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Abstract
Noise-induced hearing loss (NIHL) is the most significant occupational health issue world-

wide. We conducted a genome-wide association study to identify single-nucleotide poly-

morphisms (SNPs) associated with hearing threshold shift in young males undergoing their

first encounter with occupational impulse noise. We report a significant association of SNP

rs7598759 (p < 5 x 10-7; p = 0.01 after permutation and correction; Odds Ratio = 12.75) in

the gene coding for nucleolin, a multifunctional phosphoprotein involved in the control of

senescence and protection against apoptosis. Interestingly, nucleolin has been shown to

mediate the anti-apoptotic effect of HSP70, a protein found to prevent ototoxicity and whose

polymorphisms have been associated with susceptibility to NIHL. Increase in nucleolin

expression has also been associated with the prevention of apoptosis in cells undergoing

oxidative stress, a well-known metabolic sequela of noise exposure. To assess the potential

role of nucleolin in hearing loss, we tested down-regulation of nucleolin in cochlear sensory

cells HEI-OC1 under oxidative stress conditions and report increased sensitivity to cisplatin,

a chemotherapeutic drug with ototoxic side effects. Additional SNPs were found with

suggestive association (p < 5 x 10-4), of which 7 SNPs were located in genes previously

reported to be related to NIHL and 43 of them were observed in 36 other genes previously

not reported to be associated with NIHL. Taken together, our GWAS data and in vitro stud-

ies reported herein suggest that nucleolin is a potential candidate associated with NIHL in

this population.
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Introduction
Noise exposure is a primary cause of hearing loss with a broad range of secondary non-audi-
tory effects including cognitive impairment, sleep disturbance and cardiovascular disease [1].
Noise-induced hearing loss (NIHL), which correlates highly with tinnitus, is the most common
and significant occupational health issue, affecting 16% of the population worldwide [2].

In the inner ear, noise exposure affects the lateral wall, organ of Corti and afferent neurons
resulting in hearing impairment categorized as either temporary or permanent hearing thresh-
old shifts. Although there are morphological and functional differences associated with either
form of hearing impairment, the molecular basis for that difference is not well defined. How-
ever, it is well established that the permanence of hearing loss resides principally in the irrevers-
ible loss of cochlear hair cells in the organ of Corti [3, 4, 5], with some contribution of the stria
vascularis [6] and afferent neurons [7]. Numerous reports suggest oxidative stress resulting
from increased levels of reactive oxygen species after noise exposure is the predominant con-
tributing mechanism to the loss of these hair cells [5, 8]. This increase in reactive oxygen spe-
cies damages mitochondria, triggering the release of pro-apoptotic factors that activate a
cellular apoptotic response [5, 8]. Loss of hair cells by apoptosis following noise exposure may
also result from extracellular potassium dysregulation through alteration of cell-cell junctions
between hair cells and Hensen's cells in the organ of Corti [3, 8, 9].

Supporting the role of oxidative stress and apoptosis in hearing loss, administration of anti-
oxidants in animal models exposed to noise and inhibition of apoptotic signaling pathways,
respectively, have shown efficacy in preventing cochlear hair cell loss [10–12] and is bio-avail-
able through several routes to the cochlea [13].

The susceptibility of individuals to NIHL results from both environmental factors that
increase physiological stress, inflammation and oxidative stress [3, 6, 14]; and from genetic fac-
tors [15]. Genomic studies utilizing candidate gene analyses or genome-wide association stud-
ies (GWAS) have identified some of the genetic variants associated with NIHL susceptibility
[15]. Coincidental with the known mechanisms of hearing loss, these studies have reported
polymorphisms in oxidative stress response pathways, involving HSP70 and SOD1 proteins; as
well as potassium recycling pathways, involving KCNQ4 and KCNE2 proteins [15].

Here, we report the results of a GWAS identifying a novel susceptibility locus associated
with NIHL in 41 individuals selected amongst 314 age-controlled subjects during their first
encounter with occupational noise. We then validate the potential role of nucleolin, the top
candidate gene containing a significant SNP in our study, by developing a HEI-OC1 cochlear
cell with silenced nucleolin, then experimentally testing its susceptibility to oxidative stress
conditions and to ototoxic drug cisplatin.

Materials and Methods

Ethics Statement
The protocol for the collection of saliva samples and the identification of biomarkers of suscep-
tibility to NIHL by GWAS was reviewed and approved by the Institutional Review Board at
Naval Medical Center, San Diego. The use of de-identified saliva samples for DNA analysis was
further reviewed by the Institutional Review Board at Harvard and received a non-human sub-
ject approval. All volunteers enrolled in the study provided written informed consent for saliva
collection and its use for the identification of genetic markers. Samples were de-identified,
anonymized and an identification number was randomly assigned to each subject. At the time
of the saliva collection, samples were labeled with the randomized identification number used
throughout the analysis.
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Subject Selection Criteria for Inclusion in the Marine Recruit Study
Subjects were randomly selected from a pool of volunteer participants enrolled in the placebo
arm of the Marine Recruit Study “Prevention of Noise-Induced Hearing Loss Using the Antioxi-
dant Supplement, N-acetylcysteine: Impulse Noise Study (NMCSD.2007.0013)”. Briefly, subjects
were in good health as determined by enlistment criteria, without previous exposure to military
noise. For admission into the study, subjects were required to have normal hearing in both
ears (no hearing threshold greater than 25 dB HL (Hearing Level) at any of the 1, 2, 3, 4, 6 kHz
standard audiometric test frequencies and no more than 30 dB SPL (Sound Pressure Level)
asymmetry between ears at 8 kHz). Subjects were required to have normal tympanometry on
baseline and on the day of final hearing testing, 5 weeks after pre-exposure audiogram. Recruits
with abnormal tympanograms consistent with middle ear pathology and those with prior his-
tory of head trauma were excluded. The average age of the study participants was 19.82 years
old.

Noise Exposure
During their training period, subjects underwent 10 days of small arms training with an M16
rifle, which commonly generates an approximate 157 dB peak SPL impulse noise [16]. More
precisely, noise exposure was spread over a period of 16 days in 2 series of 5 days with a period
of 6 days in-between. The bulk of the firing occurred during the first 5 days of the 16 days
period. Each subject fired up to 325 rounds of ammunition and was monitored for their use of
hearing protective devices, consisting of foam ear-plugs in accordance with standard operating
procedures. Standard military foam ear plugs used had a NRR of 29 dB (Noise Reduction Rat-
ing) with expected attenuation of 22 dBA as per OSHA standard.

Audiogram Collection
Subjects underwent pre-exposure audiograms 6 to 7 days prior to noise exposure. A post-expo-
sure audiogram was administered 12 days after last noise exposure which took place 36 to 37
days after the pre-noise exposure audiogram. At the time of the post-exposure audiograms,
every threshold shift greater than 5 dB HL compare to pre-exposure audiogram was checked
twice. Subjects with a hearing change also underwent a final tympanogram to rule out middle
ear pathology as a cause of the hearing loss. Audiograms were performed by certified audiolo-
gists on clinical audiometer Interacoustics AC40 (Minneapolis, MN/USA) with a 5 dB step size
sound level, and using TDH-39P earphones for 500 Hz and 1, 2, 3, 4, 6 kHz and Koss Pro/
KTX-6 earphones (Milwaukee, WI/USA) for 8 kHz. Earphones were calibrated daily using
OSCAR electro-acoustic ear simulators (Tremetrics, Eden Prairie, MN/USA) and data were
collected in double-walled sound-attenuated booths (Acoustics Systems, Austin, TX/USA).

Selection Criteria for GWAS Analysis
In the study reported here, only the Marine recruits from the control arm (placebo) of the ret-
rospective impulse noise study (NMCSD.2007.0013) were included. Subjects were divided in
hearing loss versus no hearing loss groups by calculating the mean threshold shift per subject.
Briefly, the threshold shifts between post- and pre-exposure audiograms were first calculated
for each ear at 2, 3 and 4 kHz frequencies respectively (n = 6 data points per individual) and
then averaged for each subject. The mean threshold shift provides a unified single parameter
that best captures all combinations by which hearing threshold may change, and is associated
with conversational frequencies most relevant to future impact on the ability to hear the
spoken word. Subjects were considered to have hearing loss if the mean threshold shift between
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pre- and post-exposure of both ears at frequencies 2, 3 and 4 kHz was greater than zero. In con-
trast, subjects had no hearing loss if the mean threshold shift of both ears at frequencies 2, 3
and 4 kHz was less or equal to 0. For this study, a total of 48 samples were included, consisting
of 23 samples randomly selected from a pool of 204 subjects who sustained no hearing loss and
25 samples randomly selected from a pool of 110 subjects who sustained hearing loss. None of
the selected samples presented more than 20 dB SPL asymmetry between ears at 8 kHz for
either pre- or post-exposure audiograms.

Genotyping and Quality Controls
The DNA isolated from the de-identified saliva samples collected at the time of the post-expo-
sure audiogram was genotyped at Boston University Microarray Core Resource facility on
Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA).

Quality controls of the genotyped DNA were performed following GWAS standards [17].
Samples or SNPs failing these controls were removed from further analysis. From the genotype
call using Birdsuite 1.5.5 [18], five samples were removed due to high variance estimate. For
SNPs quality control, SNPs with a minor allele frequency< 5%, a genotyping call rate per
SNP< 99%, or in Hardy-Weinberg disequilibrium (p< 10−5) were removed. Individuals with
missingness> 1.5% were also removed. The genetic gender was checked with PLINK [19] and
all matched to the gender reported in the phenotype file for all samples.

Samples were tested for duplicates and relatedness between subjects. For this a subset of
autosomal SNPs in approximate linkage equilibrium were selected in PLINK to determine pair-
wise Identity-By-Descent (IBD). Autosomal SNPs with a genotyping call rate per SNP> 0.999,
minor allele frequency> 5%, and a 100% call rate per sample were pruned to be on linkage
equilibrium using the default settings of PLINK, resulting in a pruned set of 31,362 SNPs per
sample to test for duplicates and relatedness. Pi-hat values showed there was no duplicate sam-
ple (all pi-hat< 0.9) and only one pair of individuals showed relatedness (pi-hat> 0.185). The
individual with the lowest genotyping rate of the related pair was removed.

The population structure was assessed by principal component analysis using SNPRelate
[20] in R version 3.0.2 [21]. For this, the founder population of Hapmap phase 3 release 2 (988
individuals) [22] and the NIHL study population were merged with PLINK. SNPs with A/T
and C/G variants were removed to prevent allele swap mismatch and only SNPs common to all
datasets were used. SNPs were flipped to match with sense of the strand. From the principal
component analysis on the merged population, principal components 1 and 2 were used to
identify and remove population outliers from the sample and adjust for population stratifica-
tion to prevent bias. Only one sample fell outside the reference clusters and was subsequently
removed.

As a final quality control measure, we used quantile-quantile plot and the genomic inflation
score λ< 1.00. In total, 41 samples out of the 48 genotyped samples passed the quality
controls.

Reagents for In Vitro Studies
The cochlear hair cell line HEI-OC1 [23] was a generous gift of Dr. Kalinec (House Ear Insti-
tute, Los Angeles, CA, USA). High-glucose Dulbecco's Modified Essential Medium (DMEM,
cat no. 11965–092) and fetal bovine serum (cat no. 26140–111) were purchased from Life
Technologies. Cisplatin (cat no. 479306) and Mission shRNA containing lentiviral particles
were purchased from Sigma-Aldrich. ATPlite one step assay (cat no. 6016731) was purchased
from Perkin Elmer and CellTox Green Cytotoxicity Assay (cat no. G8741) from Promega.
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Cell Culture and Silencing of Nucleolin
For propagation, HEI-OC1 cells were cultured in high-glucose DMEM with 10% FBS at the
permissive temperature of 33°C and 5% CO2. All experiments were performed on cells trans-
ferred to the non-permissive temperature of 39°C, 5% CO2.

To determine the effect of nucleolin down-regulation on HEI-OC1 cells, we constructed sta-
ble clones expressing shRNA targeted against nucleolin. For this, lentiviral particles containing
either shRNA directed against nucleolin or a scramble shRNA for control were transfected at
the permissive temperature of 33°C following a modified version of the protocol provided by
the manufacturer. Briefly, on day 1, cells were seeded in 96 well plates at 5,000 cells / well in
110 μL of media containing 8 μg/mL of Hexadimethrine Bromide (Sigma) and the equivalent
of 1 MOI (multiplicity of infection) of lentiviral particles. On day 2, the media containing the
lentiviral particles was removed and replaced with fresh media. On day 3, the media was
replaced with media containing 8 μg/mL of puromycin, which was then replaced every 3 days.
At 90% confluence, cells were detached using trypsin EDTA (0.25%) solution with phenol red
(Life Technologies, cat. no. 25200056) and cultured on 10 cm tissue culture Petri dishes for col-
ony selection and expansion. Nucleolin silencing was confirmed by qPCR and Western Blot. A
HEI-OC1 nucleolin-silenced clone, labeled sh-Ncl, with greater than 50% silencing, as con-
firmed by RTqPCR and Western Blot, was chosen for the viability and cytotoxicity experi-
ments. Cells from the scramble transfection, labeled sh-Scr, were used as control.

RTqPCR
To assess silencing of the nucleolin gene, RNA was extracted using the RNeasy minikit from
Qiagen and the Qiacube for semi-automated column processing, utilizing Qiashredder (Qia-
gen) for cell lysis and on-column DNA digestion (RNase free DNase Set, Qiagen). Extracted
RNA was quantified using Take-3 plate from Biotek and Biotek’s Synergy H1 multiplate reader.
40 ng of RNA were used for a 20 μL reverse transcription reaction using SuperScript III enzyme
from Invitrogen, following the manufacturer’s protocol. The qPCR was done using the LC96
equipment and FastStart Universal SYBR Green PCRMaster Mix from Roche. 10 μL reactions
were done with 5 μL of a 1:10 cDNA dilution, following the recommendation of the manufac-
turer and an annealing temperature of 59°C. Primer pairs for nucleolin and reference gene
β-actin were: Nucleolin Forward: 5’-CAGAACCCACATGGCAAACC-3’; Nucleolin Reverse:
5’-GCCTGATTGTTCTGCCCTCA-3’; β-actin Forward: 5’-ATGTGGATCAGCAAGCAGGA-
3’; β-actin Reverse: 5’-AAGGGTGTAAAACGCAGCTC-3’.

Western Blot
To assess silencing of nucleolin protein, cells at 80% confluence were lysed directly on the plate
using NP-40 lysis buffer (10% Glycerol, 1% NP-40, 1mMMgCl2, 20 mM Tris-HCLpH4, 150
mMNaCl, and 50 mM B-glycerophosphate in water) supplemented with protease and phos-
phatase inhibitor cocktail (Thermo Scientific, Cat. No. 78420 and Sigma Aldrich, Cat. No.
P8340, respectively) for 15 min on ice. Protein concentration was determined via Bradford
assay, and 15 μg of protein were prepared in loading buffer composed of Laemmli (Biorad
161–0737) and 2-Mercaptoethanol solution (Sigma M3148) prepared according to the manu-
facturer’s instructions, boiled for 5 min and loaded into a 12% acrylamide gel. Electrophoresis
and protein transfer using a PVDF membrane (Biorad 162–0177) was performed following the
protocol provided by Abcam. Primary antibody (AB22758, Abcam) was diluted 1:1000 in
blocking buffer and incubated overnight at 4°C and secondary antibody (AB7074, Cell Signal-
ing) was diluted 1:5000 and incubated for 3 h. The blot was developed using Clarity Western
ECL substrate (Bio-Rad 170–5060). Experiments were done in duplicate.
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Viability and Cytotoxicity
Nucleolin silenced clone sh-Ncl and scramble clone sh-Scr were seeded in 96-well plates at a
density of 8,000 cells / well in 100 μL of media and cultured overnight under permissive tem-
perature conditions for a confluence of 50% to 60%. Thereafter, the cells were transferred to
non-permissive temperature conditions. After overnight incubation, cells reached 80% to 90%
confluence and were treated with cisplatin (50 μL of 20 μM cisplatin in culture media) for 6h,
in non-permissive conditions. Cell membrane damage and ATP production were multiplexed
in 96-well plates using CellTox Green Cytotoxicity Assay and ATPlite one step assay, following
the respective manufacturer’s instructions. The CellTox Green Cytotoxicity assay was per-
formed first, followed by ATPlite assay. Briefly, a 1:500 dilution working stock of the CellTox
Green dye was prepared in assay buffer and added in a 1:1 ratio to the wells at 100 μL per well.
Plates were mixed at 700 rpm for 1 min in a microplate shaker and left to equilibrate at room
temperature (RT) for 15 min. Fluorescence was measured using the Synergy H1 multiplate
reader (Biotek), at an excitation/emission wavelengths of 485/528 nm respectively. 100 μL of
volume were removed from each well and discarded. To perform the ATPlite one step assay,
an equal volume of reconstituted reagent (100 μL) was added per well with plate mixed at 700
rpm for 2 min in a microplate shaker. Luminescence was then read using Synergy H1 multi-
plate reader. The assay was performed in duplicate with n = 4.

Immunocytochemistry and Confocal Microscopy
To evaluate the altered expression of nucleolin protein in sh-Ncl clones, we undertook immu-
nocytochemical staining of nucleolin in cells in culture. In normal cells, nucleolin is associated
to the fibrillar components in nucleoli [24]. Immunocytochemistry labeling protocols were
applied to cells seeded in Lab-Tek II 4-well chamber slides (Nalgen Nuc) [25]. After incubation,
wells were washed from residual culture media with Dublecco’s Phosphate Buffered Saline
(DPBS) and Tris-Buffered Saline solution with 0.1% Tween 20 (TBS-T), then fixed in 4% para-
formaldehyde in PBS pH 7.2, freshly diluted from 16% paraformaldehyde, for 10 min at RT.
Cells were briefly washed in TBS-T then incubated for 10 min in permeabilizing buffer (0.2%
saponin in TBS-T) rinsed in TBS-T. To reduce non-specific staining, cells were incubated for
1 h at RT with blocking solution (2% normal goat serum, 0.3% bovine serum albumin, 0.3 M
glycine in TBS-T, filter sterilized). Blocking solution was removed and primary antibody,
mouse anti-Nucleolin in Rabbit (AB22758), in a 1:100 dilution in blocking solution was added
and incubated overnight at 4°C. Wells were washed 3 times with TBS-T for 15 min each wash
and incubated for 1 h with secondary antibody Goat Anti-Rabbit IgG with Texas Red (AB6719,
Abcam) and Alexa Fluor 488 phalloidin (A12379, Life Technologies) in a 1:800 and 1:150 dilu-
tion, respectively, in blocking buffer. Cells were washed 3 times with PBS, 15 min each wash
and mounted using antifade solution with DAPI (P-36931, Life Technologies). To assess anti-
body specificity, controls with secondary antibody but lacking primary antibody against
nucleolin were used with HEI-OC1 transfected with scramble RNA (S1 Fig).

Images of immunostained cells were acquired on a LSM 700 (Carl Zeiss) confocal micro-
scope with a 40x/1.3 objective lens configured to detect DAPI-labeled nuclei using the 405 nm
laser, phalloidin-labeled filamentous actin cytoskeleton using the 488 nm laser, and the 555 nm
laser for nucleolin. Quantitative analysis of the micrographs was performed to compare the
abundance of nucleolin in the nucleus of the different cell types and in response to treatment.
For this, single-stain controls were used to determine the background levels of nucleolin signal.
In total, 15 to 22 cells for each cell type and treatment in multiple fields of view were acquired
using identical settings. Intensity threshold was then used to distinguish nuclear regions of
high nucleolin abundance versus more diffuse ones. The total intensity in nucleolin-abundant
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regions normalized by the total nuclear area was then calculated. All data acquisition and mea-
surements were performed using Zen Black software (Carl Zeiss).

Statistical Analysis
For GWAS, the association study using allelic frequency test based on case vs. control was per-
formed with PLINK. Only the SNPs within 20 kb of a gene were considered as reported in the
human genome build 18 (NCBI36). The genome-wide significance threshold was set to 5 x
10−7 and threshold for suggestive association was set to 5 x 10−4. Because of the small sample
size, we also calculated empirical significance levels, corrected for multiple hypothesis, using
30,000 permutations for each SNP using PLINK [19]. These empirical p-values were used to
confirm genome-wide significance. Linkage disequilibrium plot was generated with SNAP [26]
using chromosomal position of SNPs given by 1000 genomes [27].

The range of statistical power of the study was estimated with the ‘twoStageGwasPower’
package in R [28], which is an implementation of the method for power calculation previously
described [29]. One stage was considered for the calculation with NIHL prevalence at 16%
worldwide [2] and with prevalence ranging from 21% [30] to over 50% [31] in military
environment.

For in vitro studies of nucleolin-labeled cellular experiments, Student’s t-test was performed
to assess the difference of viability and distribution of nuclear-bound nucleolin between sh-Scr
HEI-OC1 and sh-Ncl HEI-OC1 clones. The difference was considered significant for p< 0.05.

Results
We analyzed the association between genotype and hearing threshold shift of 41 subjects ran-
domly selected from a pool of 314 young males exposed to repeat 157 dB SPL impulse noise for
10 days. Principal component analysis showed stratification in the sampled population with
25% of subjects (n = 10) overlapping with the Mexican ancestry cluster (MEX) and 75%
(n = 31) overlapping with the European ancestry cluster (CEU) of the HapMap population (S2
Fig). After all quality controls and adjustment for population stratification, 289,036 genotyped
SNPs and 41 genotyped samples of the 48 initially selected for the study remained for analysis.
This consisted of 19 subjects experiencing hearing threshold shift and 22 subjects with no hear-
ing loss. For the no hearing loss group, the mean threshold shift was -0.4 dB HL and for the
hearing loss group, the mean threshold shift was 2.2 dB HL, showing a mean difference of 2.6
dB HL per frequency at 2, 3 and 4 kHz per ear between the two groups (p< 0.001, Student’s t-
test). At the individual level, this mean threshold shift represents a difference of 15.6 dB HL per
subject between the two groups. A unified representation of hearing changes using composite
audiogram data shows that subjects within both groups responded differently to noise exposure
(Fig 1). In the hearing loss group, subjects performed worse on the audiological test after noise
exposure for either of the better or worse ear, consistent with a difference at conversational fre-
quencies. In contrast, subjects experiencing no hearing loss performed similarly on their audio-
logical test before and after noise exposure for either the better or worse ear.

Genome-Wide Significant SNP Found in Nucleolin Gene
We identified SNP rs7598759 associated at genome-wide significance (p< 5 x 10−7 and
p = 0.01 after permutation and correction; Odds Ratio = 12.75) (Fig 2). This SNP is located in
intron 9 of the nucleolin gene on chromosome 2q37.1 and contributes to a gain/loss of a CpG
site. Additionally, two other SNPs, rs4973409 and rs4973410, located within the 20 kb flanking
region of nucleolin, and one SNP, rs7571691, located in the gene NMUR1 (neuromedin U
receptor 1) contiguous to nucleolin were in suggestive association (p< 5 x 10−4). Linkage
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disequilibrium map showed genome-wide significant SNP rs7598759 is in strong linkage dis-
equilibrium with the non-genotyped SNP rs6754426 (Fig 3) and the three SNPs in suggestive
association (S1 Table).

Additional SNPs of Interest
We identified 7 SNPs with suggestive evidence of association (p< 5 x 10−4) located in or within
20 kb of 7 genes with links to hearing loss (Table 1). We also identified another 43 SNPs with

Fig 1. Composite audiograms of the hearing threshold pre- and post-noise exposure. Pre-noise exposure audiograms (circle, full line) and post-noise
exposure audiograms (cross, dashed line) are shown for (A) the better ear of subjects without hearing loss; (B) the better ear of subjects with hearing loss; (C)
the worse ear of subjects without hearing loss and (D) the worse ear of subjects with hearing loss. Data are the mean dB HL ± s.e.m at frequencies 2, 3 and 4
kHz.

doi:10.1371/journal.pone.0130827.g001
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suggestive significance in or within 20 kb of 36 genes where no relation to hearing loss had
been previously reported (Table 2). Of the 7 SNPs found in genes linked to hearing loss, three
are of particular interest: two SNPs, rs7429015 and rs2436106, are found in genes coding for
potassium channels which are important regulators of known pathways affected in hearing
loss, and a third SNP, rs4374858, is found in gene encoding a membrane receptor protein. Of
these, SNP rs7429015 is located in the intron of gene KCNMB2 that encodes the potassium
large conductance calcium-activated channel subunit β2; SNP rs2436106 is located within gene
KCNQ3 which is part of a family potassium voltage-gated channel protein associated with
NIHL [32], [33]; and SNP rs4374858 is located within 20 kb of gene GPR6, which encodes a G
protein-coupled receptor.

Fig 2. Manhattan plot of the SNPs associated with NIHL.Genome-wide significant SNP rs7598759 is
located within nucleolin gene on chromosome 2 (black arrow). The-log10 of the p-value (y-axis) for each of
the analyzed SNPs is shown with respect to their genomic location (x-axis) with chromosomes in alternate
colors. Dashed lines indicate thresholds for genome-wide association (p < 5 x 10−7, red) and suggestive
association (p < 5 x 10−4, blue).

doi:10.1371/journal.pone.0130827.g002

Fig 3. Regional linkage disequilibrium of newly identified SNP associated with NIHL. The location of
genome-wide significant SNP, rs7598759 (top large filled diamond), is shown respective to the location of
genes (green arrow and arrowhead, length based on size) within a 500 kb fragment of chromosome 2
(2q37.1). Genotyped SNP rs7598759 located within nucleolin gene (NCL) is in strong linkage disequilibrium
(r2 > 0.9) with non-genotyped SNP rs6754426 (black arrow). Linkage disequilibrium (r2) is based on Hapmap
CEU population with decreasing intensity of colored diamonds indicating decreasing linkage disequilibrium
with SNP rs7598759. A SNP was considered in strong LD for r2 > 0.8 (black dashed line). The plot was
generated with SNAP [26] using 1000 genomes [27] for the chromosomal position of SNPs.

doi:10.1371/journal.pone.0130827.g003
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Nucleolin Down-Regulation Increases Susceptibility to Oxidative Stress
in Cochlear Cell Model
The present GWAS results reveal significant association of SNP rs7598759 within the nucleolin
gene that encodes a multifunctional protein shown to be expressed in numerous cell types,
including primary cochlear cell cultures of rats [34]. Given that nucleolin also interacts with
proteins associated with various forms of hearing loss, including NIHL, its dysregulation in
NIHL susceptibility is plausible. We therefore tested the effect of nucleolin on the viability of
cochlear cells in vitro.

To test the potential effect of nucleolin dysregulation on hearing-loss, we utilized HEI-OC1
cochlear cell line commonly used as a model for drug-induced ototoxicity [35], [36]. These
cells contain a temperature-sensitive mutant of SV40 large-T antigen allowing the cells to grow
at permissive temperature (33°C) and differentiate at non-permissive temperature (39°C).
Under cisplatin exposure, a chemotherapeutic drug responsible of hearing loss in 60% of pedi-
atric patients [37], HEI-OC1 cells exhibit alterations of biomolecular pathways also known to
be affected in NIHL [35], [36] and can be used as a surrogate for in vitro NIHL studies.

We constructed stable clones expressing shRNA targeted against nucleolin (sh-Ncl). In
comparison to shRNA scramble control clones (sh-Scr), nucleolin expression in silenced sh-
Ncl clones was significantly reduced (Fig 4A). The down-regulation of nucleolin in sh-Ncl
clones significantly increased cellular toxicity in either untreated cells (p< 0.001, Student’s t-
test) or under cisplatin-induced stress (p< 0.001, Student’s t-test) when compared to control
cells (Fig 4B). This increase in sensitivity in cells expressing lower nucleolin was also reflected
on the nuclear distribution of nucleolin as revealed by confocal microscopy. Expression of
nucleolin in sh-Scr control clones was associated with the fibrillar components of the nucleus
(Fig 4C), similar to previous reports in normal cells [38]. Down-regulation of nucleolin in sh-
Ncl clones reduced the number of nucleoli-associated nucleolin (p< 0.001, Student’s t-test)
(Fig 4D). Nuclear redistribution of nucleolin was also altered in sh-Scr control clones exposed
to 20 μM of cisplatin for 6 h (Fig 4E) similar to that previously reported in the nucleus of
mouse fibroblasts [39]. This redistribution was further altered in sh-Ncl clones with a further
significant loss of nucleoli-associated nucleolin (p< 0.05, Student's t-test) (Fig 4F).

Discussion
Previous susceptibility studies have identified NIHL associated genes mainly in pathways that
regulate oxidative stress response and potassium channels. Our results show that novel candi-
date genes in these pathways are associated with NIHL. In particular, the results reported here

Table 1. Location of the SNPs with suggestive association with noise-induced hearing loss in genes previously related to hearing loss.

Chromosome Gene SNP(a) Position(b) Minor/Major Allele P-value OR

3 KCNMB2 rs7429015 179856818 A/G 5.00E-004 5.213

6 GPR6 rs4374858 110402134 G/C 3.95E-004 0.1901

8 KCNQ3 rs2436106 133191476 T/C 5.00E-004 5.213

8 RAB11FIP1 rs4956542 37877696 T/C 1.27E-004 22.36

10 PLAU rs2227578 75348721 T/C 3.95E-004 0.1901

12 LGR5 rs10784926 70239349 C/T 3.61E-004 6.333

14 SLC39A9 rs7147710 68975478 T/C 2.11E-004 5.829

(a)SNPs are located in or within 20 kb of the listed gene.
(b)Position on chromosome based on NCBI build 36. OR–Odds ratio of the association.

doi:10.1371/journal.pone.0130827.t001
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Table 2. Location of the SNPs with suggestive association with noise-induced hearing loss in genes that have not been previously associated
with hearing loss.

Chromosome Gene SNP(a) Position(b) Minor/Major Allele P-value OR

1 AGBL4 rs319981 48924473 G/A 1.32E-004 0.1605

1 CAMTA1 rs4908425 6823605 A/G 9.58E-005 9

1 FNDC7 rs11102337 109091734 C/G 4.74E-004 5.128

1 MR1 rs3845422 179279594 A/G 3.23E-004 0.1128

1 STXBP3 rs11102337 109091734 C/G 4.74E-004 5.128

2 C2orf52 rs7571691 232077645 C/T 1.32E-004 0.1605

2 C2orf52 rs6754952 232089489 T/G 2.89E-004 0.1773

2 LTBP1 rs4670387 33361950 T/A 4.18E-004 5.873

2 LTBP1 rs11124313 33366087 A/C 4.18E-004 5.873

2 NMUR1 rs7571691 232077645 C/T 1.32E-004 0.1605

2 NMUR1 rs1667305 232112073 A/G 1.56E-004 0.1667

2 NMUR1 rs1667313 232116262 A/C 1.56E-004 0.1667

2 NMUR1 rs6754952 232089489 T/G 2.89E-004 0.1773

3 NCBP2 rs746037 198160884 G/A 4.18E-004 5.873

3 PIGZ rs746037 198160884 G/A 4.18E-004 5.873

3 SENP5 rs746037 198160884 G/A 4.18E-004 5.873

4 ELOVL6 rs7669237 111240190 G/A 1.27E-004 22.36

4 ELOVL6 rs10032613 111241207 A/T 1.27E-004 22.36

4 ODZ3 rs6839881 183966131 T/A 1.27E-004 22.36

5 ARHGAP26 rs4912893 142407999 T/C 4.89E-004 5.347

6 LCA5 rs9294147 80248251 C/T 2.33E-004 12.25

6 SYNE1 rs4645434 152706954 G/T 4.61E-004 5.559

6 SYNE1 rs9397102 152717547 T/C 4.61E-004 5.559

6 SYNE1 rs7747005 152705880 A/G 4.89E-004 5.347

7 MAGI2 rs11973067 78374514 C/T 4.95E-004 5.143

7 WDR60 rs6459913 158408025 G/A 3.38E-004 0.05225

9 PIP5K1B rs1333340 70516547 G/C 4.89E-004 0.1846

9 PIP5K1B rs4744685 70520218 G/A 4.89E-004 0.1846

9 PIP5K1B rs2184117 70520904 T/G 4.89E-004 0.1846

9 SUSD1 rs10817281 113988347 G/C 4.74E-004 5.128

9 ZNF169 rs10993121 96063849 T/C 1.33E-004 0.1425

10 C10orf55 rs2227578 75348721 T/C 3.95E-004 0.1901

11 NELL1 rs4471417 21386046 G/C 4.00E-004 0.1515

12 CPNE8 rs10506125 37406554 C/T 2.89E-004 0.1773

14 CLEC14A rs1028930 37781365 T/C 2.96E-004 7.02

14 ERH rs897330 68906063 G/T 2.11E-004 5.829

14 GALNTL1 rs897330 68906063 G/T 2.11E-004 5.829

14 GALNTL1 rs12884348 68895853 T/C 5.00E-004 5.213

14 JDP2 rs3784013 75000823 G/T 3.67E-004 8.913

16 A2BP1 rs7196635 7693602 T/C 5.00E-004 5.213

16 FTO rs7205213 52434067 T/C 4.40E-004 5.167

16 FTO rs8053367 52432985 A/C 4.95E-004 5.143

16 FTO rs8053740 52433213 G/C 4.95E-004 5.143

16 FTO rs7203051 52433650 G/C 4.95E-004 5.143

16 FTO rs7205009 52433945 T/C 4.95E-004 5.143

17 COX10 rs2159132 13946164 C/T 4.74E-004 5.128

(Continued)
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suggest that nucleolin, a multifunctional phosphoprotein involved in the modulation of cell
proliferation and protection against apoptosis [40, 41], is a strong candidate for NIHL suscepti-
bility. This is supported by the numerous interactions nucleolin has with hearing loss-associ-
ated proteins, such as heat shock protein HSP70 [42, 43], pro-apoptotic protein P53 [44, 45]
and mitochondrial-associated apoptosis protein Bcl2 [46]. The nature of the associations of
these proteins with NIHL is varied and intervenes at several levels of regulation of gene expres-
sion and protein activity. For example, polymorphisms in the gene coding for HSP70 alone or
in combination with genes coding for other heat shock proteins, are associated with NIHL sus-
ceptibility [14, 47] and sudden sensorineural hearing loss [48]. It has also been shown experi-
mentally that under various cell stresses, nucleolin regulates P53 [45, 49], a pro-apoptotic
protein that is found activated in outer hair cells and Hensen's cells shortly after impulse noise
exposure [12]. Finally, over-expression of Hsp70 [50] and Bcl2 [51, 52] or inhibition of P53
[52] in rodents reduces aminoglycoside-induced ototoxicity.

All of these NIHL associated proteins, together with nucleolin, contribute to the apoptotic
cellular response induced by oxidative stress and DNA damage, which are known to result in
permanent hearing loss [5, 8]. The prevention of apoptosis in numerous human-derived cell
lines under various stress conditions follows from an increased expression of nucleolin [53, 54]
and appears to be mediated by interactions with NIHL-associated proteins Bcl2, HSPA1A
(Heat Shock 70 Protein 1A) and p53. These interactions are essential in the regulation of these
proteins, in particular under oxidative stress. For instance, results indicate that nucleolin exerts
a regulatory control of HSPA1A [43] and that either its over-expression or increased stability
by over-expression of HSPA1A in H2O2-exposed rat cardiomyocytes prevents apoptosis [42,
55]. It has also been shown that the interaction of nucleolin with RPL26 (ribosomal protein
L26), a necessary protein for induction of P53 translation following DNA damage [45], pre-
vents the translation of P53 and P53-dependent apoptosis [45, 49].

In the HEI-OC1 cochlear cell model, our in vitro results show that down-regulation of
nucleolin decreased cell viability and support the role of nucleolin in the regulation of cell
death of cochlear sensory cells. The effect of nucleolin down-regulation is actually consistent
with reports in other cell models. Taken together, our GWAS data and in vitro studies reported
herein suggest that nucleolin might be a potential target for therapeutic intervention in context
with NIHL. No previous study has investigated the role of nucleolin in hearing loss, although
other studies have shown that nucleolin dysregulation, together with the proteins it interacts
with, Bcl2, P53 and HSP70, have been associated in a wide range of cancers, viral infections
and autoimmune diseases [41].

Table 2. (Continued)

Chromosome Gene SNP(a) Position(b) Minor/Major Allele P-value OR

19 FUT3 rs778809 5781302 A/G 4.61E-004 5.559

19 FUT3 rs17271883 5785212 A/G 4.61E-004 5.559

19 FUT6 rs778809 5781302 A/G 4.61E-004 5.559

19 FUT6 rs17271883 5785212 A/G 4.61E-004 5.559

19 NRTN rs778809 5781302 A/G 4.61E-004 5.559

19 NRTN rs17271883 5785212 A/G 4.61E-004 5.559

20 CRLS1 rs6053819 5930604 G/A 2.08E-004 5.963

20 MCM8 rs6053819 5930604 G/A 2.08E-004 5.963

(a)SNPs are located in or within 20 kb of the listed gene.
(b)Position on chromosome based on NCBI build 36. OR–Odds ratio of the association.

doi:10.1371/journal.pone.0130827.t002
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The potassium recycling pathways that maintain the electrochemical gradient across cell
compartments and mediate potassium currents in the cochlea are also essential for hearing.
Consequently, mutations and polymorphisms in several genes involved in these pathways lead

Fig 4. Down-regulation of nucleolin affects viability and nuclear redistribution in HEI-OC1 cells. (A) Western blots of two independent experimental
replicates show HEI-OC1 wild type cells and transfected HEI-OC1 cells with either shRNA targeted against nucleolin (sh-Ncl) or with scramble shRNA
control (sh-Scr). (B) Cytotoxicity of sh-Scr and sh-Ncl cells either untreateds or incubated 6 h with Cisplatin at 20 μM from duplicate experiments with n = 4.
(C, D) Redistribution of nucleolin in shRNA-transformed HEI-OC1 cells. Transfected HEI-OC1 cells with shRNA targeted against nucleolin (sh-Ncl) or with
scramble shRNA as control (sh-Scr) were untreated or (E, F) incubated with 20 μMCisplatin for 6 h. Cells were stained with anti-nucleolin antibody decorated
with secondary goat anti-rabbit IgG Texas-Red conjugate and counterstained with DAPIand phalloidin. Images were then merged to form color composite
images. The images are representative of the results of each cell type and treatment. White scale bar represents 20 μm. The change in the total nucleolin
intensity was normalized to nuclear area in untreated cells (D) or in cells incubated 6 h with cisplatin at 20μM (F). Statistical significance was assessed with
Student's t-test (***p < 0.001, *p < 0.05). Experiments were performed in non-permissive conditions.

doi:10.1371/journal.pone.0130827.g004
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to or have been associated with hearing loss [15, 56]. These include potassium-gated voltage
channel genes KCNE1, KCNQ1 and KCNQ4 [32, 33], potassium large-conductance calcium-
activated channel subunit KCNMA1 [57] and potassium inwardly-rectifying channel KCNJ10
[33].

In this study, we identified two additional candidate potassium channels genes KCNQ3 and
KCNMB2 associated with hearing threshold shift. Although KCNQ3 has not been previously
reported in association with hearing loss, family members of this gene, including KCNQ1 and
KCNQ4, have been reported associated with NIHL [32], [33] which supports the possible role
of KCNQ3. Changes in KCNQ3 activation alone have been linked with induction of tinnitus
[58], while the dimerization of KCNQ3 with other potassium channels seems to be essential
for hearing. For example, dimers of KCNQ3/4 modulate the dynamics of activation of hearing
loss-associated candidate KCNQ4 [59] and might contribute to the critical low-voltage acti-
vated potassium conductance in both inner and outer hair cells of mice [60]. In addition,
another dimer, KCNQ2/3, has been shown to regulate apoptosis in cortical and hippocampal
neurons [61].

Another candidate gene, KCNMB2, is a subunit of large-conductance calcium-activated
potassium channels previously reported in linkage disequilibrium with rs4603971, another
SNP in suggestive association with hearing loss [62]. In addition, KCNMB2 subunit interacts
with KCNMA1 [63], the α-subunit of potassium large conductance calcium-activated channel
which also presents NIHL-associated polymorphisms [57] and whose deletion produces pro-
gressive deafness [63]. Furthermore, both protein subunits are under regulation of interferon-γ
[64], an inflammatory marker up regulated in cases of sensorineural hearing loss [65]. Our
results independently confirm the potential role of KCNMB2 for hearing loss susceptibility. Of
interest, both candidate genes KCNQ3 and KCNMB2 as well as KCNJ10 previously mentioned,
appear to be associated with epilepsy [59, 66, 67], although only KCNJ10 has been thus far asso-
ciated with both epilepsy and hearing loss [33].

The third SNP, rs4374858, is located within 20 kb of gene GPR6 and encodes a G protein-
coupled receptor. Interestingly, this receptor shows a high affinity for sphingosine-1-phosphate
[68], a sphingolipid metabolite that protects the cochlea against ototoxicity induced by genta-
micin, an antibiotic member of aminoglycoside family [69].

Many of the SNPs identified in this study, including genome-wide significant SNP
rs7598759 in nucleolin, are located within introns. The means by which these polymorphisms
might contribute to altering the pathways in which the associated proteins are involved is
unknown, although we can speculate that they could affect gene transcript levels, as previously
reported [70]. This might occur through various regulatory mechanisms involving different
classes of non-coding RNA, for example [71]. Considering also that the nucleolin SNP identi-
fied in this report contributes to a Gain/Loss of a CpG site, one such possible mechanism may
involve changes in DNA methylation and epigenetic controls. Such changes may be under the
constraint of environmental factors, which are actually known to significantly affect DNA
methylation [72, 73] and we would anticipate noise exposure to be another form of environ-
mental stress. Epigenetic control from environmental noise might be a strong component of
the cochlear cell response and therefore sites with SNPs variants that alter DNA methylation
might play a role in susceptibility to noise.

Does nucleolin dysregulation confer a predictive outcome for permanent threshold shift in
humans? In practice, recovery from temporary threshold shift in human subjects varies from
minutes to days. For example, human ears show significant recovery within hours from a
4-hour noise exposure at 100 dBA and full recovery within one week [74]. In more extreme
cases in animals with severe noise exposures that generate up to 40 dB threshold shift at 24h,
full recovery is observed within 2 weeks [75]. Based on the kinetics of recovery, we assume that
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the hearing loss experienced by some subjects at the post-exposure audiogram collected for the
study would be permanent, which falls within the range of reported hearing loss for this
population.

Many of the SNPs identified in this study are in genes that can potentially modulate apopto-
tic pathways and contribute to either temporary or permanent hearing loss. Indeed, although
the loss of hair cells following activation of apoptotic signals clearly contributes to permanent
hearing loss, it is not yet clear whether transient activation of these same pathways will contrib-
ute to temporary hearing loss [12]. Until further studies clarify this point, we suggest the apo-
ptosis-related genes reported in this study contribute to either temporary or permanent NIHL.

In the placebo arm of the overall Marine recruit study, 35% of subjects experienced a thresh-
old shift when exposed to occupational noise, which is well above the anticipated 16% from
noise exposure studies conducted in other occupational settings worldwide [2]. Looking beyond
the NIHL susceptibility polymorphisms identified in our study, we speculate that the environ-
ment training regimen undertaken by the subjects contributed to increased hearing loss and was
likely mediated by physiological stress, inflammation, and oxidative stress [3, 6, 14].

We posit that strong environmental conditions, leading to exercise-induced inflammation
and fatigue, contribute to NIHL susceptibility under certain occupational conditions. In this
context, the state of inflammation and fatigue of an individual becomes a relevant risk factor of
noise exposure in the work environment. Physiologic measures of stress, inflammation and
oxidative stress were not evaluated in this study. However they are important factors to be
explored in further studies to help place noise exposure in context with the genetic susceptibil-
ity to NIHL.

Intensive exercise or prolonged sleep restriction periods similar to Marine recruits training
might result in altered hearing threshold shifts. Several reports have shown a significant
increase in expression of inflammation markers C-reactive and IL-6 proteins [76, 77] under
less extreme conditions than experienced by these Marine recruits. Reduction of exercise
performance and fatigue resistance also correlates with an increase in IL-6 expression when
ATP-activated protein kinase (AMPK) that senses cellular energy homeostasis to maintain
ATP levels is altered [78]. It is therefore possible that the subjects in the study presented sys-
temic levels of inflammation above baseline.

There is also growing evidence that hearing loss is a risk factor in inflammation-driven dis-
eases such as diabetes [79] and dementia [80, 81, 82, 83] and that inflammation itself contrib-
utes to hearing loss. Data show that expression of inflammatory cytokines IL-1b and IL-6 in
the inner ear increases shortly after noise exposure [84, 85] and that long-term inflammation
measured by C-reactive protein correlates with hearing loss [86]. In addition, other reports
suggest that inflammation levels correlate with the capability to recover from hearing loss inju-
ries [87] and that blocking IL-6 signaling to suppress inner ear inflammation reduces NIHL
[85].

To address the question of whether different sets of genes will have an effect on the suscepti-
bility to either impulse or continuous noise, we compared the SNPs genotyped in our study to
previously reported SNPs associated with NIHL. Of the 46 SNPs within 23 candidate genes
previously reported associated with NIHL (Table 3), 15 SNPs were genotyped in our dataset.
Of these 15 SNPs, the most significant SNP was found in geneWSF1 (p< 7 x 10−4) identified
in another impulse noise study [88]. In contrast, SNPs identified in continuous noise studies,
such as in catalase and ITGA8 genes did not show association (p> 0.7). This result may sug-
gest that different sets of candidate polymorphisms are specifically associated with either
impulse or continuous noise exposure leading to hearing loss. Although impulse noise was the
main component of this study of noise exposure, we cannot fully rule out the possibility of
continuous noise exposure during the course of the study.
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Although the small sample size is a limiting factor, many of the results shown here converge
with previously reported data and add more weight to previously identified polymorphisms
associated with NIHL. Estimation of the power of this study, which depends on the NIHL prev-
alence and genetic model selected, is highly variable (0.02< β< 0.63), challenging its objective
interpretation. However, the results of in vitro experiments confirm the main finding of this
study supporting the potential role of nucleolin in NIHL susceptibility.

Conclusion
We conducted the discovery phase of a GWAS in subjects undergoing first encounter with
occupational impulse noise and identified nucleolin as a new candidate gene associated with
NIHL susceptibility. This study is the first to suggest the role of nucleolin in NIHL. We have
further identified 7 genes with suggestive association that are known to be involved in hearing-
loss pathways and 36 additional genes that have not previously been directly related to hear-
ing-loss pathways. Further studies are needed to confirm the relevance of these polymorphisms
to NIHL. Nucleolin was tested in a cochlear cell model and reveals susceptibility to ototoxic
stress. Taken together, our GWAS data and in vitro studies reported herein suggest that nucleo-
lin is a potential candidate associated with NIHL in this population.

Supporting Information
S1 Fig. Antisera specificity control for nucleolin antibody decoration in HEI-OC1 cells.
Cultured HEI-OC1 cells with scramble shRNA control immuno-decorated with (B) goat anti-

Table 3. List of published candidate genes with SNPs associated with NIHL.

Gene Symbol Gene Name References

CAT Catalase [89]

GJB1 Gap junction, beta 1 [33]

GJB2 Gap junction, beta 2 [33]

GJB4 Gap junction, beta 4 [33]

GRHL2 Grainyhead-like 2 [33]

GSTM1 Glutathione S-transferase mu 1 [90], [91]

GSTP1 Glutathione S-transferase pi 1 [90]

GSTT1 Glutathione S-transferase theta 1 [90], [91]

HSPA1A Heat shock 70kDa protein 1A [47], [92], [93]

HSPA1B Heat shock 70kDa protein 1A [47], [92], [93]

HSPA1L Heat shock 70kDa protein 1-like [47], [92], [93]

ITGA8 Integrin alpha 8 [33]

KCNE1 Potassium voltage-gated channel, member 1 [32], [33]

KCNJ10 Potassium inwardly-rectifying channel, subfamily J, member 10 [33]

KCNMA1 Potassium large conductance calcium-activated channel, alpha member 1 [33]

KCNQ1 Potassium voltage-gated channel, KQT-like subfamily, member 1 [32], [33]

KCNQ4 Potassium voltage-gated channel, KQT-like subfamily, member 4 [32], [33]

MYH14 Myosin, heavy chain 14, non-muscle [33]

PCDH15 Protocadherin 15 [33]

PON2 Paraoxonase 2 [94]

POU4F3 POU domain, class 4, transcription factor 3 [33]

SOD2 Superoxide dismutase 2 [94], [95]

WFS1 Wolfram syndrome 1 [88]

doi:10.1371/journal.pone.0130827.t003
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rabbit IgG Texas-Red conjugate used as antibody specific control. Cells were further counter-
stained with (A) DAPI to show nuclear profile and (C) phalloidin Alexa 488 conjugate to show
actin cytoskeletal features. (D) The merge panel clearly shows nuclear and actin profiles and
absence of non-specific staining. White scale bar represents 20 μm.
(TIF)

S2 Fig. Principal component analysis of the sampled population. This figure demonstrates
the results of the principal component analysis to identify stratification in order to avoid bias.
Eleven sub-populations from 1000 Genomes were tested to stratify the NIHL study population.
Principal component 1, defined as axis of the linear least square fit of the tested population and
principal component 2, which is defined as second axis of the linear least square fit orthogonal
to principal component 1, show the largest genetic variance between ASW (African ancestry in
Southwest USA), CEU (Utah residents with Northern and Western European ancestry), CHB
(Han Chinese in Beijing, China), CHD (Chinese in Metropolitan Denver), GIH (Gujarati Indi-
ans in Houston), JPT (Japanese in Tokyo), LWK (Luhya in Webuye, Kenya), MEX (Mexican
ancestry in Los Angeles), MKK (Maasai in Kinyawa, Kenya), TSI (Toscans in Italy), YRI (Yor-
uba in Ibadan).
(TIF)

S1 Table. Linkage disequilibrium between genome-wide SNP and suggestive SNPs in the
nucleolin locus. Genome-wide significant (peak) SNP rs7598759 is in strong linkage disequi-
librium (LD) with the three suggestive SNPs (D'> 0.9) although some the correlation are low
due to lower allele frequency (r2 < 0.8). Linkage disequilibrium and distances between pairs of
SNPs were calculated from either the 1000 Genomes [27] or HapMap release 22 [22] based on
the CEU population.
(XLSX)
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