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Abstract
A population of 178 recombinant inbred lines (RILs) was developed using a single seed

descendant from a cross between G. hirsutum. acc DH962 andG. hirsutum. cv Jimian5,

was used to construct a genetic map and to map QTL for fiber and yield traits. A total of 644

polymorphic loci were used to construct a final genetic map, containing 616 loci and span-

ning 2016.44 cM, with an average of 3.27 cM between adjacent markers. Statistical analysis

revealed that segregation distortion in the intraspecific population was more serious than

that in the interspecific population. The RIL population and the two parents were pheno-

typed under 8 environments (two locations, six years), revealing a total of 134 QTL, includ-

ing 64 for fiber qualities and 70 for yield components, independently detected in seven

environments, explaining 4.40–15.28% of phenotypic variation (PV). Among the 134 QTL, 9

common QTL were detected in more than one environment, and 22 QTL and 19 new QTL

were detected in combined analysis (E9). A total of 26 QTL hotspot regions were observed

on 13 chromosomes and 2 larger linkage groups, and some QTL clusters related to fiber

qualities or yield components were also observed. The results obtained in the present study

suggested that to map accurate QTL in crops with larger plant types, such as cotton, pheno-

typing under multiple environments is necessary to effectively apply the obtained results in

molecular marker-assisted selection breeding and QTL cloning.

Introduction
Cotton (Gossypium L.) is an important economic crop, providing most of the natural textile
fiber utilized worldwide. Upland cotton (G. hirsutum) is widely cultivated, and planted in more
than 70 countries, contributing to over 95% of the total cotton yield worldwide [1]. Because of
the softness and comfort of cotton fiber, cotton products are very popular. In recent decades,
improvements in cotton fiber quality and yield have been stagnant and unable to meet the
demands of the modern textile industry. However, yield is often negatively correlated with
fiber quality in upland cotton [2,3]. Conventional cultivar breeding programs, primarily select-
ing novel allele combinations based on phenotypic selection [4], is difficult to break the linkage
of negatively correlated traits. Fortunately, the development of genetic linkage maps facilitate
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the dissection of quantitative trait loci (QTL) that control fiber qualities and yield components,
which make it possible to pyramid elite genes of fiber quality and yield traits.

Because of the low genetic polymorphism between the intraspecific hybridization of upland
cotton, several high-density interspecific linkage maps between G. hirsutum and G. barbadense
have been constructed to study QTL for fiber quality and yield traits [5–7]. However, due to
the sterility and segregation distortion of interspecific progeny, intraspecific hybridization has
become the primary method in breeding programs, contributing to the recent development of
upland cotton intraspecific genetic maps [8–15].

As the most important cotton cultivar, much research attention has been paid to the
improvement of the fiber quality and yield of upland cotton. The QTL mapping of fiber quality
traits could provide a solid foundation for future studies concerning marker-assisted selection
breeding and map-based cloning. Hundreds of QTL associated with fiber quality and yield
components have been obtained from F2, F2:3, and RIL populations in upland cotton [8,9,12–
25]. The F2 population is a common population used in genetic map construction and QTL
mapping, but these studies cannot be replicated; thus, stable and available QTL could not be
identified using the F2 population. The construction of immortalized mapping populations is
an effective approach to obtain stable QTL, such as recombination inbred lines (RILs). How-
ever, the complex allotetraploid genome and agronomic traits in crops are inherited in a com-
plex manner, suggesting that cotton traits are highly affected by environmental and climatic
conditions, obtaining stable QTL in allotetraploid cotton is difficult. Tang et al. (2015) con-
structed a genetic map, containing 1,540 loci spanning 2,842.06 cM, and a total of 62 QTL were
identified using combined analysis and single environment analysis; seventeen QTL were
detected in more than one environment. Ning et al. (2014) identified 86 QTL for yield compo-
nents and fiber qualities from an RIL population. In addition, a stable fiber strength QTL
(qFS-D3-1), explaining 4.51–17.55% of the phenotypic variation (PV), and a stable fiber length
QTL (qFL-D11-1), explaining 10.02–25.34% of the PV, were obtained.

In the present study, two upland cottons, DH962 and Jimian5, with different fiber qualities
and yield component traits [21], were used as parents to establish a recombinant inbred line
(RIL) population. The objectives of this study were to construct an intraspecific upland cotton
map using SSRs, InDels and SNPs based on this RIL population, which was used to detect QTL
associated with fiber quality and yield traits under multiple environmental conditions.

Materials and Methods

Mapping population and DNA isolation
The G. hirsutum acc. DH962 and G. hirsutum cv. Jimian5 were used as the mapping parents.
DH962 was derived from the [(Jinmian6 × G. thurberi) F4 × Jinmian6] F3 population, showing
good performance in fiber quality as a female parent and continuous self-pollination since
2001. Jimian5 is a cultivar with high yield as a male parent. DH962 and Jimian5 were crossed
to obtain F1 plants on the farm at Huazhong Agricultural University (HAU), Wuhan, China, in
the summer of 2002 [10]. The F1 plants were planted during the winter in Hainan Province
and self-pollinated to produce the F2 generation. The F2 seeds were planted and self-pollinated
to produce F2:3 seeds on the farm of HAU in 2003. An RIL population was developed using the
single seed descendant method to generate F2:7 plants, which were subsequently planted at
HAU for propagation in 2007. The F7:8 generations of 178 RIL families were used in the present
study. Genomic DNA was isolated from the fresh leaves of 178 RIL plants and parents using a
CTAB procedure [26].
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Fiber quality trait collection
The 178 RILs and parents were planted on a farm provided by Prof. Qizhong Xia at Huanggang
Normal College, Huanggang (30.45° N, 114.93° E), Hubei, China in 2008 (E1), 2011 (E5), 2012
(E7) and 2013 (E8), and on a farm provided by Associate Prof. Dingguo Li at Yangtze Univer-
sity, Jingzhou (30.36° N, 112.15° E), Hubei, China in 2008 (E2), 2009 (E3), 2010 (E4) and 2011
(E6). These fields are only used for research purposes, and the field studies did not involve
endangered or protected species. The fiber quality data in E7 and yield components in E1 were
lost, and combined analysis (E9) was conducted after determining the mean values in seven
environments. The lines were planted in single-row plots of 5 m in length with 0.8 m row spac-
ing. All the lines were planted in the field using a randomized block. Twenty bolls from each
line were simultaneously harvested for fiber quality and yield investigation. Six yield compo-
nents and 5 fiber quality trait components were analyzed, including boll number per plant
(BN), seed cotton weight per boll (SCW), lint weight per boll (LW), lint percentage (LP), lint
index (LI), seed index (SI), fiber length (FL, mm), fiber strength (FS, cN/tex), fiber length uni-
formity ratio (FU), fiber elongation (FE), and micronaire (MIC).

DNAmarker analysis
A total of 634 SSRs, InDels, and SNPs, selected according to Wang et al. (2015) [15], were used
to genotype each RIL plant. PCR amplification and silver staining were performed according to
Lin et al. (2005) [27]. The SRAP markers were not genotyped in this RIL population because
these polymorphisms are difficult to crosstalk with those identified in previous studies. The
PCR products of SSRs were separated on 6% denaturing polyacrylamide gels [27] or 8% native
polyacrylamide gels using single-strand conformation polymorphism (SSCP) technology [28].
The PCR products of InDels and SNPs were separated on 8% native polyacrylamide gels using
SSCP technology [28].

Data analysis, genetic map construction and QTL analysis
The difference between the two parents for each trait was detected using a t-test. The broad-
sense heritabilities of measured traits were calculated according to the method of Knapp et al.
(1985) [29]. The coefficients of genetic correlation between measured traits were computed
according to the method of Kwon and Torrie (1964) [30]. The phenotype data were analyzed
using SPSS version 21.0 (SPSS, Chicago, IL, USA).

A chi-square test was performed to determine whether the genotypic frequencies at each
locus deviated from the expected 1:1 segregation ratio in the RIL population. The genetic link-
age map of the RIL population was constructed using JoinMap 3.0 [31] with a logarithm of
odds (LOD) threshold of 4.0 and a maximum recombination fraction of 0.4. Map distances in
centi-Morgans (cM) were calculated using the Kosambi mapping function [32]. Linkage
groups were assigned to chromosomes based on BC1 [33] and F2 [10] linkage maps and marker
mapping information on the CottonGen database (http://www.cottongen.org/). The linkage
groups were named as “ChrΧ” based on the linkage group length from long to short. QTL were
identified using Windows QTL Cartographer version 2.5 (http://statgen.ncsu.edu/qtlcart/
WQTLCart.htm) based on composite interval mapping (CIM). The statistical significance of
the LOD threshold value was determined using a permutation procedure (1,000 times for all
traits). The QTL nomenclature was adapted according to the method of McCouch et al. (1997)
[34]. The resulting linkage map and QTL were drawn using MapChart V2.2 software [35].
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Meta-analysis of the co-located QTL
The meta-analysis of the co-located QTL was conducted using Biomercator V3 software
(http://moulon.inra.fr/index.php/fr/component/docman/cat_view/21-logiciels/101-abi-
project-and-software/104-biomercator-v21). A map file and a QTL file were required to import
into the Biomercator V3 software [36]. The map file contains map name, marker name, and
distance between adjacent makers, etc. And the QTL file contains map name, QTL name, chro-
mosome name, trait, LOD score, phenotypic variance (PV), position of the QTL, etc. The order
‘meta-analysis’ was used to integrate the QTL to detect the hotspot region.

Results

Trait performance and correlation analysis in the RIL population
The traits of fiber qualities and yield components are summarized in S1 Table. Overall, the trait
values of DH962 were higher than those of Jimian5 in fiber qualities, and Jimian5 demon-
strated higher trait values than DH962 in yield components, except that no significant differ-
ence was observed for SI and LI. The RIL population performed transgressive segregation on
all traits. The results of ANOVA, shown in S2 Table revealed that most of fiber quality and
yield component traits presented significant genetic and environmental effects (P< 0.01),
except that SI showed no significantly environmental effect. And the broad-sense heritabilities
of the fiber quality and yield component traits were showed in Table 1. The genetic potential of
fiber quality and yield component traits were general low in cotton [37–39]. Boll number had
the lowest broad-sense heritability (16.19%), fiber length had the highest broad-sense heritabil-
ity (70.82%).

Genetic correlation analysis between fiber quality and yield component traits was calculated
based on covariance (Table 2). FL was significantly and positively correlated with FS, FU, and
significantly and negatively correlated with MIC, FE, LW, LP and BN. FS was significantly and
positively correlated with FU and SI, and significantly and negatively correlated with MIC, FE,
LW, LP, BN and LI. Among the yield component traits, most traits were positively correlated
between two traits, except that SI was significantly and negatively correlated with LP.

Genetic map construction
A total of 644 loci were obtained from the selected 634 primer pairs fromWang et al. (2015)
after genotyping the RIL population. After linkage analysis, 616 of 644 loci were mapped on 59
linkage groups; the total length of the linkage map was 2016.44 cM, with a mean distance of
3.27 cM between adjacent markers (Fig 1). The map included 538 SSR loci, 32 InDel loci and
46 SNP loci. Among the 59 linkage groups, there were 2–58 loci on each linkage group with
1.88–104.57 cM long. Fifty-three linkage groups were assigned to 24 chromosomes and 4 ones
were unanchored; and most of the loci from two larger linkage groups (LG1-Chr1/15 and

Table 1. The broad-sense heritabilities of fiber quality and yield component traits in the RIL population.

Components of variation FL FU MIC FE FS SCW LW LP SI BN LI

σ2 0.65 0.08 0.05 0.01 0.49 0.04 0.01 1.44 0.90 1.70 0.06

σ2
ge 1.31 0.37 0.09 0.10 2.40 0.06 0.01 3.10 0.46 9.00 0.20

σ2
e 1.15 1.13 0.12 0.21 2.80 0.23 0.04 6.60 0.38 70.00 0.53

H2
B (%) 70.82 35.96 70.41 18.77 47.22 62.37 67.59 61.21 58.21 16.19 19.13

σ2, the genotypic variance; σ2
ge, the genotype and environment interaction variance; σ2

e, the error variance; H2
B, the broad-sense heritability

doi:10.1371/journal.pone.0130742.t001
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LG2-Chr9/23) were mapped on two pairs of homologous chromosomes (Chr1 and Chr15,
Chr9 and Chr23, respectively).

Marker distorted segregation
All the 644 loci were tested for the expected Mendelian 1:1 segregation ratio, and 144 (22.36%)
loci showed a distorted segregation ratio (P< 0.05). Among these, 73 loci favored the female
parent ‘DH962’ allele, and 71 loci favored the male parent ‘Jimian5’ allele. A total of 134 loci
showing segregation distortion were mapped, and the distorted loci were unevenly mapped on
different chromosomes. Thirteen segregation distortion regions (SDRs) were identified on 9
chromosomes and 1 linkage group (LG1-Chr1/15, Chr3, Chr7, Chr9, Chr12, Chr17, Chr19,
Chr20, Chr21, and Chr26) (Fig 1). Most of the distorted loci in a given SDR skewed towards
the same parent allele; for example, two large SDRs were located on LG1-Chr1/15 and Chr26,
which showed significant distortion towards ‘DH962’ allele (Fig 1).

QTL for fiber quality and yield component traits
A total of 134 QTL were detected on 21 chromosomes and 4 linkage groups, explaining 4.40–
15.28% of the phenotypic variation (PV), with LOD scores ranging from 2.50 to 6.66 (S3 Table;
Fig 1). In seven environments, 64 QTL for five fiber quality traits and 70 QTL for six yield com-
ponents were identified. Among these QTL, 9 common QTL were detected in more than one
environment. Among these 9 QTL, 5 QTL were associated with fiber qualities, and 4 QTL were
associated with yield components. In addition, 22 of the 134 QTL and 19 new QTL (2 for FL, 1
for FS, 2 for MIC, 1 for FE, 3 for FU, 1 for SCW, 3 for LW, 2 for LP, 3 for BN, and 1 for LI)
were identified in combined analysis (E9) (S3 Table).

Fiber length. Ten QTL were detected on 6 chromosomes (Chr4, Chr8, Chr10, Chr11,
Chr17, and Chr21), with LOD scores ranging from 2.60 to 5.30, explaining 5.48–11.07% of the
PV (S3 Table). Nine QTL derived from ‘DH962’ showed positive additive effects, and one QTL
derived from ‘Jimian5’ showed a negative additive effect. The QTL qFL-c10-1 was detected in
three individual environments (E5, E6 and E8), and this QTL, which was located between
marker CIR305 and HAU-J5638, was also detected in combined analysis (E9), explaining 5.97–
11.07% of the PV. The QTL qFL-c21-2 was detected in two environments (E5 and E8) and in

Table 2. Genetic correlation analysis between fiber quality and yield component traits in the RIL population.

Trait FL FU MIC FE FS SCW LW LP SI BN

FU 0.68**

MIC -0.71** -0.12

FE -0.59** -0.53** 0.14

FS 0.99** 0.98** -0.52** -0.91**

SCW -0.08 0.01 0.20** 0.09 -0.05

LW -0.45** -0.10 0.46** 0.28** -0.43** 1.00**

LP -0.76** -0.26** 0.62** 0.41** -0.82** 0.17* 0.97**

SI 0.12 0.05 -0.05 -0.18* 0.19* 0.15 0.03 -0.18*

BN -0.21** 0.08 0.87** 0.62** -0.70** -0.04 0.43** 0.95** 0.28**

LI -0.51** -0.09 0.47** 0.49** -0.46** 0.71** 0.99** 0.98** -0.01 0.86**

* Significance with P value of 0.05

** Significance with P value of 0.01

doi:10.1371/journal.pone.0130742.t002
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combined analysis (E9), and the QTL qFL-c10-2 was detected in E1 and combined analysis
(E9).

Fiber strength. A total of 18 QTL for fiber strength were identified on 11 chromosomes
and 2 linkage groups (LG1-Chr1/15, Chr4, Chr6, Chr8, Chr9, LG2-Chr9/23, Chr13, Chr14,
Chr15, Chr17, Chr21, Chr24, and Chr26), explaining 4.86–11.39% of the PV, with LOD scores
ranging from 2.52 to 5.18 (S3 Table). Among these, 11 QTL showed positive additive effects
originating from ‘DH962’, and 7 QTL showed negative effects originating from ‘Jimian5’. qFS-
c17 was identified in E1 and combined analysis (E9), explaining 9.82 and 10.19% of the PV,
with the LOD scores of 4.93 and 4.32, respectively.

Micronaire. Thirteen QTL were detected on 6 chromosomes and 1 linkage group
(LG1-Chr1/15, Chr8, Chr13, Chr17, Chr21, Chr24, and Chr25), explaining 5.22–9.64% of the
PV, with LOD scores ranging from 2.54 to 3.99 (S3 Table). The QTL qMIC-c24, originating
from ‘Jimian5’, was identified in E1, E5 and combined analysis (E9), showing a negative addi-
tive effect and explaining 5.38% and 7.36% of the PV in E1 and E5, respectively. The QTL
qMIC-c25 had a positive additive effect on MIC and was also detected in E1, E6, E8 and the
combined analysis (E9). This QTL was located between the HAU-DJ-I023 and CCRI430 mark-
ers, explaining 5.80–7.20% of the PV. The QTL qMIC-c8-1, qMIC-c8-2 and qMIC-c8-3 were
detected in both E5 and combined analysis (E9).

Fiber elongation. A total of 16 QTL were detected on 5 chromosomes and 3 linkage
groups (LG1-Chr1/15, LG2-Chr9/23, Chr9, Chr15, Chr19, Chr22, Chr25, and LG3) (S3 Table).
Among the 16 QTL, 9 QTL originated from ‘DH962’, and 7 QTL originated from ‘Jimian5’.
The QTL qFE-c1/15-3 was identified in E4 and combined analysis (E9), and the QTL qFE-c1/
15-4 was identified in E5 and combined analysis (E9). The QTL qFE-c22 was observed in E1
and E6, showing a negative additive effect on E1 and a positive additive effect on E6, explaining
11.92% and 7.79% of the PV with LOD scores of 4.96 and 3.10, respectively.

Fiber length uniformity ratio. Seven QTL were detected on 7 chromosomes (Chr9,
Chr14, Chr17, Chr20, Chr21, Chr24, and Chr26), explaining 5.09–8.67% of the PV, with LOD
scores ranging from 2.52 to 4.13 (S3 Table). Only one QTL was located in the AT genome, and
six QTL were located in the DT genome. Among which, 5 QTL showed positive additive effects
originating from ‘DH962’, and 2 QTL showed negative effects originating from ‘Jimian5’.

Seed cotton weight per boll. Nineteen QTL for SCW were detected on 7 chromosomes
and 1 linkage group (Chr4, Chr5, LG2-Chr9/23, Chr12, Chr15, Chr16, Chr21, and Chr26),
explaining 5.44–15.28% of the PV, with LOD scores ranging from 2.51 to 5.34 (S3 Table). Six
QTL originated from the parent ‘DH962’, and 13 QTL originated from the parent ‘Jimian5’.
The QTL qSCW-c9/23-1 and qSCW-c9/23-2 were observed in E5 and E6, and the QTL
qSCW-c9/23-2 was also detected in combined analysis (E9). The QTL qSCW-c9/23-1
explained 5.57 and 5.74% of the PV, with LOD scores of 2.51 and 2.80, respectively. The QTL
qSCW-c9/23-2 explained 5.92–7.82% of the PV, with LOD scores ranging from 3.20 to 3.99.
Four QTL, qSCW-c9/23-3, qSCW-c9/23-4, qSCW-c9/23-5, and qSCW-c9/23-6, were detected
in both E6 and combined analysis (E9).

Lint weight per boll. For lint weight per boll, 20 QTL were detected on 7 chromosomes
and 2 linkage groups (LG1-Chr1/15, Chr7, LG2-Chr9/23, Chr13, Chr16, Chr19, Chr21, Chr24,
and Chr26), explaining 4.40–9.93% of the PV, with LOD scores ranging from 2.50 to 4.70 (S3
Table). Ten QTL originating from ‘DH962’ showed positive additive effects on LW, and the

Fig 1. Genetic map and QTL for fiber quality and yield component traits in upland cotton. The map and QTL were detected under multiple
environmental conditions in the RIL population derived fromG. hirsutum. acc DH962 andG. hirsutum. cv Jimian5. The QTL were shown on the right of the
Chromosomes/LGs. Markers showing segregation distortion are indicated as asterisks (*P < 0.05) and shown in underlined, italic, and bold text. The SDRs
are shown in brackets.

doi:10.1371/journal.pone.0130742.g001
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other ten QTL originating from ‘Jimian5’ showed negative additive effects on LW. Two QTL,
qLW-c26-3 and qLW-c26-5, were detected in both E5 and E7, both originating from the
‘DH962’ parent. The QTL qLW-c26-3 explained 9.36 and 9.48% of the PV, with LOD scores of
3.17 and 3.15, respectively. The QTL qLW-c26-5 explained 9.93 and 5.54% of the PV, with
LOD scores of 3.58 and 2.53, respectively. qLW-c24-1 and qLW-c24-2 were identified in com-
bined analysis (E9) as one QTL.

Lint percentage. A total of 13 QTL for LP were identified on 5 chromosomes and 2 link-
age groups (LG1-Chr1/15, Chr6, Chr13, Chr17, Chr21, Chr25, and LG4), explaining 4.48–
12.50% of the PV, with LOD scores range from 2.52 to 6.66 (S3 Table). Five QTL derived from
‘DH962’ showed positive additive effects, whereas eight QTL derived from ‘Jimian5’ showed
negative additive effects. Two QTL, qLP-c13-1 and qLP-c13-2, were detected in both E5 and
combined analysis (E9). The QTL qLP-c21-2 was detected in E6 and combined analysis (E9).

Boll number per plant. Fourteen QTL for BN were detected on 8 chromosomes and 2
linkage groups (LG1-Chr1/15, Chr5, Chr6, Chr9, LG2-Chr9/23, Chr13, Chr15, Chr17, Chr24,
and Chr25), with LOD scores ranging from 2.52 to 4.07, explaining 5.15–9.08% of the PV (S3
Table). Eight QTL derived from ‘DH962’showed positive additive effects, whereas six QTL
derived from ‘Jimian5’ showed negative additive effects. The QTL qBN-c25-1 was detected in
E7 and combined analysis (E9).

Seed index and lint index. Two and two QTL were identified for SI and LI, respectively
(S3 Table). Two QTL of SI explained 6.90 and 14.38% of the PV, with LOD scores of 3.49 and
6.64, respectively. Two QTL for LI explained 5.02 and 7.30% of the PV, with LOD scores of
2.69 and 3.71, respectively. The QTL qLI-c17 was detected in E6 and combined analysis (E9).

QTL clusters
A total of 24 co-located QTL regions were observed on 13 chromosomes and 2 larger linkage
groups (Chr4, Chr5, Chr6, Chr9, Chr10, Chr13, Chr14, Chr17, Chr21, Chr22, Chr24, Chr25,
Chr26, LG1-Chr1/15, and LG2-Chr9/23). After QTL meta-analysis, 26 QTL hotspot regions
were obtained (S4 Table; S1 Fig). Except for 9 common QTL, 17 QTL hotspot regions affected
different fiber quality or yield component traits (S1 Fig). For example, on LG2-Chr9/23, there
were 3 QTL related to different traits (FS, FE, and LW) distributed on a region of 0.46 cM (S4
Table; S1 Fig). Several QTL clusters were distributed on 15 chromosomes and 2 linkage groups
(Chr4, Chr5, Chr6, Chr8, Chr9, Chr10, Chr13, Chr14, Chr16, Chr17, Chr21, Chr22, Chr24,
Chr25, Chr26, LG1-Chr1/15, and LG2-Chr9/23). On LG2-Chr9/23, 18 QTL included 4 traits
(FS, FE, SCW, and LW) were located on a region ranging from 20.1 to 40.8 cM. Among the 18
QTL, 8 QTL were associated with SCW, 5 QTL were associated with LW, 3 QTL were associ-
ated with FE, and 1 QTL was associated with FS.

Discussion
In the present study, 616 loci were mapped on 59 linkage groups, and the total length of the
linkage map was 2016.44 cM, covering 40.33% of the upland cotton genome. Compared with
high-density interspecific genetic maps [40–43], the intraspecific genetic map generated in the
present study showed low coverage throughout the cotton genome. This phenomenon was also
observed for the construction of other genetic maps in upland cotton [11,13,14]. Due to the
narrow genetic base of upland cotton, we screened most of the SSRs in the CottonGen database
(http://www.cottongen.org) and some SNPs and InDels developed in the laboratory [15], but
the results were not satisfactory, and with the increase in map density, the efficiency of QTL
detection was greatly improved [7,15]. There is no high-density and coverage genetic map for
upland cotton, which is the huge obstacle for QTL mapping in upland cotton. In previous
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studies [14,15], the effect of SSRs was lower in the construction of the upland cotton genetic
map, and the development of lots of SNPs and InDels using next-generation sequencing tech-
nology could provide a new outlet for future studies.

Segregation distortion widely exists in the study of population genetics. In the present study,
144 (22.36%) of the 644 loci showed segregation distortion. In previous studies of cotton
[3,8,11,13,14,19,27,42,44–50], many reports have focused on segregation distortion, we sum-
marized these results in S5 Table. The percentages of distorted loci in interspecific populations
ranged from 7.65% to 25.50%, while they ranged from 22.36% to 81.25% in intraspecific popu-
lations. Although the genetic difference is bigger, the segregation distortion is smaller in inter-
specific populations, and this phenomenon presents an interesting topic for future studies. S5
Table also showed that most of the distorted loci skewed toward upland cotton in interspecific
populations, and most of the distorted loci skewed toward one of the parents in upland cotton
in intraspecific populations. Lacape et al. (2010) showed that the average fiber characteristics of
the interspecific RILs were closer to the G. hirsutum parent than to the G. barbadense parent,
and 71% and 29% of the observed distorted allelic skewed toward G. hirsutum and G. barba-
dense, respectively. As the important cultivated cotton, most of the varieties of upland cotton
were improved, and some good genes from other Gossypium species were introgressed into
upland cotton through hybridization and backcross methods. The introgression of good genes
generated the genetic differences observed between the mapping parents of upland cotton,
resulting in segregation distortion [8,11,13,14,19]. The number of distorted loci skewed toward
‘DH962’ and ‘Jimian5’ were similar, and the percentage of distorted loci was lower than that in
other upland cotton populations in the present study, suggesting that the ability of selection
and the combination of gametophyte mapping parents are similar. In addition, the fiber quality
and yield component traits were significantly different (S1 Table), and all the results showed
that the two parents were suitable for the development of the RIL population.

The clustering of QTL in tetraploid cotton has been reported in some studies
[3,8,11,13,14,19,20,47,51,52]. The present study also identified 26 QTL hotspot regions, among
which 17 QTL hotspot regions affected two or more different fiber quality or yield component
traits. The phenomenon of QTL clustering might represent the linkage of genes and QTL or
result from pleiotropic effects of a single QTL in the same genomic region [3]. For example,
NAU5107, detected on E5, was the nearest marker of qFS-c1/15-1 and qFE-c1/15-4; and FS
was significantly and negatively correlated with FE in the present study (Table 2). These QTL
hotspot regions revealed that the linkage drag of QTL hindered the improvement of fiber qual-
ity [20]. In addition, 11 larger QTL clusters were also obtained in the present study. As shown
in Fig 1, we observed that most of the clusters showed the enrichment of fiber quality or yield
component traits. On LG1-Chr1/15, most of the QTL were correlated with FS and FE in the
cluster. On Chr13, most of the QTL were correlated with LP and BN in the cluster. On
LG2-Chr9/23, 18 QTL were distributed on the QTL clusters, 8 QTL were associated with SCW,
and 5 QTL were associated with LW. Previous studies [51,52] generated multiple QTL clusters
and hotspots of fiber quality or yield component traits in the cotton genome through the analy-
sis of most of the publications on cotton. The QTL clusters provided valuable information to
determine genome regions with different traits.

S2 Table showed that all the fiber quality and yield component traits presented significant
environmental effects, and the present study revealed that cotton traits were highly affected by
environments and climate conditions. An example of meteorological information of E5, E6, E7
and E8 is shown in S6 Table and S2 Fig. S6 Table showed that the number of rainy day during
the four years were different. For example, 14 rainy days were reported in E7, but 6 rainy days
were reported in E8 in August. And S7 Table showed that the temperature presented significant
environmental effects (P< 0.01) in July and August, and these two months represented a
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critical period for blossom and fiber development in cotton. The different climate conditions
during the two months might have seriously affected the fiber quality and yield of cotton.

Because the genetic maps were constructed based on different populations and genetic back-
grounds, and environmental elements would affect the expression of QTL, it was difficult to
obtain common QTL among different populations. However, lots of QTL observed in the pres-
ent study were still identified according to the same markers of the same chromosomes in
other reports. The QTL qLP-c6-2 was detected as QTL-lp2 in the F2 population from a cross
between TM-1 and T586 [53]. QTL qFS-c14-1 corresponded to the QTL qFS-D2-1 in the 4WC
population [20]. QTL qFE-c1/15-2, qFE-c9/23-1, qFL-c17, qFS-c9/23, and qFU-c17-1 were
detected as qFE-A1-1, qFE-A9-1, qFL-D3-1, qFS-A9-1, and qFU-D3-1, respectively, in the RIL
population resulting from a cross between Prema and 86–1 [13]. The QTL qFL-c10-2 was
detected as the major QTL qFL10.1 in the RIL population resulting from a cross between the
upland cotton cultivars Yumian 1 and 7235 [14]. QTL qFL-c10-2 was also detected as a major
QTL qFL10.1 in the report of Shao et al (2014); and qFL-c8, qFMIC-c1/15-1, qFMIC-c8-5,
qFE-c25, qFS-c9-2, and qFS-c21-3 were detected as qFL08.1, qFM01.1, qFM08.1, qFE25.1,
qFS09.1, and qFS21.2 in this research [25], respectively. The QTL qFMIC-c1/15-2 was detected
as qMC-07A-c1-1 in an interspecific population [3]. And qFE-c15 was the same as the QTL
qFE15.2 in a three-parent composite population of upland cotton [12]. QTL qFE-lg3 and qFE-
c22 were detected as qELO-c18-2 and qELO-c22 in a random-mated recombinant inbred pop-
ulation [54], respectively. At the same time, qBN-c6-1 was detected as qNB-A6-1 by linkage
analysis and association mapping [55]. The QTL qLP-c13-1 and qMIC-c24 were detected as
qLP-c13 and qMV-c24, respectively, in a F2 population based on the same parents used in the
present study [15]. These QTL across different populations could be examined to obtain candi-
date genes of related traits, and the adjacent markers of these QTL could be used for marker-
assisted selection. Some common makers (BNL2495, BNL4028, BNL4108, Gh584, HAU2147,
MON_CGR5826, MON_CGR6019, MON_CGR6764, MON_SHIN0613, NAU2820,
NAU3774, NAU3308, NAU3948, NAU4891, and NAU5433) were also identified in other cot-
ton studies [3,9,12–15,20,48,53,56]. For example, BNL4108 was associated with BN and LP in
the present study, but associated with FL, FU, FE, and LP in previous studies [9,53]. NAU3308
was associated with FS in the present study, but associated with FL, FS, SI, and LP in a previous
study [20]. MON_CGR5826 was associated with FE and FS, but associated with FU in the
report of Zhang et al. (2012) [12]. The common markers associated with different traits might
result in the development of QTL clusters and linkage drag.

Among the 134 QTL detected in the present study, 9 common QTL were obtained in more
than one environment. The difficulty of obtaining stable QTL has been reported in the previous
studies [8,11,12,14]. Two QTL, qFL-c10-1 and qMIC-c25, were detected in three environments
and combined analysis (E9), and the results revealed that fiber quality traits were more stable
than yield traits under multiple environmental conditions. Notably, two stable QTL were not
clustered with any other QTL associated with fiber quality and yield traits, providing an oppor-
tunity to identify candidate genes for improving the fiber quality of upland cotton.

Supporting Information
S1 Fig. QTL Meta-analysis of hotspot regions using BiomercatorV3 software.
(TIF)

S2 Fig. Average temperatures in July, August and September in E5, E6, E7 and E8.
(TIF)
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