interest [8–10].

In recent years, random network theory [11, 12] has provided a useful framework to study
contagion effects in interconnected structures [13]. Applied to the financial sector [14], net-
work approaches have clarified the role of connectivity [15, 16], bank size [17], shock size [10]
and overlapping portfolios [18] in systemic risks. Increased understanding of contagion in
finance [19, 20] has led to an increased interest by regulators and central bankers [21, 22] in
using network measures to evaluate systemic risk. Network centrality measures have been

PLOSONE | DOI:10.1371/journal.pone.0130948 July 24, 2015 1 / 15

a11111

OPEN ACCESS

Citation: Smerlak M, Stoll B, Gupta A, Magdanz JS
(2015) Mapping Systemic Risk: Critical Degree and
Failures Distribution in Financial Networks. PLoS
ONE 10(7): e0130948. doi:10.1371/journal.
pone.0130948

Editor: Naoki Masuda, University of Bristol, UNITED
KINGDOM

Received: June 26, 2014

Accepted: May 27, 2015

Published: July 24, 2015

Copyright: © 2015 Smerlak et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: Research at the Perimeter Institute is
supported in part by the Government of Canada
through Industry Canada and by the Province of
Ontario through the Ministry of Research and
Innovation. The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130948&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130948&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130948&domain=pdf
http://creativecommons.org/licenses/by/4.0/


widely used by researchers to identify important nodes in financial networks. Battiston et al.
[23] introduced DebtRank, a measure based on feedback centrality to identify systemically
important nodes. Markose et al. [24] used eigenvector centrality to design a super-spreader tax
to make financial systems more robust.

An essential insight of Allen and Gale [25], confirmed in [8] and deepened (with different
assumptions) in [16], was that increasing network connectivity—measured by its mean degree
z—can have opposite effects depending on the baseline value of z. On the one hand, when the
network is sparsely connected, increasing z will open new channels for contagion and weaken
the network. On the other hand, when z is sufficiently large, increasing z further will dilute the
effect of a localized shock and strengthen the network. From this perspective, the key question
is not if, but when, enhanced connectivity helps secure network robustness. Battison et. al. [26,
27], Stiglitz [28], and Roukney [29] incorporated the effects of illiquid assets and potential
amplifications of failures due to human behavior in crises. These findings suggested that inter-
mediate-degree networks would be most stable. Additionally, Battiston et. al [26] suggested in
case of non-amplification that increasing degree may have an ambiguous relationship with
contagion depending on the parameter values of initial robustness. However, these studies
assumed a normal distribution of initial robustness. We focus on the initial failures of the sys-
tem as studied by Allen and Gale—not amplifications—and study more realistic financial net-
works where initial distribution of robustness may not be normal.

Our first goal in this paper is to sharpen these results by introducing a model of interbank
lending that allows the “critical degree” separating these two regimes to be computed as an
explicit function of a small number of relevant financial parameters: (interbank and external)
interest rates, liquidity requirement, leverage ratio. As we shall see, this critical degree is pivotal
in deriving an analytical estimate of the number of failures induced by a single shock given
these parameters. Our results complement those of [8], who used the mathematics of percola-
tion theory [30] to determine the contagion threshold in financial networks, as well as those of
[9], who brought to bear the “mean-field approximation” familiar to statistical physicists. How-
ever, the relationship between the critical degree and the economic environment is hidden in
Gai and Kapadia’s work within an unspecified “probability that a bank is vulnerable”. We
unpack this connection explicitly.

Our second goal is to analyze the role of degree heterogeneity in financial networks with
regard to systemic risk. It has long been known [31, 32] that network topology is a key determi-
nant of network robustness. Empirical studies of flows over the Fedwire Funds Services [33,
34] have found the network to be inhomogeneous, with a strongly connected, strongly recipro-
cal core and a much more sparse periphery. (Similar analyses have been conducted of inter-
bank loan networks in Belgium [35], Austria [36], the Netherlands [37], Italy [38], and East
Asia [39], with similar results.) Nonetheless, most theoretical studies of the systemic risk to
date [8, 9, 25] have used homogeneous (Erdös-Rényi) networks. We show that, when banks’
degrees have a fat-tailed distribution, the number of failures induced by a single shock follows
a similar distribution—a precise statement of the “robust-yet-fragile” property of financial net-
works emphasized by several authors [8, 10, 40].

The paper is organized as follows. We begin by describing our model of interbank lending
networks, first in some generality and then under simplifying assumptions. Next we show how
the number of failures induced by an individual shock can be estimated analytically by means
of a mean-field-type approximation, in which Cayley trees (regular networks without loops)
play an instrumental role. We then compare our results with numerical simulations of both
homogenous and scalefree random networks. We close with a few remarks concerning the pol-
icy implications of our work, and point out an intriguing biological analogy.
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Results

A network model of interbank lending
We present a model of the structure of interbank lending as a random weighted directed net-
work, in which a node i 2 {1, � � �, N} represents a bank and a link i! j with weight lij a loan of
amount lijmade by i to j. The sum of all weights flowing out of a bank i, li = ∑j i lij, is therefore
the total interbank exposure of bank i; the sum of weights flowing into i, bi = ∑j! i lji, is in turn
the total liability of bank i on the interbank market. We call “(first) neighbors” two banks
which share a direct link. When a bank j is connected to another bank i through a path of
length larger than one, we say that j is a “higher order neighbor” of i.

In addition to its interbank liabilities bi, we assume that each bank i has external, more
senior liabilities si (e.g. deposits). We assume that all of these (interbank and senior) liabilities
will be available for reinvestment in external investment opportunities at a later time period.
On the asset side, we further introduce liquid assets λi (e.g. bonds) as well as illiquid assets ιi
(e.g. buildings). The total assets Ai and total liabilities Li of bank i can therefore be written as Ai

= li+λi+ιi and Li = bi+si; the difference Ki = Ai−Li is the net worth of bank i, see Table 1.
Basel III [41] introduced leverage and liquidity requirements for banks. We define for each

bank i the leverage ratio Λi = Ki/Ai (ratio of networth to total assets) and the liquidity ratio fi =
λi/Ai (ratio of liquid assets to total assets). By definition, lowering the ratios Λi and fi increases
the exposure of bank i on the interbank market; we shall see that they have a strong impact on
the systemic risk.

We now introduce a discrete-time investment dynamic, through which a bank can either
increase or decrease its net worth Ki. We assume that the investment period is shorter than the
time needed to liquidate illiquid assets. The period begins with the balance sheet introduced in
Table 1. In the first step, a bank uses its initial total liabilities Li to invest in some external
opportunity, at some interest rate Ri. (Successful investments correspond to Ri > 1, hazardous
ones correspond to Ri< 1; in the worst case scenario, the investment is lost in full, viz. Ri = 0.)
We denote ρi = (Ri − 1)Li the profit made in this transaction. (If a bank only borrows and does
not lend, bi > 0 and li = 0, we take ρi = (Ri − 1)bi; equivalently, the profit is defined by ρi = (Ri
− 1)max{Li, bi}.) In the second step, a bank uses this profit and its liquid assets λi to repay its
interbank liabilities li with an interest r> 1 while ensuring the seniority of si. When a bank i
can just repay its interbank borrowings, we say that i is critical. (See Methods for details.)

From a mathematical perspective, finding the interbank repayments xi (a.k.a. the clearing
vector) amounts to solving the system of N coupled, non-linear equations

xi ¼ min ri þ li � si þ
X
j i

ðlij=biÞxj; rbi
( )" #þ

; ð1Þ

where [�]+ = max{ �, 0} and the sum ranges over i’s debtors; the repayment xij of bank i to bank
j is then given by xij = lij xi/bi, as first proposed by Eisenberg and Noe [7]. After all repayments

Table 1. Initial balance sheet of bank i.

assets Ai liabilities Li

liquid assets λi senior liabilities si
illiquid assets ιi interbank borrowings bi
interbank loans li net worth Ki

doi:10.1371/journal.pone.0130948.t001
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are made, bank i has an updated net worth

K 0i ¼ ri þ li þ ii � si þ
X
j 6¼i
ðxji � xijÞ: ð2Þ

We call safe the banks i such that K 0i > 0, and failed the ones such that K 0i � 0.
While the set of Eq (1) can be studied numerically for various network topologies and differ-

ent values of the financial parameters Ri, fi, Λi and r, our goal in this paper is to obtain explicit,
analytical results about the robustness of financial networks with respect to shocks. To make
progress, we make the following—dramatic but empowering—assumptions: (i) all loans are
reciprocated, so that the network is actually undirected and loans are made in the same amount
in both directions, (ii) all interbank loans lij have unit value, so that li = bi = ki, where ki is the
degree of node i, (iii) all banks have equal leverage and liquidity ratios (Λ, f), so that the latter
can be thought of as model parameters rather than individual variables (iv) illiquid assets are
negligible (ιi = 0), and (v) external interest rates Ri take the same value R> 1 for all banks
across the network except one (bank i = i0, call it the “shocked bank”), for which Ri0 = 0.

The reciprocity of the “core” of real financial networks is very high [33], making our first
assumption less unrealistic than may seem at first sight. Garlaschelli [42] found that real net-
works are typically highly reciprocal or highly areciprocal, and Musmeci [43] determined that
exposure is related to topology. Networks with non-reciprocal links provide an example of an
interesting extension of this work. The assumption of unitary loans is made in order to provide
a simplistic yet analytical solution. This allows for general lessons to be learned from our analy-
sis, rather than more realistic but less widely applicable solutions. Simplistic assumptions to
enhance analytical tractability have often been used in finance literature. For example, Freixas
et al [44], Aghion et al. [19], Diamond and Dybvig [45] and Postlewaite and Vives [46] have all
made simplifying assumption about unitary deposits to study individual bank insolvency. We
additionally analyzed perturbations in this assumption, see Supporting Information for details.

Our third assumption represents a worst case scenario in which all banks within a financial
network are operating at the limit of regulatory caps, such as the Basel norms. The fourth
assumption is due to the model set up, whereby the two periods we analyze are much shorter
than the time in which illiquid assets could be liquidated. The assumption of uniform external
interest rates is made based on an assumption that the banks are operating in a similar
environment.

Our model then creates a single shock to the system, in the form of one bank losing its exter-
nal investement. Due to interbank lending, all other banks in the network can in principle feel
the effects of this shock, either directly (first neighbors, direct creditors) or indirectly (higher
order neighbors, indirect creditors). Within this setting, our objective is to estimate the under-
stand the onset of contagion, in particular through the number of induced failures F (the num-
ber of banks i 6¼ i0 such that K 0i � 0), as a function of the financial parameters (R, r, Λ, f) and of
the network topology.

Failures on Cayley trees
We begin our investigation of the model by considering the simplest network topology, namely
a network with uniform degree k and no loops (a “Cayley tree”). On such simple networks, the
repayment problem (1) can be solved exactly as follows (see Methods and Supporting Informa-
tion for details).

When k is sufficiently large, each neighbor of the shocked bank i0 inherits only a small frac-
tion of i0’s losses—and none fails. For networks with incrementally decreasing degree k, how-
ever, the effect of these losses on the net worth of each creditor of i0 gradually increases, until at
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some point shocked bank i0’s weakest neighbor also fails. If degree k further decreases, the sec-
ond (then third, etc.) order neighbors of i0 also approach criticality, and start failing as well.

This sequence of transitions, involving higher and higher order neighbors of the shocked
bank, defines an ordered sequence of “critical degrees” k�ð1Þ > k�ð2Þ > ::: such that

F ¼
Xq

p¼1
NðpÞðkÞ for k�ðqþ1Þ < k � k�ðqÞ ð3Þ

where N(p)(k) = k(k−1)p−1 is the number of nodes at distance p from i0. The values of these crit-
ical degrees provide a measure of the robustness of the network with respect to a shock: the
higher the critical degrees, the more fragile the financial structure.

The expression for each k�ðqÞ as a function of the financial parameters (R, r, f, Λ) can be

obtained by solving the repayment Eq (1) under these conditions that (i) all banks at distance d
� q from the shocked bank are safe, but (ii) all q-th neighbors of i0 are critical. This gives in
particular

k�ð1Þ ¼
rð1� f Þ � ½rð1� f Þ þ 2L� 1�þ

ðR� 1Þð1� LÞ þ L
: ð4Þ

The critical degrees k�ð1Þ and k
�
ð2Þ (given explicitly in Supporting Information) are plotted as

functions of the financial ratios (f, Λ) for R = 1.02 and r = 1.01 and as functions of the interest
rates (R, r) for f = 50% and Λ = 3% in Fig 1. As is apparent from these plots, k�ð1;2Þ are stricly

decreasing functions of f and Λ: lower liquidity and leverage ratios both enhance the systemic
risk—an intuitive conclusion, which is here proved rigorously. Furthermore, we see that, unlike
the first critical degree k�ð1Þ, the second critical degree never becomes appreciably large, k�ð2Þ≲5,
so that failures in effect hardly extend beyond the first neighbors of the shocked bank. Finally,
we note that, in the limit where Λ, f! 0 (a regime in which the economy is dominated by
interbank transactions), the first critical degree k�ð1Þ reaches the value 1/(R − 1); we will come

back to this observation in the concluding section.

Failures on general networks
Real-world financial networks being anything but regular, the usefulness of the exact solution
above would seem to be extremely limited. It turns out to be the opposite. In the regime where
failures are unlikely to extend beyond the first neighbors of the shocked bank—which is the
case for most realistic values of the financial parameters, as illustrated by the low values of k�ð2Þ
in Fig 1—knowing the first critical degree (hereafter denoted simply k�) yields a reliable esti-
mate of the distribution of number of failures P(F) (hereafter “failures distributions”) on ran-
dom networks, including scalefree ones. We focus our analysis on this regime.

We will assume that, on a general random network, a first neighbor i of the shocked bank
will indeed fail if and only if its own degree ki is smaller than the critical degree k� given by Eq
(4). This is akin to the “mean-field” approximation familiar from statistical mechanics: it
replaces the actual, inhomogeneous, environment of i in the network by a homogeneous envi-
ronment in which all banks have the same degrees as i, here the Cayley tree with degree ki.
While this approximation clearly cannot capture all the dynamics of a single network, it does
provide a tractable starting point to study the statistics of failure contagion in a given ensemble
of random networks. Within this approximation, we obtain the following results (see Methods
and Supporting Information for details).

Critical Degree and Failures Distribution in Financial Networks
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First, we have an explicit lower bound on the expected number of failures

hFi �
X
k�1

kpðkÞqðkÞ; ð5Þ

where qðkÞ ¼Pk�
l¼1 pðljkÞ is the probability that a neighbor of the shocked bank i0 has a sub-

critical degree. Here p(k) is the degree distribution (probability that a node has degree k) and p
(l|k) is the conditional degree distribution (probability that a node attached to a node with
degree k has degree l). The positive remainder hFi−∑k � 1 kp(k)q(k) corresponds to the contri-
bution of higher order neighbors, which is neglected here. Note that formula (5) implies that
disassortative financial networks (for which the probability q(k) that a neighbor of the shocked
bank has subcritical degree increases with the number of neighbors k) tend to be more vulnera-
ble to contagion than assortative or uncorrelated ones [32]. (In the latter case, one checks that

Eq (5) reduces to hFi ¼Pk�
l¼1 lpðlÞ ¼ qz, where q(k) = q is independent of k.)

Second, we show that, whether the network is Poisson-distributed (p(k)* zk/k!) or power-
law distributed (p(k)* k−γ), the failures distributions P(F) has the same asymptotic behavior
as the degree distribution itself. This can be understood as follows. This is because, for the
number of failures F to be large in the regime where only first neighbors of the shocked bank
can fail, one needs: (i) the shocked bank i0 to have large degree k, and (ii) many neighbors of i0

Fig 1. The first two critical degrees k�ð1Þ and k�ð2Þ as functions of the liquidity ratio f and of the leverage
ratio Λ for R = 1.05, r = 1.01 (Fig 1a) and as functions of the external rate R and the interbank rate r for
f = 50% and Λ = 3% (Fig 1b).

doi:10.1371/journal.pone.0130948.g001

Critical Degree and Failures Distribution in Financial Networks

PLOS ONE | DOI:10.1371/journal.pone.0130948 July 24, 2015 6 / 15



to have subcritical degree l� k�. The correlation of k and l being a decreasing function of |k −
l|, these two conditions become independent in the limit k� k� � l, in which case the failures
distribution P(F) simply reflects the degree distribution p(k). In the scalefree case, this means
in particular that P(F) has a power-law falloff with exponent γ, hence is fat tailed. This result
can be interpreted as expressing the “robust-yet-fragile” property of scalefree networks noted
earlier: even when the expected number of failures hFi is low, the risk remains that a single
shock can take down a significant fraction of the network.

Numerical tests
To test the validity of these findings, we analyzed two additional types of random networks for
which the conditional probability distribution p(l|k) is known explicitly as a function of the
mean degree z (at least in the large N limit): the classical Erdös-Rényi (ER) model [47], with
Poisson degree distribution, and the Barabási-Albert (BA) model [48], with scalefree degree
distribution P(k)* k−3, see Fig 2.

For both network types, we generated 104 random networks for each value of the mean
degree z. We solved Eq (1) numerically for each of these networks and, using Eq (2), we com-
puted the number of induced failures F over the whole network. From this we determined the
mean number of failures over all of the randomly generated networks and the empirical failures
distribution at each z. We compared these distributions with our mean-field bounds. Finally,
we checked that using directed networks (both random and scalefree) does not yield signifi-
cantly different results, thereby confirming the validity of assumption (i) as a useful first
approximation.

Fig 3 shows the mean number of failures hFi as a function of the mean degree z for homoge-
neous ER and scalefree BA networks, in the parameter regime R = 1.02, r = 1.01, f = 50% and Λ
= 3% (for which k� ’ 10.2); see also Figure B in S1 Text. Irrespective of the network topology,
we find that the empirical value of hFimatches very closely with our estimate Eq (5) provided
that the mean degree is not too small. This discrepancy at low z has a straightforward explana-
tion: while we neglected their contribution in our mean-field approximation, we saw with Cay-
ley trees that the likelihood of second and higher order neighbors failing is a decreasing
function of z.

Fig 4, in turn, plots the empirical distribution of failures P(F) and our analytical estimate
thereof (given in Methods) for ER and BA random networks with z = 8, for the same values of
the financial parameters. Here too, we find that the agreement between the numerical results
and the prediction of our mean-field approximation is very good; Fig 4b confirms in particular
that P(F) is fat-tailed when p(k) is (for BA networks).

The close agreement for these values of the financial parameters (and any other values such
that k� ≲ 15, see Supporting Information) is remarkable if one contrasts the complexity of the
original problem (1) with the extreme simplicity of our mean-field approximation. To us, this
conclusion is the main import of our study: once the expression for the critical degree k� as a
function of the financial parameters has been obtained, Eq (4), analytical results on the sys-
temic risk are not only possible, but also intuitive and straightforward.

Discussion
We have considered the effect of financial variables such as interest rates, leverage ratio and
financial exposure on the robustness of interbank systems vis-à-vis individual shocks. Focusing
first on regular networks, we obtained an explicit formula for the critical degree, below which
failures begin to propagate through the network. From this, we then showed how to derive a
simple but reliable lower bound on the expected number of failures and failures distribution in
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random (and possibly strongly heterogeneous) networks. Besides an in-depth study of cascades
beyond first neighbors of the shocked bank, interesting extensions of our work could include a
non-linear relation between interbank exposure and network degree, overlapping portfolios,
multiple or probabilistic shocks, multiple-period dynamics, and amplifications of failures.
Additionally, our assumptions, particularly reciprocal loans, could be relaxed to more realisti-
cally represent real-world networks.

The highly stylized character of our model notwithstanding, our results shed new light on
important aspects of systemic risks, such as the association between contagion and interest rate

Fig 2. Failures in sample networks withN = 53 and z = 4: Cayley tree (Fig 2a), ER network (Fig 2b), BA
network (Fig 2c). The black node indicates the shocked bank, the red nodes the failed banks, the
green nodes the safe banks.Here R = 1.02, r = 1.01, f = 50% and Λ = 3%.

doi:10.1371/journal.pone.0130948.g002

Fig 3. Mean number of failures as a function of mean degree z, as estimated analytically (circles) and
as obtained numerically (dots), for ER networks (Fig 3a) and BA networks (Fig 3b). The dashed line
indicates the value of the critical degree k*. The discrepancy between the empirical and theoretical values at
low z is due to the contribution of second neighbors, neglected in our approximation.

doi:10.1371/journal.pone.0130948.g003
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policy [44]. Using plausible values for interest rates, liquidity requirement and leverage, we
found critical degrees k� of the order of 5 to 10. An empirical analysis of the FedFunds market
[33] found a mean degree z’ 15, but almost half of the banks had out-degrees less than 4, thus
vulnerable to contagion. As mentioned previously, k�ð2Þ is nearly always< 5, and therefore can

significantly impact contagion. In the 2008 financial crisis, mean degrees in the interbank net-
work declined, increasing systemic risk [49]. While regulators do not directly control the topol-
ogy of financial networks, it is useful to understand how tools already in place—interest rates,
leverage and liquidity requirements—can affect the critical degree.

We observed that our formula (4) for the critical degree k� reduces to 1/(R − 1) in the high
leverage, low liquidity limit. This limiting value can be expressed as a “cost-benefit” rule of
thumb, as follows. If bank i lends l to bank j and j does not repay i, i will have lost l; if on the
other hand jmakes a successful investment with the money borrowed from i and repays it in
full, j will have made a profit profit (R − 1)l. The critical degree k� is then just the ratio of the
potential loss l to the potential profit (R − 1)l of each transaction. Given the great difficulty of

Fig 4. Statistics of failures in ER networks (Fig 4a) and BA networks (Fig 4b), for R = 1.02, r = 1.01,
f = 50% and Λ = 3%.Observe the “robust-yet-fragile” nature of scalefree networks: while the maximum
expected number of failures is lower than for ER networks, the probability of catastrophic failures is much
higher.

doi:10.1371/journal.pone.0130948.g004
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the problem of assessing the robustness of actual financial networks, this simple rule of thumb
could prove a handy “order-zero” approximation.

What is more, this interpretation establishes a direct link with a seemingly unrelated prob-
lem: the condition for the evolution of cooperation, famously investigated by Hamilton [50].
Ref. [51] recently extended his insights to graphs and social networks, showing that “natural
selection favours cooperation, if the benefit of the altruistic act, b, divided by the cost, c, exceeds
the average number of neighbours, k, which means b/c> k”. This simple rule is precisely the
same as the one we found for shock propagation in high-leverage, low liquidity interbank net-
works: the critical degree is given by the ratio of the activities promoting systemic propagation
(benefit of cooperation and interbank lending respectively) to the activities inhibiting systemic
propagation (cost of cooperation and external profits respectively). This unexpected connec-
tion supports the convergence of ecology and finance advocated by Haldane and May after the
2008 crisis [52], and points to a unified perspective on resource sharing in networks.

Methods

Repayment equations
Denoting xij the amount repaid by bank i to bank j in the second step, we assume the following
repayment rules.

• Full repayment: if ρi + λi−si + ∑j 6¼ i xji� rbi, bank i repays its junior debt rbi in full, hence for
each j 6¼ i

xij ¼ rlji;

• Partial default: if 0< ρi + λi−si + ∑j 6¼ i xji < rbi, bank i repays a fraction of its junior liabilities
on a pro rata basis, hence for each j 6¼ i

xij ¼
lji
bi

ri þ li � si þ
X
j6¼i

xji

 !

• Complete default: if ρi + λi−si + ∑j 6¼ i xji� 0, bank i repays nothing, hence xij = 0 for each j 6¼ i.

We call critical a bank i such that

ri þ li � si þ
X

j

ðlij=biÞxj ¼ rbi: ð6Þ

Networks
In this paper we considered three classes of networks: Cayley trees, ER networks and BA net-
works. They are defined as follows.

• Cayley trees are graphs without loops in which each node is connected to a fixed number of
neighbors k. Given an (arbitrarily chosen) “root” node i0, the number of nodes at distance d
from i0 is k(k − 1)d−1.

• ER networks are the simplest random networks: given N nodes, each possible edge is
included in the network with probability ϕ, independently from every other edge. When

Critical Degree and Failures Distribution in Financial Networks

PLOS ONE | DOI:10.1371/journal.pone.0130948 July 24, 2015 11 / 15



N� 1, this results in a random network with Poisson degree distribution

pðkÞ ¼ e�z
zk

k!
; ð7Þ

where z = ϕ(N − 1) is the mean degree. The absence of correlations in such networks entails
that the conditional degree distribution—the probability that a node connected to a node
with degree k has degree l—is just p(l|k) = lp(l)/z.

• BA networks are obtained by means of a stochastic growth process. Starting from a complete
graph over (say)m initial nodes, each new node is added tom existing nodes with a probabil-
ity that is proportional to the number of links that the existing nodes already have. In the
large time limit, this process defines a correlated random network with (conditional) degree
distribution [53]

pðkÞ ¼ 2mðmþ 1Þ
kðkþ 1Þðkþ 2Þ ; ð8Þ

pðljkÞ ¼ m
kl

kþ 2

l þ 1
� 2mþ 2

mþ 1

� � kþ l � z

l �m

� �
kþ l þ 2

l

� �
0
BB@

1
CCA; ð9Þ

where k�m; the mean degree is given by z = 2m.

Distribution of first-neighbors failures
Here we estimate the probability P1(F1) that F1 first neighbors of the shocked bank fail. Clearly,
the probability that F banks fail throughout the network (in addition to the shocked bank i0
itself) is larger than the probability that F first neighbors of i0 fail, i.e. P(F)� P1(F). In the main
text we made the approximation P(F)’ P1(F) and confirmed its validity numerically.

Consider a random network with degree distribution p(k) and conditional degree distribu-

tion p(k|l). Suppose that the shocked bank i0 has degree k, and let qðkÞ ¼
Pk�

l¼1 pðljkÞ be the
probability that a neighbor of the shocked bank i0 has a subcritical degree. According to our
“mean-field” assumption, the probability that F1 neighbors of i0 fail is given by the probability

qðkÞF1 that F1 neighbors have subcritical degree, times the probability ½1� qðkÞ�k�F1 that k − F1
first neighbors have supercritical degree, times the number of choices of F1 failing neighbors
among k. Weighing this by the probability p(k) that i0 has k neighbors, we arrive at

P1ðF1Þ ¼
X
k�F1

pðkÞ k

F1

� �
qðkÞF1 ½1� qðkÞ�k�F1 : ð10Þ

The expected number of first-neighbor failures is then obtained by evaluating hF1i = ∑F1 � 1 F1
P(F1) (see Supporting Information). Note that expression (10) is strongly reminiscent of the
classical theory of percolation on complex networks, where one shows [54] that the degree dis-
tributions p0(k0) after the removal of a fraction q of the nodes is given in terms of the old degree

distribution p(k) by p0ðk0Þ ¼Pk�k0pðkÞ k
k0

� �
qkð1� qÞk0�k. This is no surprise: the whole point

of our mean-field approximation is to reduce a dynamical problem (computation of repay-
ments) to a topological one (failure depends on degree only).
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Large degree asymptotics
Let us now consider the limit of Eq (10) when F1� 1 (hence for shocked banks with degree
k� 1), assuming that q(k) becomes independent of k in this limit. (This amounts to saying
that correlations between the degrees k and l of adjacent nodes become immaterial when |k − l|
� 1; this holds for both ER and BA networks.) Let us consider Poisson-distributed and power-
law distributed networks separately (see Supporting Information for details).

• Poisson networks. Given the Poisson degree distribution p(k) = e−z zk/k!, resumming Eq (10)
is straighforward and gives

P1ðF1Þ ¼ e�zq
ðzqÞF1
F1!

: ð11Þ

Thus, in Poisson distribued networks, the failures distribution is Poissonian with mean zq.

• Scalefree networks. For scalefree networks we observe that, when γ is an integer and for suffi-
ciently large k, the Pochhammer symbol (k)γ = k(k +1). . .(k + γ − 1) can be substituted to kγ

in the degree distribution p(k)* 1/kγ. This allows to perform the sum (10) explicitly, yield-
ing

P1ðF1Þ 	
qF1 2F 1ðF1; F1 þ 1; F1 þ g; 1� qÞ

ðF1Þg
	 qg�1

Fg
1

; ð12Þ

where 2F1 is the Gauss hypergeometric function, whose asymptotics for large parameters is
given in [55]. Analytical continuation in γ then shows that P1(F1) is scalefree with exponent γ
also for non-integer γ.

In both cases, the tail of P1(F1) has the same nature (Poisson or power-law) as the degree
distribution itself.

Supporting Information
S1 Text. Computation of critical degrees, mathematical proofs and further numerical
results, including the effect of loan asymmetry (Figure A) and varying interest rates and
leverage ratios (Figure B).
(PDF)
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