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Abstract

Objective

Hypophosphatemic rickets (HR) is a heterogeneous genetic phosphate wasting disorder.

The disease is most commonly caused by mutations in the PHEX gene located on the X-

chromosome or by mutations in CLCN5, DMP1, ENPP1, FGF23, and SLC34A3. The aims

of this study were to perform molecular diagnostics for four patients with HR of Indian origin

(two independent families) and to describe their clinical features.

Methods

We performed whole exome sequencing (WES) for the affected mother of two boys who

also displayed the typical features of HR, including bone malformations and phosphate

wasting. B-lymphoblast cell lines were established by EBV transformation and subsequent

RT-PCR to investigate an uncommon splice site variant found by WES. An in silico analysis

was done to obtain accurate nucleotide frequency occurrences of consensus splice posi-

tions other than the canonical sites of all human exons. Additionally, we applied direct

Sanger sequencing for all exons and exon/intron boundaries of the PHEX gene for an

affected girl from an independent second Indian family.

Results

WES revealed a novel PHEX splice acceptor mutation in intron 9 (c.1080-3C>A) in a family

with 3 affected individuals with HR. The effect on splicing of this mutation was further inves-

tigated by RT-PCR using RNA obtained from a patient’s EBV-transformed lymphoblast cell

line. RT-PCR revealed an aberrant splice transcript skipping exons 10-14 which was not

observed in control samples, confirming the diagnosis of X-linked dominant hypophospha-

temia (XLH). The in silico analysis of all human splice sites adjacent to all 327,293 exons

across 81,814 transcripts among 20,345 human genes revealed that cytosine is, with
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64.3%, the most frequent nucleobase at the minus 3 splice acceptor position, followed by

thymidine with 28.7%, adenine with 6.3%, and guanine with 0.8%. We generated frequency

tables and pictograms for the extended donor and acceptor splice consensus regions by

analyzing all human exons. Direct Sanger sequencing of all PHEX exons in a sporadic case

with HR from the Indian subcontinent revealed an additional novel PHEXmutation

(c.1211_1215delACAAAinsTTTACAT, p.Asp404Valfs*5, de novo) located in exon 11.

Conclusions

Mutation analyses revealed two novel mutations and helped to confirm the clinical diagno-

ses of XLH in two families from India. WES helped to analyze all genes implicated in the

underlying disease complex. Mutations at splice positions other than the canonical key

sites need further functional investigation to support the assertion of pathogenicity.

Introduction
Hypophosphatemic rickets (HR) is a group of disorders characterized by a defect in renal tubu-
lar reabsorption of phosphate, which causes defects in bone mineralization and hypophospha-
temia. HR has been divided into four main subtypes: X-linked hypophosphatemic rickets
(XLH), autosomal dominant hypophosphatemic rickets, hereditary hypophosphatemic rickets
with hypercalciuria, and tumor-induced osteomalacia [1–5]. Accounting for more than 80% of
familial HR cases, XLH (MIM 307800) is the most common form of heritable HR, with an
occurrence of approximately 1 in 20,000 live births [6–7]. XLH is a dominant disorder with
complete penetrance despite varying clinical expressivity [8]. This disease is characterized by
massive phosphate wasting, which causes growth retardation, bone malformations, abnormal
vitamin D metabolism, and hypophosphatemia [9].

Loss-of-function mutations in a phosphate-regulating gene with homologies to endopepti-
dases on the X-chromosome (PHEX), have been shown to cause XLH. The gene is composed
of 22 exons encoding a protein of 749 amino acids. The protein consists of an intracellular
region, a transmembrane domain, and an extracellular domain [10–11]. Inactivating mutations
in this gene increase circulating levels of FGF23, a phosphate-regulating hormone, which
causes a reduction in renal phosphate reabsorption and abnormal bone mineralization [12].
Though PHEX has a significant role in the phosphate uptake in the renal system, the protein is
predominantly expressed in osteoblasts, osteocytes, and odontoblasts rather than in any kidney
tissue [13–15].

To date, 365 different PHEXmutations have been described in patients with HR, many of
which are predicted to lead to protein truncations (58 nonsense mutations, 78 small deletions,
44 small insertions, and 65 splice site mutations; HGMD professional 2014.3 release). Only few
novel mutations have been added recently to the public databases [16–18]. Here, we report a
familial and a sporadic case with hypophosphatemic rickets, for which genetic mutation analy-
sis revealed a novel splice acceptor site mutation and a novel de novo truncating mutation.
The novel splice site mutation was further characterized by analyzing aberrant PHEX RNA-
transcripts detected in patient’s transformed peripheral blood lymphocytes.
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Material and Methods

Subjects and ethic statement
This study was conducted in collaboration with the Kidney and Urology Institute in Gurgaon,
India. Approval for this study and for human subjects research was obtained from the Univer-
sity of Michigan Institutional Review Board (Study ID: HUM00044173) and all subjects pro-
vided written informed consent before blood samples, pedigree structure, clinical data and
laboratory findings were provided. We investigated four patients from two unrelated families
of Indian subcontinent ancestry who were diagnosed with HR based on laboratory indices,
clinical indicators, and medical histories. The fractional tubular reabsorption of PO4 (TRP)
was analyzed based on the standard method and the tubular maximum rate of PO4 reabsorp-
tion in relation to the glomerular filtration rate (TmPO4/GFR) was calculated according to the
nomogram of Walton and Bijvoet [19].

DNA preparation
Genomic DNA was isolated from 5–10 ml peripheral whole blood samples (EDTA) drawn
from all affected patients and their parents using the Gentra Puregene Blood kit (Qiagen, Hil-
den, Germany) according to the manufacturer’s instructions.

Whole exome sequencing
Exome enrichment was conducted following the manufacturer’s protocol for the ‘NimbleGen
SeqCap EZ Human Exome v2.0’ beads (Roche NimbleGen Inc.). The kit interrogates a total of
approximately 30,000 genes (~330,000 CCDS exons). Massively parallel sequencing was per-
formed largely as described in Bentley et al. [20]. Whole exome capture and next-generation
sequencing was carried out at Otogenetics Ltd. (www.otogenetics.com) on an Illumina
HiSeq2000 (Illumina, San Diego, CA) platform and indexed libraries were subjected to paired-
end (2×101 bp read length) sequencing-by-synthesis using fluorescent reversible terminators
with a blocking group at the 3’-OH group. Three μg DNA of the affected mother E0023-I-2
was submitted for WES. Sequence reads were mapped to the human reference genome assem-
bly (GRCh37/hg19) using CLC Genomics Workbench (version 7.5) software (CLC bio, Aar-
hus, Denmark). Variants were called, filtered, and prioritized according to their pathogenicity
scores (>0.95) obtained from the Polyphen-2 web interface [21], MutationTaster [22], and
CADD (>20) [23]. Furthermore, variants were cross-referenced with the Human Gene Muta-
tion Database (HGMD, http://data.mch.mcgill.ca/phexdb), and genes known to be implicated
in HR were intensively examined.

Direct Sanger sequencing of the PHEX gene
Primers for PCR amplification of all 22 coding exons and exon/intron boundaries of the PHEX
gene (NM_000444.4) were designed using the web-based Primer3 (http://biotools.umassmed.
edu/bioapps/primer3_www.cgi) software. The sequences are available upon request. A 10 μL
PCR reaction was set up with 30 ng genomic DNA, 1.5 pmol of forward and reverse primer
each, and 5 μL HotStarTaq Polymerase mixture (Qiagen). DNA amplification was performed
on a thermal cycler (Mastercycler; Eppendorf, Hamburg, Germany) and applying a touchdown
PCR protocol described earlier [24]. In brief, we applied the following parameters: Initial dena-
turation at 94°C for 15 min, followed by 24 cycles with an annealing temperature decreasing
0.7°C per cycle, starting at 72°C for 30 sec; denaturation at 94°C for 30 sec, and extension at
72°C for 1 min. An additional 32 cycles were added with 94°C for 30 sec, 55°C for 30 sec, and
72°C for 1 min. The final extension was carried out at 72°C for 10 min. PCR products were

Novel PHEXMutations

PLOS ONE | DOI:10.1371/journal.pone.0130729 June 24, 2015 3 / 12

http://www.otogenetics.com
http://data.mch.mcgill.ca/phexdb
http://biotools.umassmed.edu/bioapps/primer3_www.cgi
http://biotools.umassmed.edu/bioapps/primer3_www.cgi


diluted 15-fold in pure water and submitted for direct Sanger sequencing on an Applied Bio-
systems capillary DNA sequencer (Model 3730 XL) without further purification. Sample prep-
aration for Sanger sequencing was done by following the instructions of the BigDye
Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA).

TA-cloning of mutant PCR products
In order to obtain clean Sanger sequences of the heterozygous c.1211_1215delACAAAinsTT-
TACAT (p.Asp404Valfs�5) mutation, detected in female patient E0024-II-1, we cloned the
respective 269 and 271 bp long PCR products of PHEX exon 11 using the pCR 2.1-TOPO plas-
mid vector system (Invitrogen). PCR products generated by using PHEX forward primer 5’-
TCAGCCATGGGTTTTATCC-3’ and reverse primer 5’-AGGCTGACATTAGCCTGTTG-3’
were ligated into the pCR 2.1-TOPO plasmid vector, subsequently transformed into One Shot
chemically competent E. coli cells applying a 42°C heat shock treatment. Transformed bacteria
were incubated for 1 hour in S.O.C. medium (Invitrogen) at 37°C on a shaking incubator (200
rpm) and plated on LB-agar plates supplemented with 50 μg/ml Ampicillin and incubated
overnight at 37°C. Plasmid inserts from 7 colonies were sequenced by Sanger using M13 for-
ward and M13 reverse primers. The heterozygous frameshift mutation p.Asp404Valfs�5 was
present in 3 out of those 7 clones with 4 clones showing the wild-type sequence.

Segregation analysis
Following the detection of potential mutations in an affected individual, we performed segrega-
tion analysis and applied PCR amplification and direct Sanger sequencing for all family mem-
bers for the variant(s) in question.

Epstein-Barr Virus (EBV) immortalization of B-lymphocytes
Peripheral blood mononuclear cells (PBMC) were isolated from 6 ml of peripheral blood on a
Ficoll gradient (Ficoll-Paque Plus, GE healthcare) and were suspended in 5 ml of RPMI 1640
medium supplemented with 10% fetal calf serum (Atlanta Biologicals, #S11595), 1x-Glutamax
(Gibco), and 7.5 μl Phytohemagglutinin (Gibco, #14175–095). We added 1.5 ml of medium
supernatant of the EBV-transformed marmoset B95.8 cell line. About half of the medium was
replaced every seven days for four weeks. EBV-transformed B-lymphoblast cells derived from
the patients were expanded to about>3 million cells before RNA was extracted. Cells were
maintained in complete RPMI1640 medium without penicillin and streptomycin at 37°C and a
5% CO2 atmosphere.

Reverse Transcription Polymerase Chain Reaction (RT-PCR)
We extracted total RNA from EBV-transformed lymphoblast cell lines (3 million cells) from
patient E0023-II-2 and from a healthy control individual using Trizol Reagent (Invitrogen)
according to the protocol of Chomczyński and Sacchi [25]. First cDNA strand was reverse
transcribed using the SuperScript III transcriptase (Invitrogen) together with random hexanu-
cleotide primers. Resulting cDNA was used as template to amplify an 1,636 bp product con-
taining exon 6 to 22 using forward primer PHEX-Ex6-F (5’-
GTACAGAAGCCAAGTCTTATCGGGATGC-3’) and reverse primer PHEX-Ex22-R (5’-AAT
GAAAGTCTCCAGGCCTAAAGCAATG-3’) aligning to the 3’ untranslated region (UTR) of
PHEX. Aberrantly spliced transcripts were verified following RT-PCR amplification, agarose
gel-electrophoretic separation, DNA extraction (QIAquick Gel Extraction Kit, QIAGEN), and
subsequent direct Sanger sequencing.

Novel PHEXMutations
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Genome-wide in silico calculation of splice site base-level frequencies
To calculate base-level frequencies of splice donors and acceptors genome-wide, we first down-
loaded GENCODE v19 and GRCH37.74 from Ensembl (http://www.ensembl.org/index.html).
There were a total of 739,829 exon entries in GENCODE v19. After filtering for uniqueness
using chromosome, start position and end position, there were 327,293 exons across 81,814
transcripts among 20,345 genes. There were a total of 80,035 transcripts with at least 2 exons.
For splice donors, the last exon for each transcript was excluded. There were a total of 257,325
unique donor exons and 69,968 exons (not included in calculation) that were uniquely the last
exon for some transcript. We then constructed one query for each of the 257,325 donor exons.
We included two bases upstream and twelve bases downstream from the 3' end of each donor
exon for a total of fifteen bases. Since many exons have the same 3' position, this resulted in
213,372 unique donor queries. Some sections of the reference sequence where masked out on
the Y chromosome, and the total number of queries excluding masked regions was 213,238.
For splice acceptors, we excluded the first exon for each transcript, and there were a total of
254,557 unique acceptor exons. There were 72,736 exons (not included in the calculation) that
were uniquely the exon first for some transcript. We constructed one query for each of the
254,557 acceptor exons, where we included twenty-three bases upstream and two bases down-
stream from the 5' end of an acceptor exon for a total of 26 bases. Since many exons have the
same start position, some exons were removed, which finally resulted in 206,484 unique accep-
tor queries. The total number of acceptor queries excluding the masked regions was 206,350.
We wrote a custom Perl script to calculate the individual base-level frequencies.

Results

Clinical features and laboratory findings
Family E0023 from India is a familial case (non-consanguineous) with 3 affected members, the
mother and 2 children, diagnosed with hypophosphatemic rickets. The older of the two
affected children is a 10 year old boy (II-1) who presented with growth retardation, dental
hypoplasia, and genu valgum ("knock-knee") deformities of the lower extremities (Fig 1 on the
left). His younger brother (II-2) is now 9 years old. He was born at full term and was within
average length (51 cm) and weight (3.1 kg) at birth and began walking at the age of 15 months.
During the time of examination, he had stunted growth and presented with dental hypoplasia
and genu varum (“bowlegs”) bone deformities (Fig 1 on the right). Their 33-year-old mother
(I-2), upon examination, showed growth retardation, dental hypoplasia, and bony deforma-
tions (“knock-knee”), whereas their 37-year-old father (I-1) was healthy.

In family E0024 we investigated a sporadic case with HR, an 8-year-old girl and from India
(II-1) who was also born of a non-consanguineous marriage at full term. At delivery, she was
within normal length and weight (52 cm, 3.0 kg) and began to walk at the age of 13 months. Her
initial clinical examination for bony deformities showed significant growth retardation and lower
limb skeletal deformities (Father and mother are both healthy and do not show any signs of HR).

Laboratory tests for all four patients showed low serum phosphorus and serum calcium lev-
els, but decreased tubular reabsorption of PO4 (TRP) in relation to the glomerular filtration
rate (TmPO4/GFR). A compilation of laboratory findings and physical characteristics of all
four patients from two independent Indian families are shown in Table 1.

All patients received phosphate supplements in form of neutral phosphate (40–60 mg/kg/
day) and 1alpha-hydroxyvitamin D3 (0.5–1 μg/day). Additionally, all patients were monitored
every three months for signs of hypercalciuria or nephrocalcinosis. Laboratory parameters
such as serum calcium, serum phosphate, alkaline phosphatase, PTH, and urine calcium/
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creatinine ratio were also monitored every 3 months, whereas ultrasonography was performed
only every 6 months.

Whole exome sequencing
Aiming to identify the genetic cause underlying the HR disease in the multiplex family E0023
we submitted DNA from the affected mother (E0023-I-2) for WES. Exome capture and next-
generation sequencing on an Illumina HiSeq2000 platform generated 50,941,902 paired-end
reads of 101 nucleotides (5.1 Gigabases). Alignment to the human reference genome sequence

Table 1. Clinical data and biochemical results of four patients with hypophosphatemic rickets from two Indian families.

Family Patient Gender Age
(yrs)

Height
(cm)

Weight
(kg)

Clinical Symptoms Serum P
(mg/dL)

Serum Ca
(mg/dL)

TRP
(%)

TmPO4/GFR
(mg/dL)

E0023 II-1 Male 10 110 17 Growth retardation, Dental
hypoplasia, Genu valgum
(knock-knee)

2 9.2 34 2.1

E0023 II-2 Male 9 124 23 Growth retardation, Dental
hypoplasia, Genu varum
(bowlegs)

2.9 9.8 30 2.6

E0023 I-2 Female
(Mother)

35 135 45 Growth retardation, Dental
hypoplasia, Genu valgum
(knock-knee)

2.2 9.4 24 2.5

E0024 II-1 Female 8 111 18 Growth retardation, Genu
valgum (knock-knee)

2.6 8.9 38 2.7

doi:10.1371/journal.pone.0130729.t001

Fig 1. Appearance of two brothers with hypophosphatemic rickets of an Indian family (E0023).Clinical
examination of both individuals yielded decreased tubular phosphate reabsorption, growth retardation, and
bone malformations typical of hypophosphatemic rickets. Proband II-1 (left) shows shows genu valgum
“knock-kneed” features while his brother II-2 shows the characteristic signs of genu varum “bowlegs”.

doi:10.1371/journal.pone.0130729.g001
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revealed that 97.4% of targeted exonic coding regions have been covered at a minimum of 1x,
96.3% at 5x, 94.7% at 10x, 89.6% at 20x, and 86.4% at 25x.

When analyzing variants located in genes implicated in HR, including CLCN5 [26], DMP1
[27], ENPP1 [28], FGF23 [29], SLC34A3 [30], PHEX [2], and CYP27B1 [31], we found only
three variants with a minor allele frequency of about 1% or below for three of those genes:
ENPP1, CYP27B1, and PHEX. We screened the respective allele frequencies provided by “The
Exome Aggregation Consortium” (ExAC; http://exac.broadinstitute.org/), which has aggre-
gated WES data of more than 65,000 individuals worldwide. We found a heterozygous p.
Val166Leu missense variant (rs8176344) in the gene CYP27B1 with a 1.16% overall allele fre-
quency and a specific South Asian population allele frequency of 6.78% with a PolyPhen-2
pathogenicity prediction score of 0.015 indicative for a benign polymorphism. Furthermore,
we identified a heterozygous p.Leu611Val heterozygous missense variant (rs79079368) in the
gene ENPP1 with an overall allele frequency of 0.81% (2.65% in South Asian) and a PolyPhen-
2 score of 0.001, also indicating the presence of a benign polymorphism. On the other hand, a
heterozygous c.1080-3C>A acceptor splice site variant in intron 9 of the PHEX gene in the
affected mother of family E0023 was absent from the 1000 Genome Project (http://www.
1000genomes.org/), the ExAC database, and from the Human Gene Mutation Database
(HGMD, http://www.hgmd.cf.ac.uk/ac/).

Segregation analysis by direct Sanger sequencing revealed that the novel PHEX c.1080-
3C>A variant/mutation co-segregated with the affected status and was found to be hemizygous
in both affected boys. Chromatograms of the c.1080-3C>A splice site mutations are shown in
Fig 2A together with the wild-type sequence derived from the healthy father.

Genome-wide in silico calculation of base-level frequencies of human
donor and acceptor splice sites
Splice site mutations might result in extended or skipped exons, retained introns, or the activa-
tion of cryptic splice sites. To estimate the effect of a splice site mutation we performed an in
silico analysis and calculated the frequencies of each nucleobase at various positions around the
5’ (donor) and 3’ splice acceptor sites of all 327,293 annotated exons of the human genome.

The obligatory splice sites are the nearly invariant bases of GT at the 5’ end (+1, +2) and the
AG (-1,-2) at the 3’ end of the intron adjacent to donor and acceptor splice junctions. The
flanking bases around the highly conserved 5’ obligatory acceptor (GT) splice site are enriched
for specific nucleotides at frequencies higher than expected compared to a random distribu-
tion, especially the +3 to +6 positions with a sequence consensus of AAGT (Fig 3A). The most
frequent bases upstream of the obligatory AG acceptor site are pyrimidine-rich with thymidine
presenting always the most frequent base (between 28.1% and 54.6%) always followed by cyto-
sine (between 25.1% and 64.3%) (Fig 3B). The in silico analysis of all human exons revealed
that cytosine is the most frequent nucleobase with 64.3% at the -3 splice acceptor position,
which is mutated in our patient (c.1080-3C>A), followed by thymidine with 28.7%, adenine
with 6.3%, and guanine with 0.8%. We considered that the 6.3% frequency of adenine at the -3
position is indicative for a potential splice defect and performed additional RT-PCR experi-
ments accordingly. Frequencies of each of the four possible nucleobases at each position near
the 5’ and 3’ splice sites are provided in Fig 3 below the established pictograms for the splice
donor and acceptor sites.

RT-PCR
To test whether the c.1080-3C>A PHEXmutation effects mRNA splicing, we performed
RT-PCR experiments using RNA from immortalized B-lymphocytes derived from patient
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E0023-II-2 and from a healthy individual as a control (Fig 4). Immortalization of blood-
derived B-lymphocytes, received from his affected brother (II-1) or his parents have been
unsuccessful.

The RT-PCR amplification of PHEX of exon 6 to exon 22 revealed a strong 1,636 bp product
when using cDNA samples as template from either the control individual or from the patient
(E0023-II-2) (Fig 4). Interestingly, an additional aberrant smaller splice product of 1,129 bp
was only detected in the patient (Fig 4C). Gel extraction and Sanger sequencing of the respec-
tive fainter RT-PCR product revealed that exon 9 directly splices in-frame to exon 15 and
thereby skipping exons 10 to 14 (Fig 4B,4D).

Direct Sanger sequencing of all PHEX exons
Direct sequencing of all PHEX exons and adjacent exon/intron boundaries of the affected girl
(sporadic case) from family E0024 resulted in the identification of a heterozygous insertion/
deletion mutation (c.1211_1215delACAAAinsTTTACAT) in exon 11. This mutation causes a
frameshift at the amino acid level (p.Asp404Valfs�5) with an expected premature translation
stop codon five amino acids downstream (Fig 2B). This mutation has not been reported in the
HGMD database or in the locus specific (PHEX) mutation database (http://data.mch.mcgill.ca/

Fig 2. Pedigrees and PHEX genemutation chromatograms from two Indian families with X-linked
hypophosphatemic rickets. (A,B) Pedigrees of two XLH families. Filled symbols represent affected
individuals. Circles and squares indicate females and males, respectively. (C)Genomic sequence
chromatograms showing a novel acceptor splice site mutation c.1080-3C>A in intron 9 of the PHEX gene
(arrows). The mutation in family E0023 co-segregates with the affected status and is present in the mother (I-
2) and her two affected sons (II-1 and II-2). The father (I-1), who is healthy, exhibits a hemizygous wild-type
allele. The mutation was identified after whole exome sequence analysis in E0023-II-2 and confirmed by
direct Sanger sequencing. (D) A novel heterozygous insertion/deletion mutation
(c.1211_1215delACAAAinsTTTACAT) in PHEX exon 11 leading to a frameshift (p.Asp404Valfs*5) was
identified by direct Sanger sequencing in a female patient with hypohosphatemic rickets (E0024-II1). Note,
that both her father (I-1) and her mother (I-2) show only the wild-type sequence. Therefore, we conclude that
this mutation is most likely a de novo change, although the presence of germ line mosaicism in one of the
parents cannot entirely be ruled out by analyzing RNA from blood only. The two bottom chromatograms
represent the c.1211_1215delACAAAinsTTTACAT frameshift mutation (bottom) and the wild-type allele
(above) after the respective patients’ PHEX exon 11 PCR products have been cloned into TA-cloning plasmid
vector pCR2.1 (Invitrogen) and subsequently sequenced. Black boxes highlight deleted (ACAAA) and
inserted (TTTACAT) bases accordingly.

doi:10.1371/journal.pone.0130729.g002
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phexdb). Furthermore, this mutation is absent from both the ExAC exome database, derived
from 65,000 individuals, as well as from the 1000 Genomes Project’s data. Segregation analysis
revealed that this novel mutation is absent from both parents’ blood DNA samples and there-
fore considered a de novomutation.

Discussion
In the present study, we identified two novel mutations in the PHEX gene in patients with HR
from India. We found a novel non-obligatory splice-site mutation (c.1080-3C>A) in a family
with three affected individuals and a de novo insertion/deletion mutation in a sporadic case
with HR. Whereas the indel mutation in the sporatic case leading to a frameshift is apparent
the underlying disease causing change, the pathogenicity of the splice site change found in the
multiplex family (E0023), is less obvious. Thus, we used a number of bioinformatics, in silico,
and experimental studies to support that the c.1080-3C>Amutation is indeed causing the HR
phenotype in this family. This includes, i) the mutation was found in the PHEX gene, the most
frequently gene implicated in HR, ii) no mutation was found in any other gene known to be
implicated in HR when analyzing the entire WES data, iii) the mutation is absent from any
public database including the ExAC data derived from 65,000 individuals of different ethnici-
ties, iv) the mutation segregates with the affected status in the respective family with three
affected members, v) nucleobase frequency analysis revealed that the minus 3 splice site change
is only found in about 6% of human splice acceptor sites, vi) in silico tool “MutationTaster”
(http://www.mutationtaster.org/) predicts that the splice site alteration is disease causing and
likely disturbs normal splicing, vii), and most importantly, RT-PCR revealed an aberrant splice

Fig 3. Consensus sequences and frequencies of human splice site regions. Pictograms representing
the comprehensive in silico analysis of all human splice sites concerning 327,293 exons across 81,814
different transcripts among 20,345 human genes.A) Frequencies and consensus sequences of 15 human
splice donor nucleobases.B) Frequencies and consensus sequences of 26 human splice acceptor
nucleobases. Note, that the GT (+1, +2) and AG (-1, -2) positions adjacent to donor and acceptor splice
junctions are highly conserved and nearly invariant. Consensus flanking bases are found at frequencies
higher than expected compared to a random distribution. Frequencies of each nucleobase across various
splice site positions are given in a table aligned with the respective bases in the pictograms above.

doi:10.1371/journal.pone.0130729.g003
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product which is only observed using RNA derived from lymphoblasts of a patient with the
respective mutation. Although it is very likely that the c.1080-3C>A change is the underlying
disease causing mutation, in vitro cell or in-vivo functional tests would provide increased
confidence.

Out of 366 different mutations reported in the literature to date (HGMD) there are 65
“splicing”mutations reported. The vast majority with 52 (80%) of those splice mutations affect
the almost 100% conserved obligatory consensus gt-ag (+1, +2. . .-2, -1) sites [32–33]. Only
nine of the reported splice donor and two of the splice acceptor mutations are located outside
of those canonical gt-ag sites. Interestingly, both reported uncommon acceptor mutations
“c.437-3C>G” [34] and “c.850-3C>G” are located at the minus 3 position with the common
cytosine changed to a guanine. Guanine at the minus 3 position is rare, present in only 0.8% of
all human acceptor sites (see Fig 3). The C to A change we observed at the very same position
has a substantial higher occurrence frequency of 6.3% compared to more conserved C>G
changes with 0.8% across all human exons. Consequently, we decided to test the splice effect of
the c.1080-3C>Amutation by applying RT-PCR and using RNA from an EBV-transformed
patient’s lymphoblastoid cell line as working template. RT-PCR experiments revealed an aber-
rant splice transcript with five exons skipped together with an abundant wild-type transcript.
Interestingly, the amount of the aberrant splice product was low compared to the correctly
spliced wild-type transcript. It is known that that XLH is an X-linked dominant disease with
complete penetrance because even one copy of a mutated allele causes disease in heterozygous
females. Typically, affected males with hemizygous loss of function PHEX mutations do not

Fig 4. RT-PCR analysis of the mutated PHEX 1080-3C>A acceptor splice site. (A) Schematic representation of the exon/intron structure of the PHEX
gene up and downstream of the mutated 1080-3C>A splice site in intron 9 (arrow). Primers used for amplification are indicated (PHEX_ex6_F,
PHEX_ex22_R). (B) Schematic representation of the aberrant splice product found in male patient (E0023-II-2) who carries a hemizygous PHEX (c.1080-
3C>A) splice acceptor site mutation (arrow). RT-PCR revealed an aberrant splice product which generates an in-framemRNA transcript with exon 9 directly
joined to exon 15, thereby skipping five consecutive exons. (C) Agarose gel electrophoresis of RT-PCR fragments produced after RNA was extracted from
EBV-transformed peripheral lymphocytes of patient E0023-II-2 and of a healthy control individual. Using primers PHEX_exon6_forward and
PHEX_exon22_reverse resulted in a 1,636 bp wild-type RT-PCR product in both samples. Note, that an additional fainter aberrant 1,129 bp splice product,
which corresponds to an in-frame transcript and skipping exon 10–14, is only present in the patient’s sample. 100 bp Marker (New England Biolabs) (D)
Sequence chromatograms of the aberrant splice product of 1,129 bp next to the sequence of the wild-type canonical splice product. Sequence traces of the
aberrant fragment demonstrate that exon 9 is spliced directly to exon 15 indicating that the PHEX 1080-3C>Amutation may alter the strength of the intron 9
splice acceptor site.

doi:10.1371/journal.pone.0130729.g004
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express any wild-type transcripts, whereas females are expected to express at least about 50% of
those transcripts compared to healthy individuals with two intact gene copies. The amount of
wild-type transcripts in our patient with the c.1080-3C>A splice site mutation seems to be
higher, perhaps in the range of even 90%, although we don’t know the expression pattern in
disease relevant tissues. Even so, we speculate that already a small reduction of the unaltered
full-length (wild-type) transcript may be sufficient to cause disease and that the splice mutation
leads to a reduction of wild-type transcripts and consequently to an insufficient amount of
wild-type protein.
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